
  

  

Abstract—This paper performs a global stability analysis of a 
particular class of recurrent neural networks (RNN) with 
time-varying delay. Both Lipschitz continuous activation 
functions and monotone nondecreasing activation functions are 
considered. Globally delay-dependent robust stability criteria 
are derived in the form of linear matrix inequalities (LMI) 
through the use of Leibniz-Newton formula and relaxation 
matrices. Finally, two numerical examples are given to illustrate 
the effectiveness of the given criterion.  
 

Index Terms—Delay-range-dependent, state estimator, 
interval time-varying delay, linear matrix inequality. 

 

I. INTRODUCTION 
ver the past few years, a great deal of interest has been 
devoted to the study of recurrent neural networks (RNNs) 
in various areas including signal processing, model 

identification, optimization, pattern recognition and 
associative memory. Many applications heavily have been 
presented on the dynamical behaviors for recurrent neural 
network. Additionally, time delays are frequently 
encountered in many practical areas, and it is now well 
known that time delays are one of the main cause of 
instability and oscillations in systems. Therefore, time delay 
is variant with time due to the finite switching speed of 
amplifiers. The existence of time delay could make delayed 
RNNs be instable or have poor performance. So, many 
research interests have been attracted to the stability analysis 
for delayed RNNs. A great deal of results related to this issue 
have been reported in this literature; see, e.g., [1]-[12].  
  State estimation is a subject of great practical and theoretical 
importance which has received much attention in recent years. 
Since the neuron states are not often fully available in the 
network outputs in many applications, the neuron state 
estimation problem is also important for many applications to 
utilize the estimated neuron state. The problem addressed is 
to estimate the neuron states through available output 
measurements such that the dynamics of the estimation error 
is globally exponentially stable. Recently, the state estimation 
problem for recurrent neural networks with time-varying 
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delays was studied in [13], where an effective linear matrix 
inequality (LMI) approach was developed to solve the 
problem [14]. When the number of summands in a system 
equation is increased and the differences between 
neighboring argument values are decreased, systems with 
distributed delays will arise. Recently, the state estimation 
problem for such recurrent neural networks with mixed time 
delays has been dealt with in [15], where sufficient conditions 
for the existence of estimator have been obtained in terms of 
LMIs. However, it should be pointed out that the 
aforementioned results for both the discrete delay case and 
distributed delay case are delay-independent, that is, they do 
not include any information on the size of delays. It is known 
that delay-dependent conditions are generally less 
conservative than delay-independent ones, especially when 
the size of the delay is small. Therefore, delay-dependent 
results on the state estimation problem for RNNs with 
time-varying delays were proposed in [16], where the 
proposed method was applicable to the case that the 
derivative of a time-varying delay could take any value. 
However, it should be pointed out that the aforementioned 
results are continuous delayed RNNs. Recently, the dynamics 
analysis problem for discrete-time recurrent neural networks 
with or without time delays has received considerable 
research interest; see, e. g, [17]-[24]. Although 
delay-range-dependent results on the globally robust stability 
problem for discrete-time RNNs with interval time-varying 
delay were presented in [25], no delay-range dependent state 
estimation results on discrete-time recurrent neural networks 
with interval time-varying delay are available in the literature, 
and remain essentially open. The objective of this paper is to 
address this unsolved problem.  

This paper deals with the problem of state estimation for 
discrete-time recurrent neural networks with interval 
time-varying delay. The interval time-varying delay includes 
both lower and upper bounds of delay. A 
delay-range-dependent condition for the existence of 
estimators is proposed and an LMI approach is developed. A 
general full order estimator is sought to guarantee that the 
resulting error system is globally asymptotically stable. 
Desired estimators can be obtained by the solution to certain 
LMIs, which can be solved numerically and efficiently by 
resorting to standard numerical algorithms [14]. Finally, an 
illustrative example is provided to demonstrate the 
effectiveness of the proposed method.  
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II. PROBLEM FORMULATION 
Consider the following discrete-time recurrent neural 

network with interval time-varying delay 
 

))(()()1( 0 kxgWkAxkx +=+ )()))(((1 kIkkxgW +−+ τ ,                  (1) 
where ))( , ),( ),(()( 21

T
n kxkxkxkx L=  is the state vector, 

) , , ,( 21 aaadiagA nL=  with 1<ai
, ni  , 2, ,1 L= , is the state 

feedback coefficient matrix, W nn×
0 and W nn×

1 are the 
interconnection matrices representing the weighting 
coefficients of the neurons, 

Rkxgkxgkxg nT
nn ∈= ]))((,)),(([))(( 11 L  is the neuron activation 

function with 0)0( =g , )(kτ  is the time-varying delay of the 
system satisfying 

τττ 21 )( ≤≤ k , Ν∈k ,                                                   (2) 
where ττ 210 ≤≤  are known integers. )( kI  is the input vector.  
  In order to obtain our main results, the activation functions 
in (1) are assumed to be bounded and satisfy the following 
assumption. 

 
Assumption 1 
Fro any ς1

, R∈ς 2
, the neuron activation functions satisfy  

ςςαςς 2121 )()( −≤− iii gg , ni  , ,2 ,1 L= .                                      (3) 

Our goal in this paper is to provide an efficient estimation 
algorithm in order to observe the neuron states from the 
available network outputs. For this reason, the network 
measurements are assumed to satisfy 

))( ,()()( kxkqkCxky += ,                                                (4) 
where Rky m∈)(  is the measurement output and C  is a known 
constant matrix with appropriate dimension. ))( ,( kxkq  is the 
neuron-dependent nonlinear disturbances on the network 
outputs and satisfies the following Lipschitz condition 

)() ,() ,( 1221 ςςςς −≤− Qkqkq ,                                         (5) 

where Q  is a known real constant matrix. 
  For system (1) and (4), we now consider the following 
full-order estimator  
 

))(ˆ ,()(ˆ)(()()))((ˆ())(ˆ()(ˆ)1(ˆ 10 kxkqkxCkyLkIkkxFWkxFWkxAkx −−++−++=+ τ        

)(kI+ ,                                                                                 (6) 
where )(ˆ kx  is the estimation of the neuron state and RL nm×∈  
is the estimator gain matrix to be determined.   

Our target is to choose a suitable L  so that )(ˆ kx  approaches 
)(kx  asymptotically. Let 

)()(ˆ)( kxkxke −=                                                           (7) 
be the state estimation error. Then, the error-state dynamics 
from the system (1) and (6) can be obtained as 

))( (ˆ)))(((ˆ))((ˆ)()()1( 10 keqLkkeFWkeFWkeLcAke −−++−=+ τ ,  (8) 
where 

))(())(ˆ())((ˆ kxFkxFkeF −= , 
)))((()))((ˆ()))(((ˆ kkxFkkxFkkeF τττ −−−=− , 

))( ,())(ˆ ,())((ˆ kxkqkxkqkeq −= . 

It is easy to see from Assumption 1 and the condition (5) that 
the solution of (1) exists for all 0≥k  and is unique [26]. 
Moreover, there exists a unique zero equilibrium point to the 
error-state system (8). 

 The purpose of this paper is to develop 
delay-range-dependent conditions for the existence of 
estimators for the discrete-time recurrent neural network with 
interval time-varying delay. Specifically, for given scalars 
lower and upper bounds of delay, we are concerned with 
finding an asymptotically stable estimator in the form of (8) 
such that for any lower and upper bounds of delay satisfying  

τττ 21 )( ≤≤ k  the error-state system (8) is globally 
asymptotically stable. 

 
 

III. MAIN RESULTS 
This section explores the globally delay-range-dependent 

state estimation conditions given in (8). Specially, an LMI 
approach is employed to solve the estimator if the system (8) 
is globally asymptotically stable. The analysis commences by 
using the LMI approach to develop some results which are 
essential to introduce the following Lemma 1 for the proof of 
our main theorem in this section. 
 
Lemma 1: Let D , S  and P  be real matrices of appropriate 
dimensions with 0>P . Then, for vectors x , y Rn∈       

ySPSyxDDPxDSyx TTTTT  2 1−+≤ .                      (9) 
 
For any matrices Ei , Si  and T i  7) , 2, ,1( L=i  of appropriate 
dimensions, it can be shown that 
 

EkeFEkeEkeEkkeEke TTTTT
54132211 ))((ˆ)()())(()([ 2 +−+−+−+=Φ τττ  

])1()))(((ˆ 76 EkeEkkeF TT ++−+ τ  
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=∑ −−−−−×
+−=

k

kkj
jejekkeke

τ
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SkeFSkeSkeSkkeSke TTTTT

54132212 ))((ˆ)()())(()([ 2 +−+−+−+=Φ τττ  
])1()))(((ˆ 76 SkeSkkeF TT ++−+ τ  

0]))1()(()())(([
)(

1
2
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+−=
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τ
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TkeFTkeTkeTkkeTke TTTTT

54132213 ))((ˆ)()())(()([ 2 +−+−+−+−=Φ τττ  
])1()))(((ˆ 76 TkeTkkeF TT ++−+ τ  

0]))1()(())(()([
1

1)(
1 =∑ −−−−−−×

−

+−=

τ
ττ

τ

k

kkj
jejekkeke

 , (12) 

 
0))((ˆ0)(0)(0))(()([ 2 1214 ⋅+⋅−+⋅−+⋅−+−=Φ keFkekekkeHke TTTTT τττ  

]0)1(0)))(((ˆ ⋅++⋅−+ kekkeF TT τ  
))((ˆ)()()1([ 0 keFWkeLCAke −−−+×  

                                           ))]((ˆ)))(((ˆ
1 keqLkkeFW +−− τ    ,         (13) 

))((ˆ))((ˆ2))((ˆ))((ˆ2 115 keFRkeFkeFRkeF
TT −=Φ  

            0))(()))(((ˆ2))(()))(((ˆ2 22 =−−−−−+ kkeRkkeFkkeRkkeF
TT ττττ  . (14) 

The following theorem is essential for solving the state 
estimation problem formulated in the previous section. 
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Theorem 1: Under Assumption 1, given scalars ττ 210 <≤ , the 
error-state dynamics in (8) with interval time-varying delay 

)(kτ  satisfying (2) is globally asymptotically stable, if there 
exist matrices 0>P , 01 >Q , 02 >Q , 01 >Z , 02 >Z , a 
nonsingular H1 , diagonal matrices 01 >R , 02 >R  and matrices 

Y1 , Ei , Si  and T i  7) ,2, ,1( L=i  of appropriate dimensions 
such that the following LMI holds 

0

        0           0             0        
0   )ZZ(   0             0       
 0             0           Z       0       

 0             0            0                     
                                        

22121
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77675747372717

67665646362616
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47464544342414

37363534332313

27262524232212

17161514131211

TTTTTT

TTTTT

TTTT

TTT

TT

T

, 

QQQEEZZQP TT
2112211221 111 )1( ++++++++−=Ω τττ , 

TSEE 111212 ++−=Ω , SET
1313 −=Ω , TET

1414 −=Ω , RE TTT
1515 Γ+=Ω , 

ET
616 =Ω , HAYCZZE TTTTT

1122112717 +−−−=Ω ττ , 

TTSSEEQ TTT
222222122 ++++−−−=Ω , TSSE TTT

332323 ++−−=Ω ,  

TSTE TT
442424 ++−−=Ω , TSE TTT

55525 ++−=Ω , TSE TTT
66626 ++−=Ω ,  

TSE TTT
77727 ++−=Ω , SSQ T

33233 −−−=Ω , TST
3434 −−=Ω ,  

ST
535 −=Ω , ST

636 −=Ω , ST
737 −=Ω , TT T

4444 −−=Ω , TT
545 −=Ω ,  

TT
646 −=Ω , TT

747 −=Ω , RR T
1155 −−=Ω , 056 =Ω , HW TT

1057 =Ω ,  
)( 1

2
1

266
TRR Γ−Γ−=Ω −− , HW TT

1167 =Ω ,  

ZZPHH T
221121177 ττ +++−−=Ω ,   

]0     0      0     0      0      0    [ 1
TTHH = ,  

]0   0    0    0    0    0    [ 1
TTYHLY == , 

]                     [ 7654321
TTTTTTTT EEEEEEEE = ,  

]                     [ 7654321
TTTTTTTT SSSSSSSS = ,  
]                     [ 7654321
TTTTTTTT TTTTTTTT = , in which 

) , , ,( 721 ααα Ldiag=Γ , τττ 1221 −= . In this case, a desired the 
estimator gain matrix L  is given as YHL 1

1
1
−= . 

 
Proof: Choose the Lyapunov-Krasovskii functional candidate 
for the error-state system in (8) as 
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τ
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1
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Then, the difference of )(kV  along the solution of (8) is given 
by 
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Defining the following new variables 
])1( )))(((ˆ ))((ˆ )( )( ))(( )([)( 12
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]                     [ 7654321
TTTTTTTT EEEEEEEE = ,  

]                     [ 7654321
TTTTTTTT SSSSSSSS = ,  
]                     [ 7654321
TTTTTTTT TTTTTTTT = ,  
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TTHH = . 

It follows from (16), (10)-(14) that  
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Moreover, 
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Using Assumption 1 and noting that 01 >R  and 02 >R  are 
diagonal matrices, one has 

)())((ˆ2))((ˆ))((ˆ2 11 keRkeFkeFRkeF
TT Γ≤ ,                                  (21) 

)))(((ˆ)))(((ˆ2))(()))(((ˆ2 1
22 kkeFRkkeFkkeRkkeF

TT ττττ −Γ−−≤−−− − ,   (22) 
where ) , , ,( 721 ααα Ldiag=Γ . 
 
Substituting (18)-(22) into (17), it is not difficult to deduce 
that 
 

)(kVΔ [ )(])( 1
321

1
221

1
12 kYYTZTSZSEZEk TTTTT ητττη ++++Ω≤ −−−  , (23) 

From condition (15) and Schur complement, it can be 
concluded that  

01
321

1
221

1
12 <++++Ω −−− YYTZTSZSEZE TTTT τττ       .           (24) 

It follows from (23) that the estimation error-state system (8) 
is asymptotically stable for interval time-varying delay )(kτ  
satisfying (2). This completes the proof of Theorem 1. □ 
 
Remark 1: Theorem 1 provides a sufficient condition for the 
globally stability of the discrete-time recurrent neural 
network with interval time-varying delay given in (1) and 
proposes a delay-range-dependent criterion. Even for 01 =τ , 
the result in Theorem 1 may lead to the delay-dependent 
stability criteria. In fact, if IZ ε 12 = , with 01 >ε ,  being 
sufficient small scalars, 0=T i , 7 ,,2 ,1 L=i , 04 =E , 04 =S , 
Theorem 1 yields the following delay-dependent criterion.  
 
Corollary 1: Under assumption 1, given scalars 02 >τ , 01 =τ , 
the discrete-time recurrent neural network with time-varying 
delay satisfying (2) is globally asymptotically stable, if there 
exist matrices 0>P , 01 >Q , 02 >Q , 01 >Z  and diagonal 
matrices 01 >R , 02 >R  and matrices Ei  and Si  7) ,2, ,1( L=i  of 
appropriate dimensions among E4 = S 4 =0 such that the 
following LMI holds 
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]                  [ 765321
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error-state system (8) (i.e. the lower bounds 01 =τ  and the 
given upper bounds τ 2 ) approaches globally asymptotically 
delay-dependent stability. In this case, a desired the estimator 
gain matrix L  is given as YHL 1

1
1
−= . 

IV. NUMERICAL EXAMPLES 
Example 1: Consider the discrete-time recurrent neural 
network with the following parameters 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.2     0       0
0      0.2     0
0       0    1.0

A
, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−

=
 0.6   0.3      0.2   

0.9     7 0.    0.8
0.4      0.5    1.0   

0W
,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

 0.5     0.3     0.2
0.2     0.5     0.1
0.1     0.3     5.0

1W
.  The activation functions in this 

example are assumed to satisfy Assumption 1 with 034.01 =α , 
429.02 =α , 508.03 =α . The non-linearity ))( ,( kxkq  is assumed 

to satisfy (5) with  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.3    0       0 
0    0.2     0 
0     0     1.0

Q
, for the network output, the parameter C  is 

given as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1   0    0
0   1    0
0   0    1

C
. By the Matlab LMI Control Toolbox, it 

can be verified that Theorem 1 in this paper is feasible 
solution for all delays 14)(2 ≤≤ kτ  (i.e. the lower bound 21 =τ  
and the upper bound 142 =τ ) as follows  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

3.5254    0769.0       1746.0   
0769.0    1.8526       1112.0
1746.0    1112.0    1336.3   

P
,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

1.4637      0660.0      0629.0   
0660.0      0.8434      0397.0
0629.0      0397.0   2066.1   

1Q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

0.5401     0524.0  0330.0   
0524.0  0.2403     0289.0
0330.0     0289.0  7478.0   

2Q
, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

0.0198     0009.0     0030.0   
0009.0     0.0121     0028.0
0030.0     0028.0  0270.0   

1Z
,   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

0.0230     0012.0     0034.0   
0012.0     0.0142     0033.0
0034.0     0033.0  0316.0   

2Z
, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

0.0243     0013.0    0042.0   
0013.0    0.0124     0043.0
0042.0     0043.0  0348.0   

3Z
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1.8935       0             0       
0      1.6715        0       
0          0        9166.1   

1R
, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1.4369       0          0     
0        1.4864      0     
0             0      7912.1

2R
,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

3.6305       0.0543      0.0025
0.1097       2.0734      1234.0

3201.0       1965.0   4569.3

1H
,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
=

0.3519      3393.0    1313.0
1317.0    0.2346    0828.0   
0373.0      0400.0   3713.0   

1Y
 

Therefore, according to Theorem 1, a desired estimator can 
be computed as 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

== −

 0.0979      3393.0   0368.0
0686.0   1077.0   0352.0   
0022.0   0092.0   1128.0   

1
1

1 YHL
. 

Thus, by Theorem 1, the desired estimator guarantees 
asymptotic stability of the error-state system in (8) (i.e. the 
lower bound 21 =τ  and the upper bound 142 =τ ) 

V. CONCLUSIONS 
In this paper, the problem of state estimation for a 

discrete-time recurrent neural network with interval 
time-varying delay has been studied. A sufficient condition 
for the solvability of this problem, which takes into account 
the range for the time delay, has been established. The desired 
estimator guarantees asymptotic stability of the estimation 
error-state system. An illustrative example has been 
presented to demonstrate the effectiveness of the proposed 
approach.  
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