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Abstract— In this paper, an approach to fault diagnosis in
a nonlinear stochastic dynamic system is proposed using the
interacting multiple particle filtering (IMPF) algorithm. The
fault diagnostic approach is formulated as a hybrid multiple-
model estimation scheme. The proposed diagnostic approach
provides an integrated framework to estimate the system’s
current operational or faulty mode, as well as the unmeasured
state variables in the system. Particle filtering algorithm is
used to statistically model the underlying dynamics of a
nonlinear/non-Gaussian stochastic system. A set of models is
assumed to present the possible system behavior pattern or
modes. A bank of particle filters runs in parallel, each based on
a particular mode, to obtain mode-conditional estimates accord-
ing to the probabilistically weighting scheme. The interaction
among particle filters allows estimation from multiple filters to
be fused in a principled manner. The simulation results on a
highly nonlinear system are provided which demonstrate the
effectiveness of the proposed method by comparing it with other
nonlinear estimation techniques (extended Kalman filter (EKF)
and unscented Kalman filter (UKF)-based).

I. INTRODUCTION

Due to the growing demand for fault tolerance, cost ef-

ficiency, high performance, improved reliability, availability,

and enhanced safety, considerable research effort has been

applied for the problem of fault detection and identification

(FDI) in dynamic systems with ever increasing complexity.

Different types of approaches have been both theoretically

and experimentally investigated in [1, 2, 3, 4, 5, 6, 7,

8, 14]. Such FDI techniques utilize parameter and state

estimation, detection filters, statistical pattern recognition,

multiple model estimator, maximum likelihood techniques

and Bayes’ theorem. These approaches fall into into two

categories, i.e., model-based and data-driven approaches.

For model-based diagnostic approaches, appropriate math-

ematical models are assumed to be available to describe

the system dynamics under different operational modes.

The decision of a fault is based on available input and

observation sequences and pre-determined system models.

The system’s operation is compared with predictions of a

model and system operational mode is identified whenever

predictions deviates from measurements. Physical parameters

and estimation residuals are common features for model-

based diagnostics. Parameter estimation, observers (e.g.,

Kalman filtering and multiple model estimator) and parity

space-based approaches are the main ways of generating
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the residuals. One of the most effective approaches for fault

detection and identification is based on the multiple-model

(MM) estimation scheme, in which a bank of filters runs

in parallel, each based on a model matching to a particular

operational mode. The diagnostic scheme uses the residual to

compute mode-conditional likelihood function and determine

the current active system operational mode based on the

updated mode-conditional probabilities. Mode-conditional

probabilities indicate the relative correctness of the various

system mode. The overall state estimate is calculated by the

probabilistically weighted sum of state estimates of all filters.

MM algorithms for FDI have been developed for different

engineering application problems [9, 10]. In [11], an inter-

acting multiple model (IMM) algorithm was developed as a

notable advance in the MM estimation. The IMM estimation

introduces the interaction among single-model-based filters

and thus leads to significantly improved performance for the

hybrid system state estimation. The IMM algorithm has been

applied for the detection and diagnosis of sensor and actuator

failures [6] and the design of active fault-tolerant control

[12]. Much of the development in model-based diagnostic

approaches has relied on the assumption of linear system

model and Gaussian noise and disturbances. By employing

linearization techniques, diagnostic approaches developed for

the linear case can be extended to some nonlinear stochastic

systems. Extended Kalman filter is usually applied instead

of Kalman filter for the nonlinear system diagnostic problem

[13, 14]. Another type of filter, called as unscented Kalman

filter (UKF) [15] is also applicable for the nonlinear system

estimation problem. Both EKF and UKF approximate the

posterior distribution of the state as a Gaussian distribution.

Although both EKF-based and UKF-based approaches seem

perfectly straightforward, there are no general results to

guarantee that such approximation will work in the most

case. Often the FDI performance of these approaches suffer

from poor detection or high false alarm rates.

With the motivation of IMM and particle filtering algo-

rithms, a novel approach to detection and diagnosis of mul-

tiple faults in the nonlinear stochastic system is developed

using the interacting multiple particle filtering algorithm. The

diagnosis problem is to determine the state of a system

over time given a stream of observations. The state being

estimated is assumed to be hybrid, i.e., it consists of both

discrete and continuous components. The system operational

modes are described as the discrete components of the

hybrid state, while the continuous components track the

dynamic behavior of the system to be monitored. The model-

based diagnostic problem is to provide a distribution of the

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrBI01.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4274



discrete state at each time step, while the dynamic state

estimation problem is to construct the posterior probability

density function of the continuous state on all the available

information. By using the estimated distribution of system

operational modes, a probabilistic scheme, such as maximum

a posterior (MAP) algorithm can be designed to achieve

both fault detection and diagnosis. Various estimates of the

system’s states can be obtained based on the estimated PDF

of the continuous state. In the proposed fault diagnostic

scheme, a system mode is drawn from a set of possible

system modes. The evolution of the system mode over

time is represented by a first order Markov chain. Particle

filtering algorithm is applied to represent and recursively

approximate the state conditional PDF. Each possible system

mode is characterized with the corresponding particle filter.

The transition and interaction among different system modes

are described by the interacting multiple model algorithm.

The proposed fault diagnostic approach can be applied for

the FDI and dynamic state estimation problems in general

nonlinear and non-Gaussian stochastic systems.

The rest of paper is organized as follows. Section II

presents the FDI problem in general nonlinear and non-

Gaussian systems using multiple model method. In Section

III the interacting multiple model algorithm is derived for

general nonlinear and non-Gaussian systems. Section IV de-

scribes three different PDF approximation techniques using

EKF, UKF and particle filtering approaches. In Section V,

performance evaluation of the proposed diagnostic scheme

is presented for a highly nonlinear system with conclusions

in Section VI.

II. PROBLEM STATEMENT

With both the observation of system dynamic behavior

and empirical knowledge of possible system modes available,

the fault diagnosis problem is to determine the active system

mode at each time step. In this section, multiple model-based

estimation scheme is applied to formulate the fault diagnosis

problem in the stochastic nonlinear system. In the MM

method, a finite set of models is assumed to represent the

possible system dynamic behavior; a bank of filters runs in

parallel at every time to provide model-based estimates; the

switching/transition between system modes is characterized

by a first-order Markov chain.

In order to analyze and make inference about a dynamic

system, at least two models are required: state transition

and measurement model. The general state-space model can

be broken down into those two models and presented in a

probabilistic form as

p(xk|xk−1) (1)

p(yk|xk), (2)

where xk ∈ ℜnx denotes the states (unobservable variables

or parameters) of the system at time k and yk ∈ ℜny the ob-

servations. The system operational mode, θk is assumed to be

drawn from a discrete set of modes, Θ = {m1, m2, · · · , mM}.

The transition probability between pairs of modes is denoted

as

P (θk+1 = mj |θk = mi) = πij . ∀mi, mj ∈ Θ (3)

By defining the hybrid state as {xk, θk}, the probabilistic

state-space model as equation (1) and (2) can be expressed

as follows

xk = fθk
(xk−1, θk, wk−1) (4)

yk = hθk
(xk, θk, vk), (5)

where wk ∈ ℜnw denotes the processing noise and vk ∈ ℜnv

measurement noise. The mapping f(·) and h(·) represent the

state evolution and state measurement model.

The fault diagnosis problem can be interpreted as the hy-

brid state estimation problem. State estimation is a process of

determining the state of a system from a sequence of obser-

vations. Given that the probabilistic state-space formulation

as equation (4) and (5), the Bayesian approach provides a

rigorous framework for the hybrid state estimation problem.

In the Bayesian approach, the posterior probability density

function of the hybrid state as equation (6) is constructed

based on the all available information (e.g.,observations,

empirical knowledge of possible system modes).

p(xk, θk|Yk), (6)

where Yk is a sequence of system observation up to time

k, Yk = {y1, · · · , yk}. Equation (6) incorporates the history

of all available information and presents them statistically.

If we know the posterior PDF, we can easily derive various

estimates of the hybrid state. The fault diagnosis problem is

to provide a distribution over the discrete set, Θ at each time

step. This is the marginal distribution of the posterior PDF

as

p(θk|Yk) =

∫

p(xk, θk|Yk)dxk. (7)

Similarly, the problem of tracking the system dynamic be-

havior is to derive the marginal distribution of the posterior

PDF as

p(xk|Yk) =

M
∑

i=1

p(xk|θk = mi, Yk)p(θk = mi|Yk). (8)

With the observation been updated at every time step,

a recursive state estimation scheme can be designed. It is

assumed that the initial PDF p(x0, θ0), also known as the

prior, is available. The posterior PDF p(xk, θk|Yk) can be

recursively estimated in two stages: prediction and update.

Suppose that the desired posterior PDF p(xk−1, θk−1|Yk−1)
at time k − 1 is available. The prediction stage involves

using the state transition model to obtain the predicted PDF

p(xk, θk|Yk−1) of the hybrid state at time k. By defining

ρk = p(xk, θk|Yk),

the predicted PDF can be expressed as

p(xk, θk|Yk−1) =

∫

p(xk, xk−1, θk|Yk−1)dxk−1, (9)
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where

p(xk, xk−1, θk|Yk−1) =
∑

θk−1

p(xk|xk−1, θk)p(θk|θk−1)ρk−1.

The probabilistic model of the state transition p(xk|xk−1, θk)
is defined by the state-space equation (4) and the known

statistics of wk .

At time step k, a new observation y(k) becomes available

and can be used to update the predicted PDF via Bayes’ rule.

p(xk, θk|Yk) =
p(yk|xk, θk)p(xk, θk|Yk−1)

∫
∑

θk
p(yk|xk, θk)p(xk, θk|Yk−1)dxk

,

(10)

where p(yk|xk, θk) is the mode-conditional likelihood func-

tion defined by the measurement model (5) and the known

statistics of vk.

Equation (9) and (10) form the basis for the recursive hy-

brid state estimation scheme. This recursive estimate scheme

is only a conceptual solution and cannot be determined

analytically. For the case with linear state transition and

measurement models and Gaussian additive noise, analytical

solutions to the recursive estimation of posterior PDF do

exist. For such a special case, the posterior PDF can be

summarized by the mean and covariance. The Kalman filter

is often used to propagate the estimated mean and covariance.

For general nonlinear and non-Gaussian systems, the ana-

lytical solution is intractable. Nonlinear system linearization

or PDF approximation techniques may provide alternative

options to solve state estimation problems in the nonlin-

ear system. Among those nonlinear system linearization

techniques, the extended Kalman filter is the most pop-

ular approach to recursive nonlinear estimation [16]. The

unscented Kalman filter is a method to approximate the

non-Gaussian distribution by capturing the posterior mean

and covariance accurately to the 2nd order, with error only

introduced in the 3rd and higher orders [15]. With the great

advantage of the particle filtering algorithm, the particle

filtering techniques approximate posterior PDF using a set of

weighted particles. This allows for a complete representation

of the posterior PDF of the states. They can therefore, handle

any nonlinearities or distribution [17].

III. NONLINEAR INTERACTING MULTIPLE

MODEL ALGORITHM

Before we proceed to the detailed distribution approxima-

tion, the interacting multiple model algorithm is introduced

to the recursive state estimation scheme. The IMM method is

the extension of the conventional MM approach by introduc-

ing the interacting scheme among different modes and the

first-order Markov chain to describe the switching/transition

between modes. Unlike the MM method, in which the single-

model-based filters are running in parallel without mutual

interaction, the interacting scheme of the IMM method reini-

tializes each filter by mixing the all most recent estimates

from the single-model-based filters. The proposed recursive

state estimation scheme can be broke down into three stages:

re-initialization, prediction and update.

TABLE I

ONE CYCLE OF RECURSIVE STATE ESTIMATION FOR jTH MODE-BASED

FILTER

1. Prediction stage

p(xk|θk = mj , Yk−1) =
∫

p(xk|xk−1, θk = mj)ρ
j,0
k−1

dxk−1,

where ρ
j,0
k−1

= p(xk−1|θk = mj , Yk−1).

2. Update stage

p(xk|θk = mj , Yk) =
L

j

k
p(xk|θk=mj ,Yk−1)

∫

L
j

k
p(xk|θk=mj ,Yk−1)dxk

,

where L
j

k
= p(yk|xk, θk = mj).

3. Mode-conditional probability

µ
j
k

=
µ

j

k|k−1

∫

L
j

k
p(xk|θk=mj ,Yk−1)dxk

∑

i
µi

k|k−1

∫

Li
k

p(xk|θk=mi,Yk−1)dxk

.

By defining

µ
j
k = p(θk = mj |Yk) (11)

and

µ
j

k|k−1
= p(θk = mj |Yk−1) =

M
∑

i=1

πijµ
i
k−1, (12)

the mode-based re-initialization can be described as a mixing

process as

p(xk−1|θk−1, Yk−1)
−−→
Mixing p(xk−1|θk, Yk−1). (13)

For the jth mode-based filter, the initial distribution estima-

tion can be expressed as

p(xk−1|θk = mj , Yk−1) =

∑M

i=1
µi

k−1
πijρ

i
k−1

∑M

l=1
πljµ

l
k−1

, (14)

where ρi
k−1

= p(xk−1|θk−1 = mi, Yk−1).

One cycle of recursive state estimation is illustrated in

Table I. Using the law of total probability, the unconditional

posterior state distribution can estimated using weighted

mode-conditional posterior distribution estimation as

p(xk|Yk) =
∑

i

p(xk|θk = mi, Yk)µi
k. (15)

As we can see from the total posterior distribution (15), the

overall state estimate is the probabilistically weighted model-

based estimates. The mode-conditional probabilities provide

an indication of mode in effect at any time. It is natural to

be used as an indication of a fault occurrence. By using

the information from the mode-conditional probabilities,

both fault detection and identification can be achieved. The

maximum a posterior (MAP) is used to design the FDI

scheme.

µ
j
k = max

i
µi

k =

{

> µT → mj : mode j occurred

< µT → m1 : nominal mode occurred

where µT is the fault decision threshold. Figure 1 shows

the nonlinear interacting multiple model-based estimation

scheme.
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Fig. 1. Block diagram of the nonlinear IMM-based estimation scheme

IV. FDI VIA EKF, UKF AND PARTICLE FILTERING

In this section, we present the EKF, UKF and particle

filtering to approximate the posterior state distribution. For

both EKF and UKF methods, the posterior distribution is

approximated to be a Gaussian distribution, only the mean

and covariance of the state distribution are recursively prop-

agated and updated. The particle filtering algorithm uses a

set of weighted particles to approximate the posterior.

The EKF is a minimum mean-square-error (MMSE) esti-

mator based on the Taylor series expansion of the nonlinear

functions f(·) and h(·) around the state estimate x̂k|k−1 of

xk. The following recursive estimation scheme for the mean

x̂ and covariance P of the Gaussian approximation.

x̂k|k−1 = f(x̂k−1)

Pk|k−1 = FkPk−1F
T
k + GkQkGT

k

Kk = Pk|k−1H
T
k [UkRkUT

k + Hk + Pk|k−1H
T
k ]−1

x̂k = x̂k|k−1 + Kk(yk − h(x̂k|k−1))

Pk = Pk|k − 1 − KkHkPk|k−1,

where Kk is the Kalman gain, Q is the variance of the

processing noise with zero mean, and R is the variance of

the measurement noise with zero mean. Fk = ∂f
∂xk

|xk=x̂k|k−1

and Gk = ∂f
∂wk

|wk=ŵ are the Jacobian matrices of the state

evolution model. Hk = ∂h
∂xk

|xk=x̂k|k−1
and Uk = ∂h

∂vk
|vk=v̂

are the Jacobian matrices of the state measurement model.

The interacting multiple EKF-based estimation scheme can

be implemented by simply designing the bank of filters using

EKF.

The unscented Kalman filter is a recursive MMSE esti-

mator, in which the state distribution is also approximated

as a Gaussian distribution, a minimal set of deterministic

sample points are chosen to capture the true mean and

covariance and are propagated through the nonlinear system.

The complete UKF algorithm to approximate the posterior

distribution of the state is given as Table II. L is the

dimension of the augmented state xa, and W
c,m
i are the

weights [15]. Similarly, the interacting multiple UKF-based

TABLE II

ONE CYCLE OF RECURSIVE ESTIMATION USING UKF

1. Initialization with prior as x0 ∼ N(x̂0, P0)

x̂a
0 =

(

x̂T
0 0 0

)T
, P a

0 =

(

P0 0 0

0 Q 0

0 0 R

)

2. Calculate the sigma points

χa
k−1

=
(

x̂a
k−1

x̂a
k−1

±
√

(na + λ)P a
k−1

)

3. State prediction based on the propagation of sigma points

χa
k|k−1

= f(χa
k−1), x̂k|k−1 =

∑2L

i=0
W m

i χ
x,a

i,k|k−1

Pk|k−1 =
∑2L

i=0
W c

i
[χx,a

i,k|k−1
− x̂k|k−1][χ

x,a

i,k|k−1
− x̂k|k−1]

T

Υk|k−1 = h(χa
k|k−1

), ŷk|k−1 =
∑2L

i=0
W m

i
Υi,k|k−1

3. Measurement updates

Pyk
=
∑2L

i=0
W c

i
[Υi,k|k−1 − ŷk|k−1][Υi,k|k−1 − ŷk|k−1]

T

Pxkyk
=
∑2L

i=0
W c

i
[χx,a

i,k|k−1
− x̂k|k−1][Υi,k|k−1 − ŷk|k−1]T

Kk = Pxkyk
P−1

yk
, Pk = Pk|k−1 − KkPyk

KT
k

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1)

estimation scheme can be implemented by designing the

filters using UKF.

The basic idea of particle filtering is to use a random mea-

sure {xi
k, wi

k}
N
i=1 to characterize the posterior distribution

of the state, p(xk|Yk), where {xi
k}

N
i=1 is a set of support

points with associated weights {wi
k}

N
i=1. The weights are

normalized such that
∑

i wi
k = 1. Then the posterior density

at time k can be approximated as

p(xk|Yk) ≈

N
∑

i=1

wi
kδ(xk − xi

k). (16)

By applying the particle filter-based density approximation,

a complete cycle of distribution estimation can be described

as Table III. As we can see, the predicted state distribution

can be approximated with a set of weighted kernel density

distribution, {ŵl,i
k−1

, p(xk|x
l,i
k−1

, θk = mj)}. The weight

w
l,i
k−1

is the indication of the contribution of each kernel

density to the predicted density. N particles, {xi,j

k|k−1
}N

i=1

are sampled from the set of kernel density functions, with

particles sampled from each kernel being determined accord-

ing to the corresponding kernel weights. After sampling, the

predicted state distribution can be approximated with a new

set of weighted particles, {wi,j

k|k−1
, x

i,j

k|k−1
}N

i=1.

V. NUMERICAL EXAMPLE AND SIMULATION

RESULTS

In this section, the proposed interacting multiple particle

filtering algorithms is applied for the hybrid state estimation

problem in a highly nonlinear system. The performance on

the fault diagnosis and state estimation is evaluated through

Monte Carlo simulation experiments and the results are

compared with that using EKF and UKF-based approach.

The highly nonlinear system is a univariate growth model

[18] as

xk = axk−1 + b
xk−1

1 + x2
k−1

+ 8 cos(1.2(k − 1)) + wk−1

yk = 0.5x2
k + vk,
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TABLE III

ONE CYCLE OF RECURSIVE ESTIMATION FOR jth PARTICLE FILTER

1. Initialization

p(xk−1|θk = mj , Yk) ≈
∑M

i=1

∑N

l=1
ŵ

l,i
k−1

δ(xk−1 − x
l,i
k−1

),

ŵ
l,i

k−1
=

w
l,i

k−1
µi

k−1
πij

∑

m
πmjµ

j

k−1

,

{wl,i
k−1

, x
l,i
k−1

} is the set of particles from ith particle filter.

2. Prediction using evolution model

p(xk|θk = mj , Yk−1) ≈
∑M

i=1

∑N

l=1
ŵ

l,i

k−1
ρ

l,i

k|k−1,j
,

ρ
l,i

j,k|k−1
= p(xk|x

l,i

k−1
, θk = mj).

Sample N weighted particles as {wi,j

k|k−1
, x

i,j

k|k−1
}N

i=1.

p(xk|θk = mj , Yk−1) ≈
∑N

i=1
w

i,j

k|k−1
δ(xk − x

i,j

k|k−1
),

w
i,j

k
=

w
i,j

k|k−1
∑

N

l=1
w

l,j

k|k−1
p(yk|x

l,j

k|k−1
,θk=mj)

.

3. Update

p(xk|θk = mj , Yk) ≈
∑N

i=1
w

i,j
k

δ(xk − x
i,j

k|k−1
),

w
i,j
k

=
w

i,j

k|k−1
∑

N

l=1
w

l,j

k|k−1
p(yk|x

l,j

k|k−1
,θk=mj)

.

4. Resample as [17], assign weight to each particle as w
i,j

k
= 1

N
.

5. Mode-conditional probability update

µ
j

k
≈

µ
j

k|k−1

∑

N

l=1
w

l,j

k|k−1
p(yk|x

l,j

k|k−1
,θk=mj)

∑

M

i=1

∑

N

l=1
µi

k|k−1
w

l,i

k|k−1
p(yk|x

l,i

k|k−1
,θk=mi)

.

6. Compute overall state estimate

x̂k =
∑M

j=1

∑N

i=1
µ

j

k
w

i,j

k
x

i,j

k
.

where wk and vk are uncorrelated zero mean Gaussian white

noise with variance Qw = 0.1 and Qv = 1. Parameters a

and b are a = a0 = 0.5 and b = b0 = 25. For the

particle filtering-based approach, the number of particle is

set to N = 200. EKF, UKF and particle filter are initiated

with the prior distribution, p(x0) ∼ N(0, 2). The fault is

simulated as that the parameter b jumps from a value of b0

to 0.5b0 while parameter a remains unchanged. The fault

is introduced at time k = 301. The switching/transition

probabilities between nominal mode and faulty mode are

described by the transition probability matrix HT .

HT =

(

0.9 0.1
0.01 0.99

)

.

EKF and UKF-based, and particle filtering algorithms are

applied for the interacting multiple model-based hybrid state

estimation. To assess the FDI performance of the proposed

algorithm, Monte Carlo simulation experiments have been

carried out. The performance indices considered here are

the false alarm (FA) and the missed detection (MD) rate

given the decision threshold µT . The detailed definition of

performance indices is referred to [12].

A set of fault decision threshold is designed as µT ∈
{0.7, 0.95} with the incremental step as 0.01. Fifty Monte

Carlo simulations are generated for each chosen fault deci-

sion threshold in each filtering algorithm. The FA and MD

for each fault decision threshold in each filtering algorithm

are shown in Figure 2 and 3 respectively. It is obviously

desirable to design the recursive estimation scheme with

low FA and MD rates. The FA and MD rates in the

particle filtering-based approach are much lower than those
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Fig. 2. False alarm rate for EKF, UKF and particle filtering-based
approaches
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Fig. 3. Miss detection rate for EKF, UKF and particle filtering-based
approaches

of the EKF and UKF-based approaches. The overall state

estimation and estimation error are shown in Figure 4. The

mode-conditional probabilities at each time step in each

filtering algorithm are demonstrated in Figure 5, in which

Pn denotes the normal mode-conditional probability while

Ps fault mode-conditional probability. As we can see, the

particle filtering-based approach provides more clear fault

decision than EKF-based and UKF-based approaches.

Performance of the proposed particle filtering-based ap-

proach with different sample size is compared in Figure

6. One sample size is 200 while the other is 500. As we

can see from the comparison of state estimation and mode-

conditional probabilities, the proposed particle filtering-based

approach with less sample size can achieve almost same

performance as the one with bigger sample size, in which

more computation load are required.

VI. CONCLUSIONS

An interacting multiple particle filtering algorithm has

been applied for the fault diagnosis and state estimation

problem in the nonlinear stochastic dynamic system. Its

performance of fault diagnosis and estimation was evalu-

ated through Monte Carlo simulations and compared with

that using extend Kalman filtering or unscented Kalman

filtering. The proposed fault diagnosis approach can not

only recursively estimate the mode-conditional probability

so that the active system mode at each time step can be
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Fig. 5. Mode-conditional probability at each time step for EKF, UKF and
particle filtering-based approaches
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Fig. 6. Mode-conditional probability at each time step for particle filter
with size of 200 and 500

determined, but also provide a complete representation of

the posterior distribution of the state so that the various

estimates of the state can be easily derived. The results from

simulations show clearly that the fault diagnosis performance

of the proposed particle filtering-based approach is superior

to EKF and UKF-based fault diagnostic schemes. For the

interacting multiple particle filtering algorithm, large sample

size of particles is not necessary when the computation

power is limited. Estimating faults in terms of a probability

distribution over all possible system modes captures the

uncertainty in fault identification that results form noisy and

insufficient data.
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