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Abstract— In this paper, we investigate the trade-off between
the sampling rate and the data accuracy as a simplified
model for resource allocation between different components
of a networked control system. The problem is set up as the
classical Linear Quadratic Gaussian (LQG) control problem
of a sampled-data system over a discrete-time communication
channel. We show that the LQG cost can be divided into
the control cost, the communication cost, and the sampling
cost. Through numerical examples, we demonstrate that the
controller prefers to have more frequent communication with
the plant, even if the information is crude instead of to obtain a
piece of more precise information with a long delay. The main
contribution of this paper is to provide a method to evaluate
the time value of information in a control system.

I. INTRODUCTION AND RELATED WORKS

In networked control systems, resource sharing between

components of the system brings in the fairness issue of

resource allocation. In this paper, we consider the allocation

problem of the limited communication resource and as a

start, we consider the impact of the limited average through-

put (data rate) on the performance of a centralized system.

By choosing an appropriate cost function, the mechanism

developed here can be generalized to distributed systems with

multi-subsystems.

The problem is setup as the classical LQG problem of

a sampled-data system over a discrete-time additive white

Gaussian noise (AWGN) channel. We investigate the trade-

off between the sampling rate and the data accuracy for

a given average throughput, which is the figure of merit

in stabilizing such a control system, [15]. The sampling

rate indicates how frequently the system has to access the

communication resource and the data accuracy is an indicator

of the required channel capacity at each transmission.

The sampled-data problem has been well studied. Book [4]

provides a through survey of various aspects of sampled-data

control problems. Reference [2] deals with the H∞ problem

of a sampled-data system while reference [3] solves the H2

problem. Paper [12], [14] consider the effect of the sampling

rate on the LQ cost using a more computer science approach.

The control over communication channel problem has

been a major research attraction for the past two decades.

Since paper [5], various authors address the stabilization

problem of communication constrained control systems, see

[10], [13], [16], [6], [8], [19], [20] and reference therein.

However, there are only a few works on performance prob-

lems of such systems. Tatikonda and Mitter considered
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the LQG control problem of a discrete-time Linear Time-

Invariant (LTI) system over a communication channel in

[17], upon which our result is built. Paper [9] considers

the Linear Quadratic Regulation (LQR) problem of a scalar

discrete-time LTI system with static quantizers under high-

rate assumption. Paper [11] considers the state regulation

problem of a sampled-data system under a similar setup as

Ours. References [7], [18] also investigate some performance

problems with other specific performance criteria.

In most of the previous works on controls with limited

communication, discrete-time LTI systems are assumed. The

communication channel is also assumed to be a compatible

discrete-time channel, where the channel capacity is mea-

sured in bits per sample (bits per channel use).

However in real life applications, a control system works

with continuous-time plants. Thus sampling is necessary for

implementing digital control. The network resource is usually

valued in terms of b.p.s. (bits per second) as the average

throughput, which can be considered as the product of bits

per sample and samples per second. The former measures the

channel capacity of the equivalent discrete-time channel, in

other words, per sample channel capacity, which determines

the data accuracy of the sample. The later is exactly the

sampling rate, which measures how frequently the system

has to access the communication resource. Thus in order

to properly evaluate the performance, one must explicitly

consider the channel accessing frequency together with the

available channel capacity at each transmission. Therefore, a

more appropriate measure of the communication constraint

is the average throughput instead of the channel capacity.

Given fixed average throughput, one can trade off between

the sampling rate and the data accuracy. In the stabilization

problem, these changes do not make any difference since

the average throughput is the unique measure of the required

information rate, [15]. However, this is generally not true in

performance problems. In this paper, we show that the LQG

cost of the sampled-data system can be decomposed into

three parts: the control cost, the communication cost, and

the sampling cost. The total cost is inversely related to both

the sampling rate and the data accuracy. Increasing either of

them decreases the cost. So the natural question to ask is

what is the optimal trade-off between the sampling rate and

the data accuracy given fixed network throughput?

We analytically and quantitatively investigate this problem,

and discuss the trade-off between these two factors. Our main

contribution is to show that in order to minimize the LQG

cost, sampling the system faster, aka, communicating more

frequently is more effective than sending a more accurate

information with a long delay given fixed average rate. This
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is amount to say that information itself has a time value.

The rest of the paper is organized as follows. The problem

is set up in Section II. Section III derives the cost function

analytically. In section IV, we use numerical examples to

show the trade-off between the sampling rate and the data

accuracy along with evaluations. The conclusions are given

in Section V.

II. PROBLEM FORMULATION

The system under consideration is illustrated in Fig. 1.
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Fig. 1. Sampled-Data System with Communication Constraints

The plant G is a continuous-time LTI system with the

following state-space representation

ẋ(t) = Ax(t) + Bu(t) + Gw(t) (1)

where state x ∈ R
n, control u ∈ R

u. The external distur-

bance w ∈ R
w is an i.i.d. zero mean Gaussian process with

auto-correlation function Kw(t1, t2) = Γδ(t1− t2). Matrices

A, B and G are of compatible dimensions; And when the

system is scalar, we use lower case letters a, b and g to

denote them. For convenience, we assume state feedback in

our setup.

The sampler S and the zero-order hold H are assumed to

have perfect synchronization. The sampling period is denoted

as h, with f =
1
h

as the sampling rate. The sampler and the

hold work as follows

xk = Sx(t) s.t. xk = x(kh), for t ≤ kh < (k + 1)h

u(t) = Huk s.t. u(t) ≡ uk, for t ≤ kh < (k + 1)h

It is worth mentioning that the system is partitioned into a

continuous-time part and a discrete-time part after sampling.

We can assume that the discrete-time part (which is below

the dash-dotted line in Fig. 1) only operates on time t = kh.

The encoder E at time t = kh is a map Ek
: R

n ×
Σ

[0,k−1]×R
uk to Σ, taking values (xk, σ[0,k−1], u[0,k−1]

) 7→
σ(k), where Σ is the codeword space and Σ

[0,k−1] denotes

the union of all the past codeword spaces. Notation σ[0,k−1]

is used to denote all the past codewords and u[0,k−1] is

used to denote all the past controls. The encoder knows the

decoding policy D but not the control policy C.

The decoder D at time t = kh is a map Dk
: Σ

[0,k]×R
uk

to R
n, taking values (σ[0,k], u[0,k−1]

) 7→ x̂k . The decoder

knows the encoding policy E but not the control policy C.

The output of the decoder is an estimate of the state x(kh).

The discrete-time controller Kd at time t = kh is a map

Ck
: R

n(k+1) to R
u taking values x̂[0,k] 7→ uk. The control

causally depends on the decoder’s outputs.

The channel connecting the encoder and decoder is as-

sumed to be a discrete-time AWGN channel with capacity

R bits/ch use (per sample channel capacity).

The cost function is the classical LQG cost given as

J = lim sup

N→∞

1

N
E

[

∫ Nh

0

x′
(t)Q̃x(t) + u′

(t)S̃u(t)dt

]

(2)

where N is a positive integer and E is used to denote the

expectation. The transpose of x(t) is denoted as x′
(t).

Our goal is to solve the following optimization problem:

min J

subject to Eqn(1) and fR = c b.p.s..

where c is the given fixed average throughput.

In the next section, we analytically evaluate this problem

and in section IV, we show some interesting trade-offs

between f and R through numerical examples.

III. EVALUATION OF THE COST

In this section, we show how to break the cost J into three

parts, which can be then evaluated separately. The detailed

mathematical derivations are omitted due to page limitation

and are available upon request.

We first consider sampling a system with no communica-

tion constraints. The LQG cost (2) can be divided into the

LQG cost of an equivalent discrete-time LTI system and an

additional cost which quantifies the sampling effects.

Then we consider the communication constraints, the

LQG cost of the equivalent discrete-time LTI system can

be further decomposed into two parts: the control cost and

the communication cost. Thus we have three costs in total.

A. Effects of Sampling

Let us for now assume the communication channel is

perfect, that is, the sampled output x(kh) can be observed by

the controller Kd without any distortion. With the sampler

S and the hold H, the original system (1) is transformed to

the following equivalent discrete-time LTI system

xk+1 = Adxk + Bduk + vk (3)

where

xk = x(kh)

vk =

∫ (k+1)h

kh

eA((k+1)h−τ)Gw(τ)dτ

Ad = eAh
; R

n → R
n

Bd =

∫ h

0

eAτdτB; R
u → R

n

We have the following results on the sampled system
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Lemma 1: The disturbance vk is a zero mean i.i.d. Gaus-

sian process with variance

Kv =

∫ h

0

eAτGΓG′eA′τdτ (4)

Lemma 2: The cost function J has the following expres-
sion after sampling

J = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

x
′
kQxk + 2x

′
kMuk + u

′
kSuk

]

+∆(h) (5)

where

Q =

∫ h

0

eAhQ̃eAhdt ; M =

∫ h

0

eAhQ̃H(t)dt

S =

∫ h

0

(

S̃ + H ′
(t)Q̃H(t)

)

dt ; H(t) =

∫ t

0

eAτdτB

W (t) = Trace

{
∫ t

0

Q̃
1

2 eAτGΓG′eA′τ Q̃
1

2 dτ

}

∆(h) =

∫ h

0

W (t)dt

and Γ is the covariance matrix of w(t) as defined in the

previous section.

Now, the original LQG problem for the continuous-time

system (1) is transformed to the equivalent discrete-time

LQG problem given by (3) and (5). The cost function J
has a crossover term 2x′

kMuk and an extra term ∆(h),

which quantifies the sampling effects and it is independent

of controls.

B. Effects of Communication Constraints

For a discrete-time Gaussian-Markov source, paper [17]

solves the LQG problem (with no crossover terms in the cost

function) over a capacity constrained channel. The sequential

rate distortion framework is introduced and a separation of

the total cost into a full knowledge cost and a sequential rate

distortion cost is derived. Specifically, for a system

zk+1 = Fzk + Hfk + ek (6)

where zk ∈ R
n is the state, fk ∈ R

f is the control and

ek ∈ R
n is an i.i.d. Gaussian noise, matrices F and H are

of compatible dimensions. The following LQG cost

Ĵ = lim sup

N→∞

1

N
E

[

N−1
∑

k=0

z′kQ̂zk + f ′
kŜfk

]

(7)

where again N is a positive integer and Q̂ ≥ 0 and Ŝ > 0

can be decomposed into two parts

Trace(P̂ K̂e) + Trace((F ′P̂F − P̂ + Q̂)Θ)

where K̂e is the covariance matrix of ek, and Θ is the

covariance matrix of the error between zk and its estimate

ẑk. The matrix P̂ is the solution to the optimal LQG prob-

lem when full information is available (no communications

constraints), i.e., P̂ is the solution to the following Riccati

equation

P̂ = F ′
(P̂ − P̂H(H ′P̂H + Ŝ)

−1H ′P̂ )F + Q̂

By noticing that the equivalent discrete-time LTI system

(3) is in the exact form of (6), and the cost (5) is also similar

to (7), we have the following theorem by combining this

result and that in Lemma 2

Theorem 1: By using the following certainty equivalent

controller

u∗
k = −(R + B′

dPBd)
−1

(B′
dPAd + M)x̂k (8)

where P is the solution to the following Riccati equation

P = (A′
dPAd + Q) − (B′

dPAd + M)
′

×(S + B′
dPBd)

−1
(B′

dPAd + M)

on system (1), the LQG cost (2) decomposes as follows

J = Trace(PKv) + Trace((A′
dPAd − P + Q)Λ) + ∆(h) (9)

where Λ = Cov(xk − x̂k) is the covariance matrix of the

estimation error over the channel.

Remark 1: Equation (9) says the cost J decomposes into

three parts: the first term is the control cost under full obser-

vation of the state x(kh) and the second term characterizes

the communication cost while the third term is a measure of

the sampling cost. All costs depend on the sampling rate but

only the second term depends on the channel capacity.

Paper [17] also shows that the estimation error is charac-

terized by the sequential rate distortion. For a given data

accuracy, the minimal distortion/cost is achieved over a

matching channel¶. For a Gaussian-Markov source as the

one in (3), the matching channel is an AWGN channel with

memory, which can be realized with an AWGN channel with

noiseless feedback. Since our encoder knows the decoder’s

output, it can be regarded as a noiseless feedback. Thus with

the given encoder, decoder and controller triple, the optimal

cost can be computed explicitly for a scalar system. For a

higher dimensional system, the cost can only be computed

in low distortion (high rate) region. Readers are referred to

[17] for detailed discussion.

IV. NUMERICAL EXAMPLES

In this section, numerical examples are employed to show

the interesting trade-off between the sampling rate f (sam-

ples/sec) and the channel capacity R (bits/sample). We first

derive the exact cost function of a scalar system and then

evaluate the cost under various parameter combinations to

show how the system performance is affected by the average

throughput c, the channel capacity R (data accuracy), the

sampling rate f , and plant parameters A, B, and G.

A. Cost of Scalar Systems

From now on, we assume system (1) is a scalar Gaussian-

Markov process, then following the derivations in previous

¶Probability distribution of input-output of the channel matches the
source, see [17] for more information.
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sections and the result in [17], the cost can be decomposed

as in (9), which can be further evaluated as

pkv +
kv(a2

dp − p + q)

22R − a2
d

+ ∆(h) (10)

where lower case letters are used to denote scalar variables.

Clearly, when the channel capacity R ≤ log2 |ad| bits per

sample, the cost is infinity, our goal is to evaluate the cost

function (10) given R > log2 |ad| and R/h = c b.p.s.

It is straightforward to check that R > log2 |ad| bits per

sample is equivalent to c = Rf = R/h > |a| log2 e b.p.s.,

which is the unique measure of the minimal average through-

put required to stabilize the system. For multi-dimensional

system, c >
∑

|λ(A)|≥1 |λ(A)| log2 e is the information lower

bound for stabilization. This is consistent with results in [15].

Analytical evaluation of the cost function (10) is a

formidable task due to all the integrations involved in the

parameters. Instead we present some numerical examples to

illustrate the trade-off.

We consider the following parameter combinations for

system (1) in order to see how the performance is affected.

Evaluations are given along with figures.

We set Γ = 1, q̃ = 2, and s̃ = 1, and

a b g
I 2 1 1

II 4 1 1

III 2 10 1

IV 2 1 2

For the ease of plotting figures, when R ≤ log2 |ad|, the

cost is set to −100, when any cost > 300, it is set to

−50 . For 3-d figures below, x-axis denotes the sampling

period h instead of the rate f =
1
h

, y-axis represents the

channel capacity R, z-axis is the cost. For 2-d figures, x-

axis represents the sampling period h and y-axis is the cost.

We consider the following parameter ranges: 0.01 ≤ h ≤ 1

second and 0.01 ≤ R < 5 bits per sample.

B. Effects of the Throughput, the Sampling Rate and the

Channel Capacity

Fig. 2 is the total cost LQG J (2) for scenario (I).

From this figure, we have the following observations:

1), The most important one is that the cost J is very

small when the sampling rate f is very high (corresponding

to small x-axis numbers). This is not hard to understand

because when sampled fast, the system matrix ad is very

close to 1, thus only a little effort is required to stabilize the

system. A channel with small capacity is sufficient, which

results in a low communication cost. On the other hand,

the variance of the lifted noise vk is small due to the small

sampling period, thus the control cost is low. Similarly the

sampling cost is also very low due to fast sampling, which

can be easily observed from the expression of ∆(h).

2), There is a clear cut of minimal required average rate to

stabilize the system, this is represented by the line on x− y
plane which is determined by the points with z = −100.

This line can also be observed if we penalize high cost,
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Fig. 2. Total Cost J for Scenario (I)

say J > 500, instead of checking the minimal required

throughput. This is consistent with the minimal average

throughput requirement derived earlier.

3), When the average throughput is just over the minimal

requirement for stabilization, the overall LQG cost can still

be high, this is shown by the −50 values in the figure, and

the communication cost contributes to this explode since the

channel capacity R = cf is consequentially barely enough.

4), Increasing the channel capacity also helps to decrease

the total cost, however, when the system is sampled very

slowly, the control cost and sampling cost are dominant.

Even with a large data rate, the decrease in the commu-

nication cost is not enough to offset the increase in the other

two costs. Thus the total cost tends to get large regardless of

the data accuracy. This is also illustrated in the next figure.

Fig. 3 shows how the separated three costs (red - control -

the middle layer, green - communication - the layer cutting

through, and magenta - sampling - the lower layer) interacts

with each other for parameter combination (I).
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Fig. 3. Separate Costs for Scenario (I)

As we can see from the figure, the control cost and the
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sampling cost strictly increase with the sampling period h,

and they are not related to the channel capacity. The commu-

nication cost is huge when the capacity is barely enough to

maintain stability. But as the channel capacity gets higher, the

communication cost drops very fast. On the other hand, lower

sampling rate tends to incur higher communication cost, this

is due to the larger system matrix ad = eah generated after

sampling, which makes stabilization more demanding. When

the per sample channel capacity is high, the control cost and

the sampling cost dominate the communication cost. Thus,

we conclude that the data should be sufficiently accurate but

after some point, increasing the data accuracy is not very

effective in lowering the total cost.

This phenomena was also observed in [17], where it shows

that for a discrete-time LTI system over a communication

channel, it is almost useless to increase the channel capacity

beyond a certain point in order to reduce the LQG cost.

Fig. 4 shows the communication cost and the sampling

cost for a given average throughput c = 6 b.p.s., which is

much higher than the minimal required stabilizing through-

put, which is 2 log2 e b.p.s.
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Fig. 4. Communication and Samping costs for Scenario (I)

We can see that the communication cost starts low and

then increases a little bit but eventually decreases with

the sampling period h. This is due to the fact that the

per sample channel capacity R is linearly related with the

sampling period h for a fixed c. However the cost does not

linearly depend on either R or h, thus its behavior is also

nonlinear. The sampling cost, on the other hand, increases

monotonically. Therefore, there is an optimal sampling rate

for the total cost, especially when the channel capacity is low.

This is also illustrated in Fig. 5, where the communication

cost is substantially large. The control cost, which is not

shown in this figure, also increases monotonically with h.

Fig. 5 is the communication cost given different average

throughputs, namely, c = 2 log2 e + 0.2, c = 2 log2 e + 0.5,

and c = 2 log2 e+4 bits per second (from high to low), where

2 log2 e b.p.s. is the minimal required average throughput

for stabilization. We observe that when the throughput is

marginally enough, the communication cost is huge, but it

decreases very fast as the throughput gets higher. Consider

that R = ch, increase c is effectively the same as increase

R for a fixed sampling rate, thus initially increase the data

accuracy is very effective in bringing down the communi-

cation cost. But when the data is sufficiently accurate, the

communication cost is very low, then continuing to increase

data accuracy is not economical. This is shown in the low

cost region (y close to 0) in the figure.
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Fig. 5. Total Cost for Scenario (I) for Different b.p.s.

C. Effects of Plant Parameters

We now investigate how plant parameters affect the cost.

Fig. 6 shows how the parameter a affects the total cost,

the lower (red) layer is the cost for scenario (I) with a = 2

(same as Fig. 2) and the upper (blue) layer is the cost for

scenario (II) with a = 4. From this figure we observe that,

1), Larger a value does require higher average throughput

for stabilization. Notice the blue line on the x− y plane has

a larger slope than the red line. This is equivalent to say that

R2/h2 > R1/h1, i.e., more b.p.s. required.

2), Larger a value tends to generate higher cost for fixed

R and h due to the increase in all three individual costs.
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Fig. 6. Total Cost for Scenario (I) and (II)

Fig. 7 shows how the parameter b affects the total cost,

the upper (red) layer is the cost for scenario (I) with b = 1

(same as Fig. 2), the lower (blue) layer is for scenario (III)
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with b = 10. From this figure we can see that a larger b
value can reduce the cost, this is due to the smaller p value

computed. Also, it is worth mentioning that the stabilizing

average throughput does not change under different b values.
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Fig. 7. Total Cost for Scenario (I) and (III)

Fig. 8 shows how the parameter g affects the total cost,

the lower (red) layer is the cost for scenario (I) with g = 1

(same as Fig. 2), the upper (blue) layer is for scenario (IV)

with g = 2. It is not surprising that the required throughput

for stabilization does not change but the cost increases due

to a noisier process enters the system. The same result can

be obtained by enlarging the covariance matrix Kw.
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Fig. 8. Total Cost for Scenario (I) and (IV)

V. CONCLUSIONS

For control system over communication networks, how to

allocate the communication resource fairly is an important

issue. In this paper, we investigated the sample model of

the LQG performance problem of a sampled-data system

over a discrete-time capacity limited communication channel.

Through numerical examples we demonstrate the trade-offs

between the sampling rate and the data accuracy. We infer

that given fixed network resources, in order to minimize

the cost, the controller prefers to have more frequent com-

munication with the plant than to obtain more accurate

information with a long delay. The fundamental axiom in

finance says “money has a time value”, analogously we

conclude that “information has a time value”.

Our future work include extending current work to multi-

dimensional systems, to different communication channels,

and to use different network resource indices.
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