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Abstract— The problem of optimal periodic control is con-
sidered from a geometric point of view. The objective is to
determine the conditions under which a given optimal control
problem admits a homoclinic orbit as an extremal solution.
The analysis is performed on the Hamiltonian dynamical
system obtained from the application of Pontryagin Maximum
Principle. Assuming the existence of nondegenerate control, the
existence problem is studied through the dynamical structure
of the associated critical Hamiltonian dynamical system. A key
tool used in the present development is the application of Morse
theory in the context of symplectic geometry. The main result
of the paper follows from the study of the critical points of the
Hamiltonian function. An application example is provided to
illustrate the method.

I. INTRODUCTION

The usual task of optimal control is to compute the extremal
trajectory that steers a controlled dynamical system to a
desired point of operation with respect to a given objective
functional. In some applications a desired steady-state point
of operation might be unreachable or not minimizing when
compared to dynamic operation. In those cases, the optimal
target may lie on a trajectory, for example a periodic orbit.
This situation occurs for example in drug scheduling opti-
mization [18] and cyclic operation of chemical reactors [11].
The optimal periodic control (OPC) problem considered in
this paper consists in the minimization of a functional of the
type

min
u(·)

J =
1
τ

∫ τ

0

L(x, u)dt (1)

s.t. ẋ = f(x, u), (2)

x ∈ X ⊂ Rn, u ∈ U ⊂ R, τ > 0 is the period and f and
L are sufficiently smooth. The problem considered here is
to find necessary conditions under which the optimization
problem admits a homoclinic orbit as the optimal solution,
i.e. the trajectory along the optimal flow joins a saddle critical
point to itself.
Variational approaches to deal with this problem were in-
troduced in [11]. Second order conditions of optimality
for periodic orbits were given around known steady-state
of operation in [17], based on the properties of the mon-
odromy matrix at the static optimal point of operation. More
generally, if an optimal steady-state of operation to the
problem is known, a local test for existence of improving
periodic perturbation, the π-test, can be used to decide on the
existence of an optimal periodic orbit [2]. An account of this
approach to the problem is given in [4]. Two main causes
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for such optimal dynamical property can be distinguished:
first, the critical steady-state of operation solving Eqs. (1-2)
may be unstable (or more than one such point may exists)
or the cost-function may be non-convex.
The above class of approaches requires the computation of
periodic solutions to the Riccati differential equation (see
[17] and references therein). Also, it requires the knowledge
of a feasible steady-state point of operation minimizing
the functional (1). Minimizing static points of operation
may fail to exist in some applications, for example in
drug scheduling applications. Recently, constructive methods
admitting periodic orbits as target sets to solve the OPC
problem were introduced in [19]. Assuming flatness of the
system dynamic, optimal periodic outputs are constructed
using off-line optimization methods. Based on this result, an
extremum-seeking procedure was proposed in [10], where
optimal periodic flat outputs are computed and tracked on-
line.
In the present paper, existence of periodic solutions to the
optimal problem is studied from a geometric point of view.
The objective is to characterize the Hamiltonian system of
differential equations from the application of the Pontryagin
Maximum Principle

ẋ = f(x, u), x(0) = x0 (3)

λ̇ = −∂H
∂x

(x, λ, u), λ(τ) = 0 (4)

where λ ∈ Rn are the costates and the R-valued function
H(x, λ, u) is the Hamiltonian defined by

H(x, λ, u) = λT f(x, u) + L(x, u). (5)

Throughout the paper, it is assumed that an explicit optimal
control u∗(x, λ) can be computed. From the discussion in
[14], it requires that the Hessian of the Hamiltonian function
with respect to u is non-singular in a neighborhood of u∗,
i.e. ∂

2H
∂u2 6= 0, and that the first-order condition for optimality

∂H

∂u
(x, λ, u∗) = 0 (6)

leads to a unique solution u∗(x, λ) for the optimal control
problem.
Hence, in the present paper, the existence of stable periodic
solutions to the optimal control problem will be studied on
a 2n-dimensional dynamical system

ẋ = f(x, u∗(x, λ)), x(0) = x0 (7)

λ̇ = −∂H
∂x

(x, λ, u∗(x, λ), λ(τ)) = 0, (8)
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along with the critical Hamiltonian function

H(x, λ, u∗(x, λ)) = λT f(x, u∗(x, λ)) + L(x, u∗(x, λ)). (9)

The strategy to be employed here consists in studying the
structure of the solution manifold by characterizing the
critical points of the one-form dH associated with the
Hamiltonian function along the symplectic vector field (see
[1] for applications of symplectic geometry in control). One
approach to characterize the critical points of dH is Morse
theory, that gives an understanding of the global structure
of the solution manifold. Morse theory-based analysis of
vector fields leading to existence conditions for asymptotic
cycles were introduced in [15]. The idea was then extended
in terms of differential forms in [8], using the concept
of Lyapunov one-forms for manifolds carrying a gradient
structure. The later approach parallels the approach taken
in [5] where Morse theory of smooth functions was used.
In the present paper, assuming that the dynamic has one
nondegenerate hyperbolic critical point and using a result
from [16] for smooth Hamiltonian system in R2n, condi-
tions for existence of optimal homoclinic orbits of critical
controlled Hamiltonian structures are derived and illustrated.
The main advantage of the method lies in the fact that using
Morse theory for differential forms, the characterization of
the solution manifold is greatly simplified when compared
to convexity and variational methods.
The paper is divided as follows. Mathematical preliminaries
on exterior calculus and critical point theory for Hamiltonian
differential forms are given in Section II. The main result
of the paper on existence of homoclinic orbit for the critical
Hamiltonian dynamical system presented above is developed
in Section III. An optimal periodic control application ex-
ample treated previously in [17] is studied in Section IV.
Conclusions are given in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Exterior Calculus

In this section, the basic elements of exterior calculus on
Rn are recalled. A complete account of exterior calculus on
general smooth manifolds can be found in [6]. We will work
exclusively in standard (Euclidean) coordinates (x1, . . . , xn)
on Rn. We denote the ring of smooth real-valued functions
on Rn by C∞(Rn).
For all x ∈ Rn, let the tangent space to Rn at x be denoted
by TxRn. For any x ∈ Rn, TxRn is canonically isomorphic
to Rn, so it can be endowed with a n-dimensional real vector
space structure. For any x ∈ Rn, a tangent vector v ∈ TxRn
can be written as

v =
n∑
i=1

vi∂xi
|x, (10)

where vi ∈ R for all i ∈ {1, . . . , n}. The tangent vectors
∂xi
|x, i ∈ {1, . . . , n}, comprise the standard basis for TxRn.

For any f ∈ C∞(Rn), the action of the tangent vector
∂xi |x on f is defined by ∂xi |x(f) = (∂f/∂xi)|x. Let
πTRn : TRn → Rn denote the tangent bundle over Rn,

and let Γ∞(TRn) denote the real vector space of all smooth
sections of TRn, i.e., the collection of all smooth maps
X : Rn → TRn satisfying πTRn ◦X|x = x for all x ∈ Rn.
A smooth vector field on Rn is an element X ∈ Γ∞(TRn).
Any X ∈ Γ∞(TRn) can be written as

X|x =
n∑
i=1

vi(x)∂xi
|x, (11)

where vi ∈ C∞(Rn) for all i ∈ {1, . . . , n}. For each x ∈ Rn,
let the cotangent space to Rn be denoted by T ∗xRn. Recall
that for a given x ∈ Rn, T ∗xRn is the algebraic dual of
TxRn, i.e., the set of all linear functionals on TxRn. For each
x ∈ Rn, the standard (dual) basis for T ∗xRn is thus comprised
of the cotangent vectors dxi|x, i ∈ {1, . . . , n}, determined
by the relations dxi|x(∂xj

|x) = δij for all i, j ∈ {1, . . . , n},
where δij is the Kronecker delta. Hence, for any x ∈ Rn, a
cotangent vector w ∈ T ∗xRn can be written as

w =
n∑
i=1

ωidxi|x, (12)

where ωi ∈ R for all i ∈ {1, . . . , n}. Let πT∗Rn : T ∗Rn →
Rn denote the cotangent bundle over Rn, and let Ω1(Rn)
denote the real vector space of all smooth sections of T ∗Rn,
i.e., the collection of all smooth maps ω : Rn → T ∗Rn
satisfying πT∗Rn◦ω|x = x for all x ∈ Rn. A differential one-
form on Rn is an element ω ∈ Ω1(Rn). Any ω ∈ Ω1(Rn)
can be written as

ω|x =
n∑
i=1

wi(x)dxi|x, (13)

where wi ∈ C∞(Rn) for all i ∈ {1, . . . , n}. For each k ≥ 0,
we denote by Λk(Rn) the real vector space of differential
k-forms on Rn. By convention, Λk(Rn) = {0} when k < 0.
Note that when k = 0, Λ0(Rn) = C∞(Rn); furthermore,
when k = 1, Λ1(Rn) = Ω1(Rn).
The exterior (wedge) product of two differential one-forms is
the bilinear map ∧ : Ω1(Rn)×Ω1(Rn)→ Λ2(Rn), denoted
(ω1, ω2) 7→ ω1 ∧ω2, uniquely defined (up to a scalar factor)
by the requirements that

dxi ∧ dxj = −dxj ∧ dxi
dxi ∧ fdxj = fdxi ∧ dxj

for all i, j ∈ {1, . . . , n} and all f ∈ C∞(Rn).
For each 0 ≤ k ≤ n− 1, there is a linear map

d : Λk(Rn)→ Λk+1(Rn), (14)

called the exterior derivative, uniquely defined by the fol-
lowing three properties:

1. d(α∧β) = dα∧β+ (−1)kα∧ dβ, ∀α, β ∈ Λk(Rn);
2. df =

∑n
i=1(∂xi(f))dxi, ∀f ∈ C∞(Rn);

3. d ◦ dα = 0, ∀α ∈ Λk(Rn).
For each 0 ≤ k ≤ n− 1, the interior product y is the map

y : Γ∞(TRn)× Λk(Rn)→ Λk−1(Rn) (15)
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defined by the following four properties. For all X ∈
Γ∞(TRn), y satisfies:

1. Xyf = 0, ∀f ∈ C∞(Rn) when k = 0;
2. Xyω = ω(X), ∀ω ∈ Λ1(Rn) when k = 1;
3. Xy(α+ β) = Xyα+Xyβ, ∀α, β ∈ Λk(Rn);
4. Xy(α∧β) = (Xyα)∧β+(−1)kα∧(Xyβ), ∀α, β ∈

Λk(Rn).
With our notation established, we now consider special
properties of Hamiltonian forms.

B. Hamiltonian Forms

Consider a Hamiltonian function H(x, λ) ∈ T ∗Rn. The
associated vector field XH in coordinates (x, λ) ∈ R2n is
defined by

XH =
n∑
i=1

∂H

∂λi
∂xi −

∂H

∂xi
∂λi . (16)

The canonical symplectic closed two-form in T ∗Rn [1] is
given by

Ω =
n∑
i=1

dxi ∧ dλi (17)

which is non-degenerate at every point [13]. The vector field
XH given above is said to be symplectic if it satisfies

LXH
(Ω) = 0, (18)

where LXH
(Ω) is the Lie derivative of the two-form with

respect to the vector field XH . By definition, the Lie deriva-
tive L of a differential form ω with respect to a vector field
X is the linear operator defined by

LX : Λk(Rn)→ Λk(Rn)
LX(ω) = Xy(dω) + d(Xy ω). (19)

LX satisfies the Leibniz rule, i.e. ∀α, β ∈ Λ(Rn):

LX(α ∧ β) = LX(α) ∧ β + α ∧ LX(β). (20)

In other words, a symplectic vector field on T ∗Rn preserves
the symplectic two-form Ω. As a consequence,

ω = XHyΩ (21)

is a closed one-form, i.e. dω = 0. By application of the
Cartan formula [6],

dω = dXHyΩ = (dXH +XHyd)(Ω) = LXH
(Ω) = 0, (22)

we see that ω defined above is closed if and only if XH is
a symplectic vector field. With XH defined as above, it is
possible to show that ω is indeed closed. Taking the interior
product of the canonical two-form with respect to the vector
field XH yields to the one form

ω =
n∑
i=1

(
∂H

∂λi
dλi +

∂H

∂xi
dxi

)
(23)

which is the exterior derivative of the Hamiltonian function
H . From the discussion in [8], since the one-form ω =
XHyΩ = dH , it is thus exact, i.e. ω is generated by

the exterior derivative of a zero form, in this case the
Hamiltonian function.
One consequence of the above analysis is that there is a one-
to-one correspondence between the closed one-form and the
symplectic vector field XH . Critical points of the vector field
XH hence coincide with the critical points of the one-form
dH . This observation will be used in the sequel when critical
points of the Hamiltonian function H(x, λ) will be computed
using the one-from dH(x, λ).

C. Critical Points and Morse Theory

The notion of critical point of a smooth function translates
to the notion of a zero of a closed one-form [8], i.e. for a
given function f , the critical points p where df(p) = 0 are
the ones for which the closed one-form ω = df vanishes,
i.e. ω(p) = 0. A critical point p is said to be nondegenerate
if for some coordinate system x1, . . . , xn centered at p, the
Hessian matrix is nonsingular,(

∂2f

∂xi∂xj

)
(p) 6= 0. (24)

Remark 2.1: The notion of nondegenerate critical point is
independent of the choice of coordinate system (see [3]).
The index of a nondegenerate critical point is the number of
negative eigenvalues in the Hessian matrix. A function is said
to be of Morse type if all its critical points are nondegenerate.
Assuming that the Hamiltonian critical function is of Morse
type, it is possible to discriminate between the stable and
unstable manifolds in a neighborhood of a critical point and
hence, to seek for existence of cycles on given manifolds
[7], [5]. It also has an importance in the definition of the
cohomology class of the closed form. In particular, in [8] and
in [15], existence theorem for orbits and gradient flows of
general dynamical systems are given in terms of the de Rham
cohomology class. In the present paper, we are interested
in the local behaviour around the critical point. The main
result of interest to be used in the sequel is the Morse lemma
[12] that states that for a nondegenerate critical point p of
a Morse function f with index r, there exists a coordinate
charts x1, x2, . . . , xn in a neighborhood U of p such that the
function has the follwing representation

f(x) = f(p)−
r∑
i=1

x2
i +

n∑
i=r+1

x2
i . (25)

III. MAIN RESULT

The main result of the paper is now presented. Consider the
critical Hamiltonian function H(x, λ, u∗(x, λ)), denoted in
the sequel by H(x, λ). Let XH be defined as in Section II-B,
i.e.

XH = S∇H(x, λ), S =
(

0n×n In×n
−In×n 0n×n

)
(26)

where ∇H = [ ∂H∂x1
, . . . , ∂H∂xn

, ∂H∂λ1
, . . . , ∂H∂λn

, ]T . Leading to
the particular formulation

XH =
n∑
i=1

(
∂H

∂λi
∂xi −

∂H

∂xi
∂λi

)
.
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First, consider the following general existence result, due to
Séré [16].
Lemma 3.1 ([16]): Let the following three conditions hold:
C1. Let Σ = {[x, λ]T |H(x, λ) = 0} be a compact set,

with H(x, λ) a smooth function defined on R2n, whose
differential dH does not vanish on Σ except at one point
p and with a nondegerate Hessian A = d2H(p).

C2. The matrix (SA) is hyperbolic, i.e. (SA) does not have
pure imaginary eigenvalues.

C3. There is a C1 vector field Y transverse to Σ \ {p} such
that LY Ω = Ω everywhere in R2n.

Then the Hamiltonian system has at least one homoclinic
solution, i.e. a non-constant and doubly asymptotic solution
to the critical point p.
Remark 3.2: The above theorem is an analog to Weinstein
Conjecture for homoclinic orbits (see also [20] where the
result is stated in terms of closed characteristics).
The main result of this paper is the following.
Theorem 3.3: Let the critical Hamiltonian function H(x, λ)
on R2n be a Morse function admitting only one nondegen-
erate critical point
Then, conditions C1-C3 are met and the Hamiltonian system
has at least one homoclinic solution.

Proof: Let the vector field XH , the two-form Ω, and the
closed one-form ω be as defined in the preceding sections.
By the assumptions on the critical Hamiltonian from lemma
3.1 and Morse lemma, conditions C1 and C2 are immediately
met.
Condition C3 is met if one picks Y = ∇H . By the definition
of Hamiltonian vector field 26,

XH = S∇H. (27)

The vector field ∇H is therefore transverse to level sets of
H , in particular to Σ = {H(x, λ) = 0}. Moreover, ∇H and
XH vanishes at the same critical point p.

IV. APPLICATION EXAMPLE

The optimal control problem formulated in [17] is now
introduced to illustrate the technique developed in Section
III. Consider the periodic optimal problem

min
u(·)

J =
1
τ

∫ τ

0

(
x2

1

2
+
x4

2

4
− x2

2

2
+ b

u2

2

)
dt (28)

s.t. ẋ1 = x2 (29)
ẋ2 = u (30)

with x ∈ R2 and u ∈ R. The Hamiltonian for this problem
is given by

H(x, λ, u) = λ1x2 + λ2u+
x2

1

2
+
x4

2

4
− x2

2

2
+
bu2

2
. (31)

From the analysis in [17], the problem admits periodic
solutions for 0 < b < 1/4. First note that the non-negativity
condition can be easily derived using Legendre-Clebsch
condition

∂2H

∂u2
|u∗ = b > 0. (32)

The Hamiltonian dynamics are

ẋ1 = x2, x1(0) = x1,0 (33)
ẋ2 = u, x2(0) = x2,0 (34)

λ̇1 = −x1, λ1(τ) = 0 (35)
λ̇2 = −λ1 − x3

2 + x2, λ2(τ) = 0. (36)

Using the first-order optimality condition

∂H

∂u
(x, λ, u∗) = 0, (37)

u∗(x, λ) is unique and is given by

u∗(x, λ) = −λ2

b
. (38)

Equation (35) can be re-written in terms of λ2 as

ẋ2 = −λ2

b
. (39)

Consider the critical Hamiltonian function

H(x, λ, u∗(x, λ)) = λ1x2 −
λ2

2

2b
+
x2

1

2
+
x4

2

4
− x2

2

2
(40)

and the associated one-form

dH = x1dx1 + (λ1 + x3
2 − x2)dx2 + x2dλ1 +

1
b
λ2dλ2. (41)

The one-form ω = dH has one critical point, located at the
origin. The Hessian of the function is

d2H =


1 0 0 0
0 3x2

2 − 1 1 0
0 1 0 0
0 0 0 − 1

b

 (42)

which is nondegenerate at the origin, hence H(x, λ, u∗) is
a Morse function. Evaluating the Hessian at the origin, we
have

d2H(0) =


1 0 0 0
0 −1 1 0
0 1 0 0
0 0 0 − 1

b

 . (43)

One can check that the dimension of the unstable manifold is
2, hence the Morse index of the critical point is k = 2. Note
that d2H is not positive definite everywhere and the function
is not convex, hence one cannot rely on the existence result
for periodic orbits of convex Hamiltonian systems derived in
[21].
Multiplying the Hessian evaluated at the origin on the right
by the matrix

S =
(

02×2 I2×2

−I2×2 02×2

)
leads to the following condition on the parameter b for all
eigenvalues to have a non-zero real part,

(1− 4b) > 0⇒ b <
1
4
, (44)

recovering the condition for periodic orbits given in [17]
using the π-test.
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The main drawback of the method is that we do not have any
knowledge or control on the optimality of the return time,
i.e. the period τ > 0 for a trajectory along the flow joining
the critical point to itself is not taken into account. One
possibility to alleviate this problem is to parameterize the
time in the original optimal control problem Eqs (1-2) using
t = T

τ , we have a parameterized optimal periodic control
problem:

min
u(·)

J =
∫ 1

0

L(x, u)dT (45)

s.t.
dx

dT
= τ · f(x, u). (46)

Applying the Pontryagin Maximum Principle, the following
Hamiltonian function is obtained

H(x, λ, u, τ) = L(x, u) + τ · λf(x, u). (47)

Hence, the period τ is lumped in the dynamics of the
costates, i.e., letting λ′ = τ · λ, we have

H(x, λ′, u) = L(x, u) + λ′f(x, u). (48)

Finding the extremals of Eq. (47) with respect to τ would
lead here to an extra conditions for optimality, an approach
used originally in [11].

V. CONCLUSION

The problem of existence of stable optimal periodic orbits
was solved for a class of nonlinear optimal control problems.
Under the assumptions that the Hamiltonian was nondegen-
erate with respect to the control variable and possessed one
nondegenerate critical point, the structure of the resulting
Hamiltonian dynamics were used to decide on the existence
of homoclinic orbits. Applying the conditions in the devel-
oped framework, and using the fact that the Hamiltonian
one-form was exact in R2n, it was possible to recover, in an
example, the conditions obtained for existence of periodic
orbits using the π-test. Future work will focus on extending
the method to other classes of critical dynamical structure
that generate periodic behavior.
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