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Abstract – Modern automotive technologies try to predict the 
driver’s intention in order to control the vehicle effectively. How-
ever mathematical models describing the driver’s steering behav-
ior with sufficient accuracy are not available. The difficulties 
arise from the time-varying properties of the driver’s behavior 
under rapidly changing traffic conditions. In this paper, a time- 
varying system identification method using maximum a posteriori 
estimation is proposed. An efficient iterative procedure is pre-
sented for maximizing the posterior probability of the parameters 
conditioning on observed data. Then it is applied to the experi-
mental driving data, and the driver’s time-varying steering mod-
els are identified and analyzed. The results indicate that the 
time-varying model reduces the output estimation errors signifi-
cantly. Moreover, changes of driving strategies are observed from 
the identified models after drivers drive for a period of time.  
 

I. Introduction 
The recent development of advanced automotive tech-

nologies is aimed at enhancing driving safety when the 
driver is involved in the control loop. For example, CWS 
(collision warning system) issues alarms to draw the driver’s 
attention whenever the vehicle is too close to the preceding 
one; ESP (electronic stability program) compares the 
driver’s intention with the vehicle’s response, correcting the 
vehicle’s trajectory such that the driver maintains control of 
the vehicle. Because of the close interaction between the 
driver and the active or passive driving assistant systems, it 
is desirable to derive a mathematical model which describes 
and predicts the driver’s behavior with sufficient accuracy. 

The study of driver’s steering model can be dated back to 
1960’s [1]. It has been shown that almost all manually con-
trolled systems can be characterized by the “crossover 
model”, i.e. the loop transfer function consisting of the 
driver and the vehicle behaves as an integrator around the 
gain crossover frequency [2]. As the advances in control 
theories, more structured driver models were proposed 
which took into account the driver’s driving strategies, reac-
tion time delay, and responses of neuromuscular systems 
[3][4]. 

Due to the complexity of human behavior, it is very dif-
ficult to derive the driver model from physical laws. On the 
other hand, system identification techniques allow research-
ers to establish models from simulated or experimental data. 
Chen, Pilutti, and Ulsoy used ARX and ARMAX models to 
represent the driver’s steering behavior. System parameters 
and the range of model uncertainties were identified [5][6]; 
Kuge et al proposed an HMM-based framework to detect 

driving maneuvers. Then parameters of each sub-model 
were determined from driving data [7]. In these papers, the 
driving data were chopped by pieces and each piece of data 
was fit to an LTI system. Moreover the driving data came 
from driving simulators. The validity of the identified mod-
els depends on the accuracy of the simulator. 

In order to investigate the driver’s steering behavior under 
real traffic conditions instead of simulated environments, we 
will derive the driver model from the experimental data in 
this paper. It is observed from the data that drivers adjust 
their driving strategies frequently to accommodate the rap-
idly changing traffic. Therefore an LTI system can be an 
approximation of the driver’s behavior for only a short pe-
riod of time. As a result, the data length is too short to iden-
tify the time invariant parameters accurately.  

In this paper the driver model will be represented by a 
time-varying system; hence techniques for identifying time- 
varying parameters are required. Various algorithms, such as 
adaptive filtering with forgetting factors [8], basis function 
expansion [9], and Bayesian inference methods [10], have 
been proposed for this purpose. Each method has its own 
strengths and weaknesses. Adaptive filtering is a natural 
extension of well-established adaptive algorithms; however 
it is suitable for slowly-varying systems. The basis function 
expansion method is computationally efficient, but its per-
formance depends on the basis functions in use and the se-
lection of the basis functions is not trivial. On the other hand, 
particle filtering and MCMC (Markov chain Monte Carlo) 
method treat all parameters as random variables and impose 
additional constraints in the form of conditional and prior 
probabilities. Then optimal estimates of the parameters are 
evaluated according to Bayesian inference principles. The 
problem formulation is straightforward; however the com-
putation is intensive. To improve the efficiency while main-
taining the structure of the Bayesian inference framework, 
we propose a maximum a posteriori (MAP) estimation 
method for time-varying parameters. MAP estimation for 
identifying time-varying AR systems has been shown to be 
computationally efficient [11]. In this paper it is extended to 
time- varying ARX (TVARX) systems which represent the 
driver’s steering models. Then analysis based on the identi-
fied models is conducted. 

This paper is organized as follows. Section II investigates 
the time-varying system identification method based on 
MAP estimation. It is applied to identify the driver’s steer-
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ing model in Section III. Section IV concludes this paper. 
 

II. Identification of TVARX Systems 
II.1 Probabilistic Models 

TVARX systems can be expressed as follows. 
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where u(k), y(k)∈R are the input and output sequences re-

spectively. ε(k) is the process noise which is assumed to be a 
zero mean Gaussian distributed white noise with variance 

2
εσ  for all k. ai(k) and bj(k) for i=1,2,…,na and j=0,1,…,nb 

are system parameters to be estimated. nk is the number of 
delay steps. na, nb, and nk are positive integers and they are 
assumed to be known. 
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Given a set of input-output data {u(k), y(k)| k= -nm,…, 
0,1,…, N-1}, where nm=max{na, nb+nk}, we would like to 
find out the (na+nb+1)×N parameters, ai(k) and bj(k), 
i=1,…,na, j=0,…,nb, and k=0,…,N-1 such that Eq.(1) is 
satisfied for all k. Apparently this is an under-determined 
problem and there exists infinitely many solutions. There-
fore additional constraints must be imposed and an optimum 
criterion is required to evaluate the “best” solution. Bayes-
ian inference achieves these goals in a natural way. 

Under the Bayesian inference framework, all unknown 
parameters are regarded as random variables and additional 
constraints are imposed in terms of conditional probabilities 
and prior probabilities. Therefore ai(k) and bj(k) are assumed 
to be random variables for i=1,…,na, j=0,…,nb and 
k=0,…,N-1. If the system’s dynamics do not change vio-
lently, it is reasonable to assume that ai(k+1) stays in the 
neighborhood of ai(k) for all i and k. Thus the following 
assumptions are made. 

( )2( 1) ~ | ( ),
ii ia k N a k aσ+ ⋅ , i=1,…,na, k=0,…,N-2    (2) 

 ( )2(0) ~ | ,
i ii aa N aμ σ⋅ , i=1,2,…,na       (3) 

 , i, j=1,…,n( ) ( )i ja k a l a, i≠j; k, l=0,…,N-1        (4) 
where N(⋅|μ,σ2) denotes the Gaussian distribution with mean 
μ and variance σ2. ai(k)||aj(l) denotes that ai(k) and aj(l) are 
independent. μai’s and σai’s in Eq.(2) and (3) are parameters 
of Gaussian distributions. Further discussion about these 
parameters will be presented shortly. 

Similar assumptions are made for bj(k)’s as follows. 

( )2( 1) ~ | ( ),
jj jb k N b k σ+ ⋅ b , j=0,…,nb, k=0,…,N-1    (5) 

( )2(0) ~ | ,
j jj bb N bμ σ⋅ , j=0,…,nb       (6) 

( ) ( )i jb k b l ,  i, j=0,…,nb, i≠j, k, l=0,…,N-1     (7) 
We also assume that ai(k) and bj(l) are independent, i.e. 

( ) ( )i ja k b l , i=1,...,na, j=0,…,nb, k, l=0,…,N-1    (8) 
Although additional constraints are imposed on ai(k) and 

bj(k) through Eq.(2)-(8), new parameters σai, σbj, μai, and μbj 
for i=1,...,na and j=0,...,nb, are also introduced. Since there is 
no clue about the values or ranges of σai and σbj, they can be 

regarded as random variables as well; thus a hierarchical 
structure of random variables is established. The probability 
distributions of σai and σbj, i.e. the prior distributions, reflect 
the designer’s subjective belief in these variables and are 
somewhat arbitrary. In order to facilitate the subsequent 
derivations, conjugate prior probabilities of Gaussian dis-
tributions are assigned to σai

-2 and σbj
-2. In other words, σai

-2 
and σbj

-2 are assumed to be Gamma distributed. 
1
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Eq.(9) and (10) include hyper-parameters αai, βai, αbi, and 

βbj. It is possible to assume that these hyper-parameters are 
also random variables and their probability distributions can 
be assigned. This results in another hierarchy of random 
variables in the problem formulation. There is no restriction 
on the number of hierarch that can be established in a 
Bayesian inference framework; however there is no benefit 
to do that. Therefore these parameters will be assigned spe-
cific values which are chosen carefully by the designer. 

Similarly, σε is also regarded as a random variable. Its 
prior probability distribution is assigned as follows. 

   2 2~ ( | ,Gaε ε εσ σ α β− − −     (11)
where the hyper-parameters αε and βε will be assigned spe-
cific values.  

More assumptions about the relations among 2
iaσ
− , 

2
jbσ
− and 2

εσ
−  are considered. It is reasonable to assume that 

2
iaσ
− , 2

jbσ
− and 2

εσ
−  are mutually independent, i.e. 

2 2|| ||
i ja b

2
εσ σ σ− − − , i=1,…,na, j=0,…,nb     (12) 

 
II.2 Posterior Probability 

To simplify the notation used in the subsequent deriva-
tions, the following vector notations are used. 

  y=[y(0), y(1), ... y(N-1)]T∈RN

  u=[u(-nk), ... u(N-1-nk)]T∈RN

  ai=[ai(0), ai(1), …, ai(N-1)]T∈RN,  i=1,…,na

  a=[a1
T,…,ana

T]T ∈RN⋅na

  bj=[bj(0), bj(1), …, bj(N-1)]T∈RN,  j=0,…,nb

  b=[b0
T,…,bnb

T]T ∈RN⋅(nb+1) 

   
1 2

2 2 2 2 a
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T
n

a a a aσ σ σ− − − −⎡ ⎤= ∈⎣ ⎦σ R

   
0 1

12 2 2 2 b

nb

T
n

b b b bσ σ σ +− − − −⎡ ⎤= ∈⎣ ⎦σ R

The posterior probability p(a,b|y) is the marginal 
probability of , i.e.  2 2 2( , , , , | )a bp εσ

− − −a b σ σ y
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  From Baye’s theorem and the indepence assumptions 
Eq.(8) and (12), we have 
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On the other hand, from Eq.(2)-(4) and (9), we get 
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Substituting , and Eq.2 ( | )ap −a σ 2( | )bp −b σ (9) and (10) into 
Eq. (13) and computing the integration by repeatly applying 
integration by parts, we obtain the following posterior 
probability p(a,b|y).  

 
1 0

( , | ) ( , | ) ( ) ( )
a b

i j

n n

a i b j
i j

p g f f
= =

∝ ∏ ∏a b y a b y a b    (14) 

where  

2
1

0 1 0

( , | )

1 ( ) ( ) ( ) ( ) ( )
2

a b

p
n nN

i j k
k i j

g

y k a k y k i b k u k j n εβ

−
−

= = =

⎡ ⎤⎛
⎢ ⎥= + − − − − +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑

a b y

⎞

( ) ( )
1 22

1

1 1( ) ( ) ( 1) (0)
2 2i i i

pN

a i i i i a a
k

f a k a k a μ β
−−

=

⎡ ⎤
= − − + − +⎢ ⎥
⎣ ⎦
∑a  

( ) ( )
1 22

1

1 1( ) ( ) ( 1) (0)
2 2j j j

pN

b j j j j b b
k

f b k b k b μ β
−−

=

⎡ ⎤
= − − + − +⎢ ⎥
⎣
∑b

⎦
 

For simplicity, the hyper-parameters αai, αbj and αε, are 
chosen such that  

2 2 2i ja b
N N Np εα α α= + = + = + ∈N  for all 

i=1,…,na and j=0,…, nb. 
 

II.3 Maximum a posteriori Estimation 
Let ( ˆ MAPa , ˆ

MAPb ) be the maximizer of the posterior 

probability p(a,b|y), i.e. . 

(
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,

ˆˆ , arg max ( , |MAP MAP p=
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a b a b y)

ˆ MAPa , ˆ
MAPb ) is called the maximum a posteriori (MAP) 

estimate of the unknown parameters a and b. MAP is a 
reasonable optimum criterion for evaluating the best 
estimate of a and b becuase ( ˆ MAPa , ˆ

MAPb ) is the most likely 
value of a and b, conditioning on observered data y.  

ˆSince ( MAPa , ˆ
MAPb ) maximizes p(a,b|y), the first 

derivative of p(a,b|y) w.r.t. a and b vanishes at ( ˆ MAPa , ˆ
MAPb ), 
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Eq.(15) and (16) consist of (na+nb+1)⋅N nonlinear 
equations. They must be solved simutaneously in order to 
get the closed-form solution of ˆ MAPa  and ˆ

MAPb . 
Unfortunately, Eq.(15) and (16) are too complicated to be 
solved analytically. Therefore, an iterative procedure is 
proposed that manipulates one variable at a time and let all 
the others hold their values from the previous iteration. 
Suppose that ( )ˆ an Nt ⋅∈a R  and  are obtained 
as an approximation of 

( 1)( )ˆ bn Nt + ⋅∈b R
ˆ MAPa  and ˆ

MAPb  respectively at the 

t-th iteration. Then the elements of  and  are up-
dated one by one into 

( )ˆ ta ( )ˆ tb
( 1)ˆ t+a  and . For each update, 

only one variable in one equation of Eq.

( 1)ˆ t+b
(15) and (16) needs 

taking care of; hence the complexity of the problem is re-
duced. The procedure goes on iteratively in a way that 
drives  and  to the local maximum of p(a,b|y) as t 
approaches infinity. 

( )ˆ ta ( )ˆ tb

If at the t-th iteration, ai(k) is going to be updated for 
some i and k, Eq.(14) is rewritten as a function of that single 
variable ai(k) while the other parameters are set to be the 
values at the (t-1)-th iteration. Hence we have 
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where δ(N-1)=0.5 and δ(k)=1 for k=0,1,…,N-2, 
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where a-i,k denotes a RN⋅na-1 vector consisting of all parame-
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Note that if y(k-i)=0, ( )aic k  and ( )ai kη  are not 
well-defined. But in this case, g(a,b|y) is independent of ai(k) 
and becomes a constant w.r.t. ai(k). In other words, 

( ),( , | ) ( ) | (0),..., ( 1), ( 1),..., ( 1)i k i i i i ip f a k a a k a k a N∝ − +a b y −
Thus define ga,i,k(ai(k)| a-i,k)=1 whenever y(k-i)=0. 

According to the definition of fa,i,k and ga,i,k, Eq.(15) be-
comes 
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By straightforward calculation, Eq.(21) is equivalent to  
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The subscript i and time index k of all variables are 
dropped for a simple expression. Note that the left hand side 
of Eq.(22) is a third order polynomial. At least one of its 
three roots must be real and these roots can be found ana-
lytically without applying numerical methods; thus the cal-
culation of the roots can be accomplished efficiently. The 
root that achieves the maximum value of p(a,b|y) is the es-
timate of ai(k) at the current iteration. 

On the other hand, if bj(k) is going to be updated, Eq.(14) 
is rewritten as a function of a single variable bj(k) in a simi-
lar way, i.e. 
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where the definitions of cbj(k), ηbj(k), ( )bjc k , and ( )bj kη  
are similar to Eq.(17)-(20).  

Maximizing p(a,b|y) w.r.t. bj(k) ends up with solving a 
third order polynomial which replaces ca, ηa, ac , and aη  
in Eq.(22) with cb, ηb, bc , and bη  respectively. Then the 
real root that achieves the maximum value of p(a,b|y) is 
selected as the estimate of bj(k). The detailed derivation is 
skipped because it follows exactly the same procedures pre-
sented in the previous paragraphs. 

In summary, we propose the following algorithm to esti-
mate the time-varying parameters of the ARX system. 

 
Algorithm I: MAP estimation of TVARX system parameters 

Given hyper-parameters βε, βai, βbj, μai and μbj, for i=1,…,na, and 
j=0,…,nb. Let  and  be the estimate of a and b respec-
tively at the t-th iteration. 

( )ˆ ta ( )ˆ tb

 
At the (t+1)-th iteration 
For k = 0,1, …, N-1  { 

For i = 1,2,…,na      { 
    1. Calculate cai(k) and ηai(k) (Eq.(17)-(18)) 
    2. If y(k-i) = 0 
         = c( 1)ˆ ( )t

ia k+
ai(k); exist the For loop 

    3. Calculate ( )aic k  and ( )ai kη   (Eq. 
(19)

-(20)) 

  4. Find rm, 1≤m≤3, the real solution(s) to Eq.(22) 
   5. ( 1) ( ) ( )

,1 3
ˆˆˆ ( ) arg max ( , , | )t t

i m im
a k p r+

−≤ ≤
= a b t

k y     } 

  
 For j=0,1,…,nb   { 

    6. Calculate cbj(k) and ηbj(k) 
    7. If y(k-i) = 0 
         = c( 1)ˆ ( )t

jb k+
bj(k); exist the For loop 

    8. Calculate ( )bjc k  and ( )bj kη    

  9. Find rm, 1≤m≤3, the real solution(s) to polynomial which 
is the counterpart of Eq.(22) 

   10. ( 1) ( ) ( )
,1 3

ˆ ˆˆ( ) arg max ( , , | )t t
j mm

b k p r+
−≤ ≤

= a b t
j k y     } 

}                  
 

 
II.4 An Illustrative Example 

Consider the following TVARX system 

  1 2 0

1 3

( ) ( ) ( 1) ( ) ( 2) ( ) ( 1)
         ( ) ( 2) ( ) ( 3) ( )
y k a k y k a k y k b k u k

b k u k b k u k kε
= − − − − +
+ − + − +

−
 

Assume that εσ =0.05. Apply Algorithm I to identify the 
time-varying parameters a1(k), a2(k), b0(k), b1(k), and b2(k) 
for k=0.1,…,99. After 2000 iterations, the parameters con-
verges and the identified parameters are shown in Figure 1. 
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It can be seen that the proposed method can effectively 
identify the time-varying parameters. If the same input and 
output data is fit to an LTI system, the resulting 
time-invariant parameters are =-1.7264, =0.8514, 

=1.3009, =-2.3461, and =0.7322. Figure 2 illus-
trates the estimated outputs for time-varying and 
time-invariant parameters. Note that the predicted output is 
defined as 

1â 2â

0̂b 1̂b 2̂b

1 2 0

1 3

ˆˆ ˆ ˆ( ) ( ) ( 1) ( ) ( 2) ( ) ( 1)
ˆ ˆ         ( ) ( 2) ( ) ( 3)

py k a k y k a k y k b k u k

b k u k b k u k

= − − − − + −

+ − + −
 

whereas the simulated output is defined as 

   1 2 0

1 3

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( 1) ( ) ( 2) ( ) ( 1)
ˆ ˆ         ( ) ( 2) ( ) ( 3)

s s sy k a k y k a k y k b k u k

b k u k b k u k

= − − − − + −

+ − + −

It is obvious from this figure that time-varying system 
representation is superior to the time-invariant system rep-
resentation in terms of simulated output errors. 
 

III. Driver Steering Models 
III.1 Driving Data under Real Traffic Conditions 

The closed-loop vehicle lane-keeping control system is 
illustrated in Figure 3. The vehicle changes the lateral posi-
tion of its center of gravity ycg, as well as the yaw angle ϕ 
whenever a steering command δ is given. The driver per-
ceives the changes of the vehicle’s motion by observing the 
vehicle’s lateral position at some look-ahead distance ya. 
The difference between ya and the desired lateral potion yd is 
sensed by the driver and then the steering command δ is 
adjusted accordingly. 

 Figure 1: Time-varying parameters and the estimated values. 
Upper row (from left to right): a1 and a2. Lower row (from left 
to right): b0, b1 and b2. Real line (-): true parameters. Dotted 
line (.): estimated parameters. 

 
 
 
 
 
 
 
 
 
 
For the lane-keeping control purpose, yd is set to be zero, 

i.e. the driver maintains the vehicle moving along the road 
centerline. In this case the input to the driver steering model 
is the lateral position at some look-ahead distance, ya, while 
the output is the steering angle δ. The steering angle can be 
measured by the potentiometer mounted on the steering col-
umn. To measure the lateral position, the instrumented vehi-
cle is equipped with a vision system which calculates from 
the images the lateral position at the gazing point ahead of 
the vehicle. The sampling time of the measured data is 
75ms. 

In the experiments, subjects were asked to drive the in-
strumented vehicle on highways for about one hour. The 
longitudinal speed, steering angle, and lateral position of the 
vehicle were recorded in the on-board storage devices. 
These data are analyzed in this section to identify the driver 
models. 

Since the driver’s response is slower than 1Hz [4], the 
steering angle and the lateral position are pre-filtered by a 
low-pass filter with cutoff frequency at 1Hz to remove the 
measurement noise. DC bias is also removed from the input 
and output data such that the vehicle has no lateral offset in 
steady state. 

Motivated by the discussion in [3] and [4], we select the 
model order to be (na, nb, nk) = (4, 4, 2). Two subjects are 
selected randomly from the database and their driving data 
are divided into 2-minute segments. Then Algorithm I is 
applied to these data segments to identify the time-varying 
parameters of the driver’s steering model. Analysis of the 
identified models is conducted in the remainder of this sec-
tion. 

  Driver Vehicle 
δ 

Perception 

ycg , ϕyd

ya

-
+

Figure 3: The block diagram of the vehicle lane-keeping control 
system consisting of the vehicle and the driver.  

Figure 2: Upper: parameters are time varying. Lower: pa-
rameters are time-invariant. Real line (-): measured output. 
Dash line (--): predicted output. Dotted line (.): simulated 
output. 
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Firstly we show that the time-varying model reduces the 
simulated output errors significantly. The driving data are fit 
to both the TVARX and ARX models. Then the predicted 
and simulated output errors are demonstrated in Figure 4. It 
can be seen that under real traffic conditions, a single LTI 
system is not able to characterize the driver’s steering be-
havior for a 2-minute period of time. However the time- 
varying model reproduces the data faithfully. 
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Figure 5 illustrates the instantaneous zero locations at 
each time step. The left column and the right column repre-
sent Subject 1 and Subject 2 respectively. The upper row is 
based on the data at the beginning of the test drive while the 
lower row is based on the data after 29’58’’ for Subject 1, 
and 61’28’’ for Subject 2. It is observed that the zeros of 
both subjects’ models spread over wider areas after driving 
for half an hour or longer. The zero locations can be re-
garded as the driving strategies of individual drivers [12]. 
The change of driving strategies after driving for a period of 
time may be an indication of fatigue. However more re-
search efforts are required to investigate the correlations 
between the changes of zero patterns and other factors. 

 

 
 
 
 
 

 

IV Conclusion 
In this paper, a system identification method for TVARX 

models was proposed. An illustrative example demonstrated 
that the proposed method is able to estimate the 
time-varying parameters reasonably well. The computation 
is also efficient. Then the proposed method is applied to the 
driving data collected under real traffic conditions to iden-
tify time-varying driver steering models. It was shown that 
time-varying models reduce the simulated output errors sig-
nificantly. Moreover, changes of zero patterns were ob-
served at different time segments for both randomly selected 
subjects. Further investigations are required to establish the 
correlation between the change of zero patterns and other 
factors such as fatigue and/or specific traffic conditions. 
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