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Abstract:  In this paper, a continuous-time neural network
nonlinear system identification algorithm using the system
input/output signals is developed for a class of nonlinear
systems. In control applications, the continuous-time nonlinear
system model is more truthful for the original nonlinear
process compared to the widely used discrete-time neural
network model. In the identification algorithm, a canonical
form is selected to represent the identified system. The
identification algorithm consists of two stages: (i) preprocessing
the system input and output data to estimate the state variables
in the chosen model coordinate; (ii) neural network parameter
estimation. Discrete-time implementation of the developed
algorithm is introduced. Identification examples are illustrated
with a single-input-single-output benchmark model and a
hardware-in-loop multi-input-multi-output 3 degrees-of-
freedom differential thrust flight control testbed.

I. Introduction
Neural networks (NNs), with the ability to approximate

a large class of nonlinear (NL) functions, provide a feasible
uniform structure for NL system representations. In [1, ]2
NN based system identification (ID) and control are
systematically introduced. Since then, many different NN
system ID approaches have been developed. An identified
NN model can be used for system analysis and model-based
controller design, as in [21].

In NL system ID algorithms, the process model is
usually described as differential equations (continuous-time
model) or difference equations (discrete-time model). In
many NN system ID methods, discrete-time (DT) models
are employed, such as NL ARMAX model [1], and the DT
NL state space model [4][5].

For control applications, continuous-time (CT) dynamic
models are more truthful to the original NL systems since
the physical systems are usually governed by CT differential
equations. Many modern NL control design methods, such
as feedback linearization, backstepping and trajectory
linearization, utilize a CT state space model in the controller
design and analysis. Moreover, the linear time-invariant
(LTI) sampled-data control theory and design techniques are
not readily applicable to NL systems.

The CT ID for linear system has been studied in [8, 23,
24, 25]. In [8, 23], concepts and techniques for CT system
ID are introduced. In [24, 25], techniques for the ID of CT
LTI system are discussed. To the authors' best knowledge, it
appears that there lacks research to extend these CT ID
methods to NL system.
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In this paper, techniques for CT LTI system ID are
extended to a class of NL systems by using NNs. In the ID
algorithm, a canonical form is selected to represent the
identified system. In such a form, the state variables are
derivatives of the output. Thus a linear filter, such as a
pseudo-differentiator or state variable filter is able to
estimate the state variables. The ID algorithm consists of
two stages: (1) preprocessing the system I/O data to estimate
state variables in the chosen model coordinate; (2) NN
parameter estimation. Both the model structure and ID
algorithms are CT. The discrete time implementation is also
discussed in this paper.

One advantage of the developed ID method is that the
identified model can be integrated with an existing
analytical CT system model to improve the model fidelity.
Another advantage is that the identified model lends itself to
existing NL design methods. The DT model, in many cases,
is an approximation of the CT model, which may result in a
higher order model than the corresponding CT model. In DT
system ID, a fixed sampling time interval is usually
required. Such restriction is not necessary in CT system ID.

In [7], the CT dynamics are approximated by a NN
model with difference quotients as part of the NN input. The
overall model is actually not a CT model. In adaptive NN
control, such as indirect NL adaptive model reference NNs
control [9, 10], NN feedback linearization control [11-15],
NN backstepping control [16-20], and adaptive NN
trajectory linearization control [21], the implicit CT model
identifier are used. In these implicit ID algorithms, the
system state variables are all measurable or a non-model
based state variable estimator is employed. The developed
ID method in this paper is able to identify a CT NL system
from merely input/output (I/O) data.

It should be noted that in [6], identifying and controlling
NL CT systems using dynamic NNs are studied. Similar to
the method in this paper, the identified system is trans-
formed into a canonical form. In [6], dynamic NNs are
employed in which the dynamic of the pseudo-differentiator
is considered as part of the dynamic NN. The controller
structure of [6] is in the adaptive control framework, which
is similar to [11- 21]. In these NN adaptive structures, only
the dynamics along the system trajectory is identified. In this
paper, the developed method is capable of identifying the
system dynamics in a manifold given properly designed
system excitation input and the corresponding output.

In Section II we will present the proposed CT ID
algorithm. Identification examples are presented in Section
III with a single-input-single-output (SISO) benchmark
model and a hardware-in-loop multi-input-multi-output
(MIMO) 3 degrees-of-freedom (DOF) differential thrust
flight control testbed.
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II. Neural Network Identification of Continuous-time
Nonlinear System

A. Identification Model Structure
In this paper we consider identifying the NL affine

system described as
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where ,  , , ,  are smooth0Ð>Ñ − Ð>Ñ − Ð>Ñ − 0 1‘ . ‘ ( ‘8 ab ab
vector fields defined on a domain ,  is a smoothH − 2‘8 ab
and bounded function on . Confining our discussion onH
SISO systems is not a limitation of the proposed ID method.
The proposed method, in principle, can be extended to
MIMO systems.

In order to identify (1) from the input and output signal,
the system (1) is required to be identifiable, which means
that the entire dynamics in the domain  can be excited byH
feasible input signals, and the dynamics in the system can be
observed from the output signals. This requirement can be
satisfied if the plant dynamics (1) are controllable and
observable.

Given that the plant dynamics are identifiable, an
appropriate excitation signal is required to stimulate the
dynamics of the system. In linear system ID, excitation
signals with wide bandwidth, such as impulse and pseudo
random signals are applied, such that all the modes in the
system are stimulated. In NL ID, the complexity of the
system prevents mechanically extending the linear system
ID excitation signal design. Usually some a priori
knowledge of the system dynamics is required and each ID
process is designed individually. In this paper, we assume
some appropriate excitation signals are available. Then the
objective of ID is to find the appropriate vector fields 0 ab
and  and smooth function  which can reproduce the1 2ab ab
input-output behavior, given the system input and output
signals.

Geometric theory of NL systems [22] shows that the
minimal realization of a NL system is uniformly controllable
and observable. The geometric theory also shows that two
minimal realizations are locally diffeomorphic.

Based on the above discussions, a special form of NL
state space model is chosen to represent the system
dynamics, which is
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System (2) is in an observability canonical form of SISO NL
systems with the relative degree  In such form, a pseudo-8Þ
differentiator can be used to estimate the state variables from
system output signals. The pseudo-differentiator actually
functions as a non-model based observer for (2). The ID of
the vector fields  and  and smooth function  in (1)0 1 2ab ab ab
is transformed to ID of  0 B 1 B8 8a b a b and  in (2).

FÞ Identification Algorithm
In the developed ID algorithm, the NL functions in the

system (2) are approximated by NNs. To simplify the
discussion below, linear parameter NNs are used to illustrate
the algorithm. The algorithm can be extended to NNs with
NL parameters. By using the linear parameter NN, system
(2) is represented as
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vectors of neuron stimulation functions,  and  are the[ [0 1

NN weights and  is the NN reconstruction error. . >a b The
objective is to find the optimal  estimate of [ [s s

0 1 and  to
minimize .¼ ¼( F F .a b8
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The ID algorithm consists of two stages, which is
similar to linear system ID methods in [24][8]. The primary
stage is to estimate the input and output signal's derivatives.
There are several ways to estimate the I/O signals'
derivative, as introduced in [24] [25].  In the proposed ID
algorithm,  a series of pseudo-differentiators are used. The
pseudo-differentiators are given in the transfer function form

J = œ ß
+ =

=  + = â+ =  +
3

"
3

7 7"
7 # "

a b 3 œ "á8

where  is the system order and  is an integer . A8 7 7   3
pseudo-differentiator is a band-pass filter which is capable
of removing the system noise and selecting the desired
bandwidth. The estimated derivatives are (s =Ð3Ña b œ
J = =3a b a b( , and the estimated state vector is
B œs ’ “( ( (s s sßá ß ßÐ8#Ñ Ð8"Ñ .

Another approach to process the I/O data in the primary
stage for linear systems is to integrate I/O data repeatedly.
Such integration approach is not applicable for NL systems
since there is no simple form for the integration of a NL
function.

The second stage of the ID algorithm is the parameter
estimation stage, in which the NN parameters are estimated
from the data generated by the primary stage. CT
optimization algorithms, such as recursive least square,
Kalman filter and other gradient optimization methods, can
be used in this stage. A simple gradient algorithm to update
[s 0  is expressed as
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where  and  are positive constants. The parameter  is the# " #
learning rate, and the parameter  is the robustification term"
to ensure the parameter convergence. In the actual applica-
tion, other robustification techniques can also be applied.

The ID algorithm for system (2) is illustrated in Figure
1. It is a serial-parallel ID method.
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Figure 1 On-line System ID from I/O Data

In the proposed ID method, the model structure and ID
algorithm are both CT. The essential component in both the
primary and secondary stages is a series of integrators. Thus
such ID structure is suitable for implementation on
hardware, such as an integrated circuit (IC) with
programmable operational amplifiers (Op-Amps).

In practical applications, the ID algorithm can also be
implemented in DT on a digital computer, while the
identified model structure is still in CT form.

C. Discrete-time implementation
In the DT implementation, the ID problem of the system

(2) is that given a sampled measurement of system I/O
signal at the time stamp ,  how to estimate> 5 œ "ß #ßáR5a b
the NN parameter. First, the filters in the primary stage are
approximated by a DT implementation. Numerically, the DT
implementation is similar to DT ID method, though the
underlying mathematical models are different. The DT
approximation requires that the sampling rate be sufficiently
high to capture the system dynamics, and the DT filters are
executed at high accuracy.

Once the derivatives are obtained, the parameter
estimation in the second stage becomes a regression
problem. Assuming there are total  samples of I/OR
measurement at , at each sampling time, we havee f>5 5œ"ßáR

(sa b8
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It is noted that the algorithms described in this section
are a framework. Thus, more complex algorithms for filter
design and parameter regression can be applied.

III. Identification Example
In this section, two NL system ID examples using the

proposed method are presented. The first example is a nd-#
order NL SISO benchmark system. The second example is a
NL MIMO 3DOF differential thrust flight control testbed.

A. A nd-order nonlinear SISO benchmark system#

The NL system to be identified is
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In the NN ID, system input signal is selected as
.a b ˆ ‰> œ !Þ'  !Þ& #> sin 1

# , and the system initial
condition is . Figure 2 shows the phase plot of the0! œ ! !c d
system response, which covers a large portion of . In theH
on-line ID, the pseudo-differentiators' bandwidths are set as
%! ß œ & œ !Þ&Þ(rad/s) and # "

Figure 3 shows the estimated  and the NN(sa b#
approximation. Figure 4 illustrates functions of  and0 B#a b
1 B#a b., which are retrieved from the simulation, and NN
approximation. Figure 5 shows the time history of ¼ ¼[s 0 #

and . ¼ ¼[s 1 #
Figure 3 and Figure 4 show that the NN is able

to approximate the NL functions in the normal form.
The identified model has two integrators, which

accumulate the NN model errors. In order to test the NN
identified model, a serial-parallel form based on the
identified model is used. An input signal differentthat is 
from the training signals, is fed into the plant and the NN
model
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where  and  are selected such that the characteristic5 5" #

equation  has stable eigenvalues.- -#
" # 5  5 œ !

In the first test, the input is 0.4. Figure 6 shows. œ
plant output and the NN system output. Figure 7 shows the
comparison of the plant  and NN approximation. Tests(Ð#Ñ

using sinusoidal input signals with different frequencies
from the training input signal are shown in Figure 8 to
Figure 11.

From this example, it can be concluded that the
proposed CT NN NL system ID is feasible for capturing a
NL system dynamics. However, similar to other ID methods,
the performance of the proposed ID method depended on the
quality of the training data. The training data should be
designed to stimulate all the system dynamic modes.
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B. MIMO 3DOF Flight Test Bed Dynamics
 The second ID example is to identify the dynamics of a

MIMO NL 3DOF differential thrust flight control testbed —
the Quanser UFO, which is installed with three propellers
driven by DC motors. It is able to rotate freely about three
axes. The attitude angles are measured by optical encoders
installed at the rotation axes. Figure 12 shows the UFO's
setup.

The simplified dynamic model of the UFO is a MIMO
NL system, which is described as
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where ,  and  are the Euler roll, pitch and yaw angle9 ) <
respectively;  and  are the :ß ; < body rate of the UFO in the
body frame; and  X X X6 7 8,  and  are rolling, pitching and
yawing moment generated by the propeller in the body
frame. The relationship between the propeller moment and
the DC motor voltage is described by the following equationc d c dX ß X ß X6 7 8

X X
E " # $ " # $œ X Z Z Z ß Z ß Z Zwhere  and  are the

applied voltage to each motor, and  is the controlXE

allocation matrix.  More details of the modeling of UFO and
the trajectory linearization control (TLC) design were
summarized in [26]. In this paper, NNs are used to identify
bodyrate  dynamics from the simulation data.a b:ß ;ß <

Figure 12 Quanser's UFO

Figure 13 and Figure 14 show the UFO's response to a
predefined command trajectory using TLC. It should be
noted that the plant itself is unstable without the closed-loop
controller. Similar to the first example, a state variable filter
was used to estimate the body rate's derivatives. The
identified NN model was tested in the serial-parallel
configuration with the plant simulation model. Figure 15
shows the NN model simulation result compared to the
actual plant response. It can be seen that the NN identified
model is close to the plant.
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IV. Conclusion
In this paper, a continuous-time nonlinear system

identification method using neural network for a class of
nonlinear systems is developed. Identification examples are
illustrated to demonstrated the effectiveness of the proposed
method.
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