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Abstract— This paper presents a novel framework for 

forced motion analysis of Euler-Bernoulli beam with multiple 

jumped discontinuities in the cross section. In this regard, the 

entire length of beam is partitioned into uniform segments 

between any two successive discontinuity points. Beam 

characteristics matrix can be derived based on the boundary 

conditions and the continuity conditions applied at the 

partitioned points. This matrix is particularly used to find 

beam natural frequencies and mode shapes. The governing 

ODE of motion and its state-space representation are then 

derived for the beam under a distributed dynamic loading 

condition. To clarify the implementation of the proposed 

method, a beam with two stepped discontinuities in the cross 

section is studied, and numerical simulations are provided to 

demonstrate the mode shapes and frequency response of beam 

for different stepped values. Results indicate that the added 

mass and stiffness significantly affects the mode shapes and 

natural frequencies.        

I.  INTRODUCTION 

ynamic analysis of beam-like structures is significantly  

important in modeling real cases such as aircraft wings, 

spacecraft antennas, helicopter blades, robot arms and 

many other applications. In this respect, numerous studies 

can be found in the literature on the transverse vibration of 

uniform beams under different types of boundary conditions. 

However, in many real applications, the investigation of 

non-uniform cross-section beams may provide a realistic 

distribution of mass and stiffness desired for accurate 

structural analysis. Particularly, for structures with abrupt 

changes in cross section, the added mass, stiffness and 

geometrical discontinuities affect the modal behavior of 

structure which cannot be neglected. Some examples could 

include analysis of machining processes [1], design of road 

and railway bridges [2], and MEMS characterization [3].   
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been done on the transverse vibration of continuous Euler-

Bernoulli beams [4, 5]. However, methods applied for 

continuous beams cannot be directly used for beams with 

sudden changes in the cross section. Partitioning method [1], 

finite difference approach [6], shear deformation theory [7], 

and transfer matrices approach [8] have been used to study 

free vibration of such structures. While bibliography on the 

free vibration of beams with one step change in the cross 

section is extensive [9-12], few studies have been focused 

on the analysis of beams with multiple jumps [13, 14]. 

Nevertheless, there is a lack of a straightforward framework 

for the forced vibration analysis of Euler-Bernoulli beam 

with any arbitrary number of step jumps in cross section, 

under general distributed dynamic loading. Added to this, 

graphical comparisons of beam mode shapes with and 

without geometrical discontinuities has not been well 

presented in the literature. 

The present work is aimed at the forced vibration 

formulation and analysis of Euler-Bernoulli beam with an 

arbitrary number of step changes in cross section and 

properties. To obtain beam mode shapes, the entire length of 

beam is partitioned into the beam segments between any two 

successive discontinuity points. The characteristics matrix is 

then derived using applied boundary and continuity 

conditions. The natural frequencies of the beam and the 

parameters of the modes shapes can be obtained by 

imposing the non-trivial solution condition on the derived 

characteristics equation. Finally, using the assumed mode 

method, the governing ordinary differential equation (ODE) 

of beam and its state-space representation are derived under 

distributed vertical loading condition.  

 

II. EULER BERNOULLI BEAM WITH MULTIPLE STEPPED 

DISCONTINUITIES 

Consider an initially straight non-uniform Euler-Bernoulli 

(EB) beam of length L, with variable cross section A = A(x), 

variable stiffness E = E(x), and variable moment of inertia I 

= I(x). Let [0,L]x∈  and [0, )t∈ ∞  be the spatial and time 

variables, respectively. The governing equation for 

transverse vibration of beam with variable mass per unit 

length m(x) and damping coefficient of c(x) subjected to a 

vertical time varying distributed load P(x,t) is a fourth order 

PDE expressed as: 
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with w(x,t) being the transversal displacement function. In 

order to obtain natural frequencies and natural modes of 

system, the eigenvalue problem associated with the 

transversal vibration of beam is obtained by applying free 

and un-damped conditions to Eq. (1) as follows: 
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Let’s assume that the solution of Eq. (2) is separable in 

time and space domains, 

( ) ( ) ( )w x,t x Q t= Φ                            (3) 

where (x)Φ  denotes the spatial mode shape function and 

Q(t) represents the generalized time-dependent coordinate. 

Beam mode shapes are obtained by solving the spatial part 

of equation of motion written as:  
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Φ
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where ω is a constant parameter considered as the natural 

frequency. For a beam with parametric discontinuities (e.g., 

jump in the moment of inertia or mass distribution) Eq. (4) 

cannot be solved using conventional approaches. An 

alternative method is to partition the beam into uniform 

segments between any two successive stepped points and 

apply the continuity conditions at these points. The next 

section discusses this technique in detail and proposes a 

framework for dynamic analysis of beams with jumped 

configuration.    

 

A. Natural Modes Analysis of Stepped EB Beam 

Figure 1 illustrates a straight axis EB beam with arbitrary 

boundary conditions and N jumped discontinuities in its 

spatial span. The beam considered in this study has a 

uniform cross section at each segment. Hence, Eq. (4) can 

be divided into n uniform equations expressed as:                    
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where ( )n xφ , (EI)n, and mn are mode shape function, 

flexural stiffness, and mass per unit length of beam at the n
th
 

segment. Let, 
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Eq. (5) can be rewritten in a more recognizable form  
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with the following general solution            
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where An, Bn, Cn, Dn are the constants of integration 

determined by suitable boundary and continuity conditions. 

It is remarked that any classical boundary conditions can be 

applied to the beam; however, without the loss of generality, 

clamped-free conditions are chosen here for the boundaries. 

Applying the clamped condition at x = 0  requires: 

      1
1

(0)
(0) 0

d

dx
= =

φ
φ                            (9) 

Also, the continuity conditions for displacement, slope, 

bending moment, and shear force of beam at points of 

discontinuity are given by: 
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And, the free boundary condition at x = L  requires: 
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= =
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Figure 1. EB beam configuration with N jumped discontinuities.  

The characteristics matrix of the system can be formed by 

applying Eqs. (9-14) to Eq. (8) at each point of discontinuity 

as well as at the boundaries. It is remarked that nβ ’s are 

functions of beam natural frequency with an explicit 

expression given in Eq. (6). Since the natural frequency is 

independent of segments indices and is considered for the 

entire length of beam, nβ ’s of different segments can be 

interrelated in terms of a single parameter β  using Eq. (6):   

 n n=        β βα                      (15) 

where 
1/ 4

1

1

( )

( )

n
n

n

m EI

m EI

 
=  
 

   α                     (16) 

Note that 1 1=α  and thus, 1=β β .                                                      

Therefore, the characteristics matrix becomes only 

function of a single parameter β . The characteristics 

equation is then given by: 

4N 4N 4N 1 0× × =J P                            (17) 
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where ( )=J J β  is the characteristics matrix and P is the 

vector of mode shape coefficients: 

T

1 4NP [ ]1 1 1 1 2 2 2 2 N N N NA  B  C D  A  B  C D   A  B  C D ×= ⋯   (18) 

Matrix J is constructed based on three sets of equations. 

The first two rows and last two rows present the boundary 

conditions at x = 0 and x = L, respectively, and the middle 

part of matrix demonstrates the continuity conditions in the 

singularity points. Let’s divide matrix J in three parts:      

1

2

3 4N 4N
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J

J
×
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where [ ]1 2 4
J

N×
 represents the boundary conditions at the 

clamped end at x = 0 given by Eq. (9), 
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includes the continuity conditions given by Eqs. (10-13) at 

N-1 points of discontinuity with 
( )

2

nJ  indicating the 

continuity conditions applied at the n
th
 cross section, and 

3 2 4
J

N×    represents the free boundary condition at x = L 

given by Eq. (14). 

In order to obtain a non-trivial solution for Eq. (17) and 

find the natural frequencies and mode shapes the 

determinant of matrix J must be set to zero 

[ ]det ( ) 0=J β                              (21) 

Since this matrix is a function of only parameter ( )0,∈ ∞β , 

its determinant can be numerically evaluated for its zero 

values. The values of β  which satisfy Eq. (21) lead to the 

calculation of natural frequencies using a modified version 

of Eq. (6):   

( ) ( )4 4
2 ( ) ( )1

1

( )( )r r n

r n

n

EIEI

m m
= =ω β β                 (22) 

where ( )rβ ’s are the solutions to Eq. (21) and 
i
ω s are the 

corresponding natural frequencies. Since the determinant of 

the matrix J has been set to zero for the selected values of 

β , Eq. (17) becomes underdetermined. However, with the 

integration of normalization condition, the obtained set of 

equations becomes solvable for the parameters vector P. 

Hence, the following normalization condition is applied to 

obtain coefficients of beam mode shapes.   

( )
0

2
( )( ) ( ) 1

Nl

r

l

m x x dx =∫ φ                       (23) 

where ( ) ( )r xφ  is the r
th
 mode shape of beam. 

The obtained mode shapes and natural frequencies are 

used to derive the ODE of motion for a beam under 

distributed dynamic excitation as will be discussed next. 

 

B. Forced Motion Analysis of Stepped EB Beam 

Using expansion theorem for the beam vibration analysis, 

the expression for the transversal displacement becomes:  
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where ( ) ( )rq t ’s are the generalized time-dependent 

coordinates. Now, consider beam is under a time-varying 

distributed vertical load P(x,t) which can be expressed as:   
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Substituting Eqs. (24) and (25) into PDE of motion Eq. (1) 

yields: 
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To safely take the term E(x)I(x) out of the bracket for the 

beam with multiple discontinuities, Eq. (26) is multiplied by 

an arbitrary mode shape ( ) ( )s xφ  and is integrated over x:     
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Recall Eq. (5) which can be modified to 
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Using Eq. (28) and dividing the spatial integral into N 

uniform segments, one can write: 
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Applying beam orthogonally conditions given by: 
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and using Eqs. (23) and (29), Eq. (27) can be recast as 

follows:  
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which can be simplified to 

{ } { }( ) ( ) 2 ( ) ( )

1 1

( ) ( ) ( ) ( )
r r r r

rs r rs

r r

q t c q t q t b p t
∞ ∞

= =

+ + =∑ ∑ɺɺ ɺ ω     (32) 

with  

0 0

( ) ( ) ( ) ( )( ) ( ) ( ) , ( ) ( )
N Nl l

r s r s

rs rs

l l

c c x x x dx b x x dx= =∫ ∫φ φ φ φ    (33) 

The truncated k-mode description of the beam Eq. (32) can 

now be presented in the following matrix form: 
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Multiplying Eq. (25) by ( ) ( )s xφ  and integrating over x 

yields:    
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which leads to derivation of input vector u for a given load 

distribution as follows: 

0
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The state-space representation of Eq. (34) is given by: 

ɺX = AX + Bu                             (38) 

where  
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The implementation of the proposed framework will be 

studied in the next section for a particular case of interest, 

where the EB beam has two stepped points in cross section 

and is subjected to a distributed dynamic excitation.  

 

III. CASE STUDY: EB BEAM WITH TWO JUMPED 

DISCONTINUITY IN CROSS SECTION 

A case of study is considered in thin section to demonstrate 

the implementation of the proposed method for forced 

vibration analysis of an EB beam with jump discontinuities. 

Figure 2 depicts a cantilever beam with clamped-free 

boundary conditions and two jump discontinuities in the 

cross-section subjected to a vertical load uniformly applied 

to the middle section. The objective is to derive and depict 

the mode shapes and frequency response of the beam for a 

finite number of modes. To observe the effects of the jump 

on the beam’s mode shapes and system’s frequency 

response, several thickness values are considered for the 

middle cross section as listed in Tables 1. It is assumed that 

cross-sections 1 and 3 have the same dimensions and 

properties, and only the thickness of the beam jumps in 

cross-section 2.  

 
Figure 2. EB beam with two stepped discontinuities in cross section under 

distributed dynamic load. 

Following the steps presented in the previous section, one 

can obtain the state-space representation of the system. 

However, the standard form of state-space Single-

Input/Single-Output (SISO) representation of the system can 

be written as: 

   
ɺX = AX + Bu

Y = CX
                            (40) 

 

Table 1. Beam parameters for numerical simulation of different thickness values in the middle section. 

Config. l1(m) l2(m) L(m) t1(m) t2(m) t3(m) ω1(rad/sec) ω2(rad/sec) ω3(rad/sec) ω4(rad/sec) 

T1 0.1 0.2 0.3 0.001 0.001 0.001 57.1     357.9     1002.1     1963.7 

T2 0.1 0.2 0.3 0.001 0.0015 0.001 58.1     431.9     1059.2     2293.9 

T3 0.1 0.2 0.3 0.001 0.002 0.001 56.4     459.5     1052.1     2642.6 

T4 0.1 0.2 0.3 0.001 0.0025 0.001 54.4     463.8     1030.3     2906.1 

T5 0.1 0.2 0.3 0.001 0.003 0.001 52.5 459.3 1005.5 3070.2 

Beam’s other parameters: 

Density: ρ = 7800(kg/m3), width: b = 0.01(m), damping coefficient: c = 0.001(N.sec/m), module of elasticity: E = 200(Gpa) 
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Figure 3. (a) First, (b) second, (c) third, and (d) fourth mode shapes of beams with five different middle section thicknesses, and (e) frequency response 

plot of beams’ tip displacements.   

where  

(1) (2) ( )

0 0 0 1 2
[ ( ), ( ),..., ( ),0,...,0]k

k
L L L ×=C φ φ φ         (41) 

is the output matrix for measuring the displacement of point 

0
L . The frequency response of the system can now be 

plotted using beam’s transfer function which can be 

obtained through the Laplace Transformation of its state-

space model: 

1( )
( ) ( )

( )

Y s
G s sI

U s

−= = −C A B                    (42) 

Table 1 indicates the parameter values used for the 

simulations, where beam’s thickness in middle cross-section 

varies. Beam’s equation of motion has been truncated into 

four modes, and five different thickness values have been 

considered for the middle cross-section, one of which being 

a uniform beam without any jump in cross-section. Figure 3 

depicts the mode shapes and frequency response of beam for 

different configurations. As seen from the figures, mode 

shapes of the beam significantly change as the thickness of 

the jump increases. Particularly, it is observable that such a 

change has more effect on mode shapes 2 and 4 compared to 

a 

 

b 

 

c 

 
d 

 

e 
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mode shapes 1 and 3. This reason perhaps is due to the fact 

that the location of the jump is in such a way that the 

resistance of the middle section against bending is more 

severe in modes 2 and 4. While in modes 1 and 3, the 

middle section is located on a fairly straight curvature. This 

affects not only beam’s modes shapes but also its natural 

frequencies. The frequency response plot given in Figure 3 

depicts that the first and third natural frequencies of beam 

for different jump configurations are localized, in contrast to 

the frequencies of second and fourth modes, where the 

frequency peaks are more scattered. The continuity of the 

mode shapes at jump points is an expected result of the 

analysis and can be clearly seen from the figures.  

IV. CONCLUSION 

This work presented a framework for derivation of mode 

shapes and state-space representation for EB beams with 

multiple jumped discontinuities in their cross section. To 

solve the PDE of motion, the beam was divided into uniform 

segments of constant parameters, and the continuity 

conditions were applied at the partitioned points. The 

characteristics matrix was then formulated using the beam 

boundary and continuity conditions. Natural frequencies of 

beam were obtained by setting the determinant of 

characteristics matrix to zero, and the beam mode shapes 

coefficients were obtained by integrating the beam 

characteristics equation and normalization condition. The 

governing ODE of motion and its state-space representation 

were then derived for the beam under a distributed dynamic 

loading condition. To clarify the proposed method, 

numerical simulations have been presented for a beam with 

two stepped discontinuities in the cross section. Results 

indicate that the effects of added mass and stiffness on the 

beam mode shapes and natural frequencies are significant. 

Hence, exact methods such as the proposed framework are 

required for practical implementation of such discontinuous 

structures.  
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