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Abstract— The semiglobal robust output regulation problem
is solved in this paper for a class of nonlinear systems that do
not satisfy the standard conditions for the existence of a linear
internal model, but admit a so-called “generalized immersion.”
It is shown how the obstacle given by the presence of the
exosystem dynamics in the generalized immersion mapping can
be overcome by resorting to a recently developed framework
for time-varying internal model design.

I. PROBLEM FORMULATION

In this paper, we consider a prototypical robust output

regulation problem for systems of the form

ẇ = Sw

ż = f(z, e, w, µ)
ė = h(z, e, w, µ) + b(µ)[u − c(w, µ)]

(1)

with exosystem state w ∈ R
p, plant state in the error-

coordinates x = (z, e) ∈ R
n−1×R, control input u ∈ R, reg-

ulated error e ∈ R, and unknown parameters µ ∈ P , where P
is a given compact set in R

ρ. The vector fields f(x, e, w, µ)
and h(x, e, w, µ) are smooth and satisfy f(0, 0, w, µ) = 0,

h(0, 0, w, µ) = 0 for all w ∈ R
p and all µ ∈ P . Moreover,

b(µ) ≥ b0 > 0 for all µ ∈ P . The eigenvalues of the known

matrix S are all simple and lie on the imaginary axis. The

semiglobal robust regulation problem is stated as follows:

Problem 1.1: Given arbitrary compact sets Kx ⊂ R
n,

Kw ⊂ R
p, determine a dynamic error-feedback controller

ξ̇ = F (ξ, e) , u = H(ξ, e) (2)

with state ξ ∈ R
ν , and a compact set Kξ ⊂ R

ν such that all

the trajectories of the closed-loop system (1)-(2) originating

from any initial conditions (w0, x0, ξ0) ∈ Kw ×Kx ×Kξ are

bounded and satisfy limt→∞ e(t) = 0 for all µ ∈ P . 2

Without loss of generality, we henceforth assume that Kw is

an invariant set for ẇ = Sw.

Assumption 1.1: There exists a smooth, positive definite

function V0(z, w, µ) such that

α0(‖z‖) ≤ V0(z, w, µ) ≤ α0(‖z‖)

∂V0

∂z
f(z, 0, w, µ) +

∂V0

∂w
Sw ≤ −α0(‖z‖) ,

for all z ∈ R
n−1, w ∈ Kw, and µ ∈ P , where α0, α0, α0

are class-K∞ functions satisfying α0(s) ≥ a0s
2, α0(s) ≤

a0s
2, α0(s) ≥ a0s

2 for all s ∈ [0, r0], and for some positive

numbers a0, a0, a0, and r0. 2
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In the classical internal-model based approach (that is, in

the spirit of [1]), the solvability of Problem 1.1 relies upon

the possibility of embedding in the controller an internal

model of the exosystem with output

µ̇ = 0, , ẇ = Sw , yw = c(w, µ) (3)

which can be accomplished if the system (3) can be im-

mersed into a detectable nonlinear system of the form

η̇ = Φ(η) , yη = Γ(η) . (4)

In the literature, the nonlinear function c(w, µ) is usually

assumed to satisfy the following property, which ensures the

existence of an immersion into an LTI system:

Property 1.1: There exists an integer q and real numbers

a0, · · · , aq−1 such that a0c(w, µ) + a1LSc(w, µ) + · · · +
aq−1L

q−1

S c(w, µ) + L
q
Sc(w, µ) = 0 for all µ ∈ P .

However, the only case where the above property is guar-

anteed to hold is that the nonlinear function c(w, µ) is a

polynomial in w, with µ-dependent coefficients. In the next

section, we show how Assumption 1.1 can be relaxed by

defining linear time-varying immersions.

II. GENERALIZED IMMERSION

It was shown in [2] that for systems which do not admit an

immersion of the form (4), it is still possible to obtain a so-

called generalized immersion if the function c(w, µ) satisfies

the following property:

Property 2.1: There exists an integer q ∈ N and smooth

functions a0(w), · · · , aq−1(w) such that, for all w ∈ R
p

and µ ∈ P , a0(w)c(w, µ) + a1(w)LSc(w, µ) + · · · +
aq−1(w)Lq−1

S c(w, µ) + L
q
Sc(w, µ) = 0.

Property 2.1 is found to hold for more general classes of non-

linear functions, including sinusoidal, exponential or rational

terms, (see [2]). Property 2.1 implies that the exosystem

admits a generalized immersion into the system

ẇ = Sw , η̇ = Φp(w)η , yη = Γpη , (5)

where the pair (Φp(w),Γp) is in phase-variable form with

w-dependent coefficient ai(w), i = 1, · · · , q.

While the above system is dependent on w, and thus

not implementable as such, it suffices to notice that, since

w(t) = eStw0, one can rewrite the η-dynamics as η̇ =
Φp(t, σ)η, with Φp(t, σ) := Φp(eStw0) and σ = w0 plays

the role of a vector of unknown parameters. Therefore,

the generalized immersion is trivially transformed into a

time-varying parameter-dependent immersion similar to the

one considered in [3] for periodic systems. Moreover, one
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can always rewrite system (4) in observer canonical form

τ̇(w, µ) = Φo(t, σ)τ(w, µ), c(w, µ) = Γoτ(w, µ).
Assumption 2.1: There exists a re-parametrization σ 7→

θ ∈ R
̺ such that the coefficients of the matrix Φp(t, σ)

depends linearly on θ. 2

III. REGULATOR DESIGN

The robust regulator consists of the parallel connection

u = ust + uim of a high-gain stabilizer ust = −ke, k > 0,

and a parameterized internal model unit of the form (see [3])

ξ̇ = (F + G(t)H(θ̂))ξ − kG(t)e , uim = H(θ̂)ξ .

Note the explicit dependence on time occurs through the

known matrix exponential eSt. It can be shown that there

exists a parameterized family of almost-periodic smooth

pairs (Σ(t, w, µ),H(θ)), satisfying

∂Σ

∂t
+

∂Σ

∂w
Sw = [F + G(t)H(θ)]Σ(t, w, θ)

c(w, µ) = H(θ)Σ(t, w, θ) ,

for all µ ∈ P and all t ≥ t0 ≥ 0. The proof then follows

along the same lines of [3, Lemma 1.2]. The main result can

be easily proved by combining the results of [4, Proposition

5.1] and applying LaSalle’s invariance principle:

Theorem 3.1: There exists k⋆ > 0 such that for all k ≥ k⋆

and all γ > 0 the adaptive controller

ξ̇ = (F + G(t)H(θ̂))ξ − kG(t)e
˙̂
θ = γξ1e

u = H(θ̂)ξ − ke

solves the semiglobal robust output regulation problem for

the class of systems under consideration. 2

Example: Consider the error system

ẇ = Sw

ż = −z3 + r1ew1

ė = a sin(e) − z2 + b[u − c(w, µ)] ,
(6)

where S =

(

0 1
−1 0

)

, and c(w, µ) = r1w1 cos(w2), with r1

a nonzero unknown constant. The exosystem with output (3)

admits a generalized immersion in observer form

Φo(t, σ) =







−α3(t, σ) 1 0 0
...

. . .

−α0(t, σ) 0 0 0






,

with coefficients α3(t, σ) = 0,

α2(t, σ) = (5 + w2
1(0)) + (−w2

1(0) + w2
2(0)) sin2(t) +

+ (w1(0)w2(0)) sin(2t)
α1(t, σ) = 3(w1(0)w2(0)) − 6(w1(0)w2(0)) sin2(t)

+ 1.5(−w2
1(0) + w2

2(0)) sin(2t)
α0(t, σ) = (4 + w2

1(0) + 3w2
2(0)) − 2(−w2

1(0) +
+ w2

2(0)) sin2(t) − 2(w1(0)w2(0)) sin(2t) .

The proposed solution applies to the given system with

θ =
(

w2
1(0) −w2

1(0)+w2
2(0) 2w1(0)w2(0)w2

1(0)+3w2
2(0)

)

.
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(a) Simulation results with persistence of excitation.
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(b) Simulation results without persistence of excitation.

Fig. 1. Simulation results

The controller gains and adaptation gain have been chosen

as L0 = (15, 35, 50, 24)′, k = 5 and γ = 1200, respectively

(see [3]). The initial conditions of the simulations are z(0) =
0.5, ξ(0) = 016×1, w(0) = (−2, 1)′, and θ̂(0) = 04×1.

Figure 1(a) shows asymptotic error regulation and parameter

convergence. Figure 1(b) shows the results of a simulation

where the exosystem is turned off at t = 60 s. As the method

does not require persistence of excitation, the regulated error

still converge to zero, while the estimation error does not.

IV. CONCLUSIONS

In this paper, we have provided an adaptive time-varying

internal model design for semiglobal nonlinear robust out-

put regulation. By combining the concept of generalized

immersion [2] with the parameter-dependent time-varying

immersion framework of [3] it is possible to extend the class

of systems for which the problem admits a solution.
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