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Abstract— This paper presents an improved version of the
Robust Bode (RBode) plot, in which a robust performance
criterion is explicitly translated into allowable and forbidden
regions on the open-loop Bode plot of a compensated SISO
system. With the RBode plot robust controllers can be directly
synthesized with classical loop shaping. The design concept
is to shape the open-loop response to avoid entering the
forbidden regions on magnitude and phase subplots defined
by the boundary functions. The paper provides a clearer
derivation of the RBode plot and emphasizes the fact that the
weighting functions of the robust performance criterion need
not be transfer functions. The improved RBode plot is applied
to the design of the controller for an Lateral Tape Motion
compensation system.

I. INTRODUCTION

One difficulty with the loop shaping technique for

designing controllers is that the closed-loop specifications

often translate only to rather general specifications on the

open-loop frequency response such as high gain at low

frequencies for good reference tracking and disturbance

rejection, and low gain at high frequencies for good noise

rejection. Typically robustness specifications are limited

to lower bounds on the gain margin and phase margin,

which do not account for the specific features of the

plant characteristics such as uncertainties in dynamics or

nonlinearities. The closed-loop performance specifications

are hardest to translate to open-loop characteristics near

the open-loop 0 dB crossover, because of the complicated

relationship between the open-loop gain and phase and the

closed-loop gain when the open-loop gain is approximately

unity.

Other tools are widely used for analyzing or synthesizing

controllers to meet more detailed robustness specifications.

H∞ and µ-synthesis, for example, are automated methods

for designing controllers to achieve robust performance in

the presence of plant uncertainties [1][2]. However, these

automated tools often do not provide much insight into the

relationship between the open loop frequency response and

the performance. Also these tools require that uncertainties

and performance specifications are described by transfer

functions, which sometimes are hard to construct and may

result in conservative designs.

This paper presents an improved version of the the

Robust Bode plot (RBode plot), which was originally
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introduced in [3]. In RBode plots, boundary functions

partition the conventional Bode plots into regions that

do and do not meet specific robust performance criteria.

Figure 11 shows two examples of RBode plots in which

the robust performance is violated, while Figure 12

shows an example of an RBode plot in which the system

satisfies the robust performance criterion. In contrast to the

earlier version of the RBode plot, the forbidden regions

are explicitly designated by cross hatching. An important

aspect of these RBode plots is that the uncertainty weighting

function used to construct the plot is not a transfer function.

The RBode plots can help the designer achieve desired

closed-loop performance specifications by showing on the

open-loop Bode plot how a particular frequency response

feature relates to the robustness characteristics. The strategy

for compensator design with loop shaping with the RBode

plot is to shape the open-loop response to assure that no

intersections occur between boundary functions and the

open-loop frequency response at any frequency.

The paper is organized as follows: Section II presents a

new derivation the RBode plot boundary functions which

includes plots illustrating how the boundary functions of

the forbidden region of the magnitude plot are derived from

a quadratic inequality and how teh boundary functions are

derived from a trigonometric inequality. Section III shows

a design example for active tape steering control system

using RBode plot using weighting function that is not a

transfer function. Concluding remarks appear in Section IV.

II. DERIVATION OF RBODE PLOTS

In RBode plots, boundary functions which represent

performance bounds are added to the open-loop magnitude

and phase plots to partition the conventional Bode plots into

regions that do and do not meet specific robust performance

criteria. This sections gives the derivation of the RBode

boundary functions.

A. The Robust Performance Criterion

Consider the uncertain plant described by multiplicative

uncertainty model shown in Figure 1, where P̃ (s) is the

uncertain plant, and P (s) is a known transfer function

representing the nominal plant. The uncertainty model, ∆(s),
is an unknown but stable transfer function with |∆(ω)| <
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Fig. 1. Block diagram with multiplicative model uncertainty.

.

|Wu(ω)|, for all ω. The weighting function, Wu(ω) satisfies
∣

∣

∣

∣

∣

P̃ (ω)

P (ω)
− 1

∣

∣

∣

∣

∣

≤ |Wu(ω)|, for all ω, (1)

where the magnitude response of Wu(ω) is an upper bound

of the magnitude of the model uncertainty, |∆(ω)|.

The desired performance of the system is specified by a
weighting function Ws(ω) such that

|S̃(ω)| < |Ws(ω)|−1
, for all ω, where S̃(s) ≡

1

1 + P̃ (s)C(s)
(2)

If the nominal loop transfer function L(s) ≡ P (s)C(s)
is stable, a necessary and sufficient condition for a SISO
controller to achieve robust performance is [4]

|Wu(ω)T (ω)|+|Ws(ω)S(ω)| =
|Wu(ω)L(ω)| + |Ws(ω)|

|1 + L(ω)|
< 1

(3)

for all frequencies ω.

B. Derivation of the RBode Phase boundary functions

The derivation of the phase boundary functions for the

RBode plot is easier than the derivation for the mag-

nitude boundary functions. Using the fact that L =
|L|cos (arg(L))+j|L|sin (arg(L)), the necessary and suffi-

cient condition that closed-loop achieves robust performance

given by inequality (3) is equivalent to the requirement that

|Wu|2|L|2 + 2|Wu||Ws||L| + |Ws|2
1 + 2|L|cos(arg(L)) + |L|2 < 1. (4)

for all frequencies ω where ω has been suppressed for no-
tational convenience. Solving (4) for cos(arg(L)) transforms
the robust performance criterion to

cos(arg(L)) >
|Ws|

2 − 1 + 2|WsWu||L| + (|Wu|
2 − 1)|L|2

2|L|
.

(5)

for all frequencies ω.

The phase boundary functions define the regions for
which inequality (5) holds. The principal value of the phase
boundary between 0 and 180◦ is (Figure 2)

φR ≡ arccos

(

|Ws|
2 − 1 + 2|WsWu||L| + (|Wu|

2 − 1)|L|2

2|L|

)

.

(6)
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Fig. 2. Illustrations of arccos for RBode phase boundary function
derivation.

The principal value is only defined when the argument to

the right hand side is between −1 and 1. The upper and

lower boundaries are

φRku
≡ 360◦k + φR and,

φRkl
≡ 360◦k − φR,

for k = · · · ,−2,−1, 0, 1, 2, · · ·
The feedback system will satisfy the robust performance

criterion (5) and equivalently the robust performance

criterion (3), if for each frequency ω, either the argument of

the right hand side of (6) is less than −1, or the open-loop

phase, arg(L) lies between φRkl
and φRku

for some k.

Plotting the functions φRkl
and φRku

and the open-loop

Bode phase chart on the same axes generates the phase chart

of the RBode plot. Any intersection between the graphs of

φRkl
and φRku

and the open-loop phase response indicates

that the system does not achieve robust performance.

C. Derivation of the RBode Magnitude boundary functions

The derivation of the magnitude boundary functions em-
ploys the relation (4), but is much more complicated than the
derivation of the phase boundary functions. Squaring both
sides of (4), and bringing all functions to the left hand side
results in

(1−|Wu|
2)|L|2 +2(cos(arg(L))−|Wu||Ws|)|L|+1−|Ws|

2
> 0.

(7)

The open-loop magnitude |L| can satisfy inequality (7)

depending on the sign of the lead coefficient 1− |Wu|2 and

the nature of the roots of the quadratic equation

A(λ) ≡ (1 − |Wu|2)λ2 +

2(cos(arg(L)) − |Wu||Ws|)λ + 1 − |Ws|2

= 0. (8)

For 1 − |Wu|2 6= 0 define the roots of (8) as

λ1 ≡ |Wu||Ws| − cos(arg(L)) −
√

D

1 − |Wu|2

λ2 ≡ |Wu||Ws| − cos(arg(L)) +
√

D

1 − |Wu|2
,

where

D ≡ (cos(arg(L)) − |Wu||Ws|)2 −
(1 − |Wu|2)(1 − |Ws|2) (9)

For 1 − |Wu|2 = 0 define the root of (8) as

λ1 ≡ |Ws|2 − 1

2(cos(arg(L) − |WuWs|)
. (10)
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Note that the roots are functions of ω.

Determining the magnitude contour functions requires

considering several cases corresponding to the different com-

binations of the roots and the coefficients of equation (8).

These cases provide some insight into the selection of Wu

and Ws. Each case leads logically to the definition of an up-

per boundary function MRu and a lower boundary function

MRl such that the system satisfies the robust performance

criterion if and only if

1) At all frequencies where MRu > MRl the graph of

|L| lies between MRu and MRl;

2) At all frequencies where MRu < MRl the graph of

|L| lies either below MRu or above MRl; and

3) There are no frequencies at which neither MRu nor

MRl exist.

Two useful facts about the roots of equation (8) for the

derivations of the contour functions are

λ1 + λ2 = 2
cos(arg(L)) − |Wu||Ws|

|Wu|2 − 1
, (11)

and

λ1λ2 =
1 − |Ws|2
1 − |Wu|2

. (12)

There are five main cases depending on the magnitude of

|Wu| and |Ws| relative to unity.

1) Frequencies where |Wu| < 1 and |Ws| ≤ 1. These are

the frequencies where the magnitude of the modeling

uncertainty is less than the magnitude of the nominal

model itself (i.e. there is relatively high confidence in

the model), and disturbance rejection is not required.

Fig. 3. Illustrations of A(λ) for the three cases when |Wu| < 1 and
|Ws| ≤ 1.

a) If D < 0, then λ1 and λ2 are both complex, and

any positive value of |L| satisfies the inequality

(7). Therefore define MRu ≡ ∞ and MRl ≡ 0
(Figure 3(a)).

b) If D ≥ 0 and cos(arg(L))−|Wu||Ws| ≥ 0, then it

follows from (11) that λ1+λ2 ≤ 0. Since λ1λ2 >

0 from (12), λ1 ≤ λ2 < 0, and any positive value

of |L| satisfies the inequality (7). Therefore define

MRu ≡ ∞ and MRl ≡ 0 (Figure 3(b)).

c) If D ≥ 0 and cos(arg(L))−|Wu||Ws| < 0, then it

follows from from (11) that λ1 + λ2 > 0. Since

λ1λ2 > 0 from (12), λ2 ≥ λ1 > 0, and |L|
satisfies inequality (7) when |L| < λ1, or |L| >

λ2. Therefore define MRu ≡ λ1 and MRl ≡ λ2

(Figure 3(c)). Note that MRu < MRl in this case.

2) Frequencies where |Wu| < 1 and |Ws| > 1. These are

frequencies where there is relatively high confidence

in the model, and disturbance attenuation is required.

Since 1 − |Wu|2 > 0 and 1 − |Ws|2 < 0,

Fig. 4. Illustration of A(λ) for different cases of |Wu| and |Ws|.

the product of these terms contributes a positive

value in the expression for D. Therefore

D ≥ (cos(arg(L)) − |Wu||Ws|)2 ≥ 0, and both

λ1 and λ2 are real. Equation (12) implies that

λ1λ2 < 0. This last fact implies that λ2 > 0, and

λ1 < 0, and |L| satisfies inequality (7) when |L| > λ2.

Therefore define MRu ≡ ∞ and MRl ≡ λ2 (Figure

4(a)).

3) Frequencies where |Wu| > 1 and |Ws| ≤ 1. These

are frequencies where the magnitude of the modeling

uncertainty is greater than the magnitude of the

nominal model (there is relatively low confidence

in the model), but disturbance attenuation is not

required.

Since 1 − |Wu|2 < 0 and 1 − |Ws|2 ≥ 0, the

product of these terms contributes a nonnegative

value in the expression for D. Therefore

D ≥ (cos(arg(L)) − |Wu||Ws|)2 ≥ 0, and both

λ1 and λ2 are real. Equation (12) implies that

λ1λ2 < 0. This last fact implies that λ1 > 0
and λ2 < 0, and |L| satisfies inequality (7) when

0 < |L| < λ1. Therefore define MRu ≡ λ1 and

MRl ≡ 0 (Figure 4(b)),

4) Frequencies where |Wu| > 1 and |Ws| ≥ 1. These

are frequencies where there is low confidence in the

model, but disturbance attenuation is required (Figure

4(c)).

Since D = (cos(arg(L) − |WuWs|)2 − (1 −
|Wu|2)(1 − |Ws|2) = (|Wu| − |Ws|cos(arg(L))2 +
(|Ws|2 − 1)(1 − cos2(arg(L)), where both terms on

the right are nonnegative, D ≥ 0 always holds. Both

λ1 and λ2 are real. Equations (11) and (12) imply that

λ1λ2 > 0 and λ1 + λ2 < 0 , and thus λ2 ≤ λ1 < 0.

There is no positive value of |L| satisfying inequality

(7). Therefore MRu and MRl are undefined.

An important implication of this case that there

is no compensator design that can achieve robust

performance if there is requirement for disturbance

rejection at frequencies where the magnitude of the
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modeling uncertainty is greater than the magnitude

of the model itself.

5) Frequencies where |Wu| = 1. These are frequencies

where the lead coefficient of equation (8) is zero, and

the inequality becomes linear.

Fig. 5. Illustrations of A(λ) for the three cases when |Wu| = 1.

a) If |Ws| ≤ 1 and cos(arg(L)) − |Ws| ≥ 0, then

λ < 0 and any positive value of |L| satisfies the

inequality (7). Therefore define MRu = ∞ and

MRl = 0 (Figure 5(a)).

b) If |Ws| ≤ 1 and cos(arg(L)) − |Ws| < 0, then

λ > 0, and any positive value of |L| < λ satisfies

the inequality (7). Therefore define MRu = λ and

MRl = 0 (Figure 5(b)).

c) If |Ws| > 1 then cos(arg(L)) − |Ws| < 0, then

no positive value of |L| satisfies inequality (7).

Therefore MRu and MRl are undefined (Figure

5(c)).

Plotting MRu and MRl on the same axes as the open-loop

Bode magnitude plot generates the RBode magnitude plot.

Note that MRu and MRl are functions only of arg(L) and

of the two weighting functions. Thus, multiplying C(s) by

a positive constant moves |L| up or down on the magnitude

plot, but does not alter the magnitude boundary functions.

Any intersection between |L| and MRu or MRl indicates

that |L| does not satisfy inequality (7).

III. APPLICATION

This section demonstrates how to use the RBode plots in

the loop shaping process to synthesize a robust controller.

A. Active Tape Steering System

Tape drives are subject to lateral tape motion (LTM)

caused by tape stacking imperfections and eccentricity of

the supply reel (Figure 6). LTM causes damage to the tape

edges when the tape strikes flanges on the guides or on the

reels themselves. LTM has become a limiting factor in the

development of high density, high performance tape drives.

Researchers at Imation and Carnegie Mellon University

have proposed to actively steer the tape by tilting one or

more tape guides on the tape transport path to compensate

for LTM. The designed active steering tape drive test stand

is shown in Figure 7.

Fig. 6. Lateral Tape Motion(LTM) during tape transport.

Fig. 7. The integrated hardware with second generation actuator and
modified tape path.

B. Performance Specification

Significant disturbances in various frequency ranges are

observed in open-loop LTM data collected during operation

of the MTS tape transport. Dominant disturbances originate

from either tape edge imperfections or tape drive reel im-

perfections. Disturbances below 25 Hz are of major concern

and the specifications for the closed-loop system are

1) Zero steady state error for a constant disturbance;

2) Disturbance attenuation below 36 Hz (226 rad/sec);

3) At least 6 dB of attenuation for disturbances at fre-

quencies below 16 Hz (100 rad/sec);

4) No more than 7 dB of disturbance amplification at any

frequency;

The performance weighting function for the controller

synthesis is:

Ws(ω) = 0.45

(

ω2 + 2.22e5

ω2 + 1600

)1/2

(13)

Figure 8 shows the magnitude response of Ws and its

reciprocal, which is the desired upper bound for the

sensitivity function. Note that this weighting function is not

a transfer function.

C. Extraction of Plant Nominal Model and Uncertainties

A SigLab VNA dynamic signal analyzer was used to

extract the characteristics of the integrated active steering

tape transport system. Figure 9(a) shows the eight sets

of experimental frequency response data collected at the

operating conditions velocity = 4 m/s and tension = 1 N.

The second order model

Pm =
7.0e4

s2 + 593s + 4.4e4
(14)
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captures the most dominant system dynamics as indicated by

the black solid curve in Figure 9(a). The transfer function Pm

is used as the nominal system model.

The mismatch between the nominal model and the actual

frequency response data in Figure 9(a) is treated as system

uncertainties. The multiplicative mismatch between each

frequency response data model and the nominal model is

∆i =
Pcollected i

Pm
− 1 (15)
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Fig. 9. (a)Bode Diagram of the System Characteristics from online System
Identification. (b)Bode Diagram of the Multiplicative differences.

In traditional robust controller design such as H∞-

synthesis, system uncertainty weighting function has to be

represented as a stable transfer function. There is no such

requirement for generating of the RBode plot. Instead of

trying to fit a transfer function to the mismatches in Figure

9(b) to a transfer function, we simply constructed a tentative

uncertainty weighting function as another frequency response

data model which represents the worst-case model mismatch

observed during system identification process, that is,

|∆max(ω)| = Maxi=1,···8|∆i(jω)|,∀ ω (16)

The magnitude of ∆max(ω) is shown as the black envelope

in Figure 9(b). The maximal mismatch model, however,

includes not only the real plant model variations but also

perturbations on plant input and output collected during

the online system identification process, which shows up as

several magnitude spikes at random frequency points. Fig-

ure 10 shows multiplicative uncertainty weighting function

Wu(ω) used for the design, which is |∆max(ω)| after outlier

removal.
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Fig. 10. The uncertainty weighting frequency response data model.

D. Loop shaping design using RBode plots

Figure 11(a) shows the RBode plot of the plant with

PI compensator CPI(s) = 3.16 s+100

s . The compensated

system violates the robust performance criterion between

200 rad/sec and 900 rad/sec approximately. The violations of

the forbidden regions shown on the phase contours suggest

using a lead compensator to shift the loop phase out of

the forbidden region. Applying an 80 degree complex lead

compensator at 1000 rads/s with 5 dB gain and damping ratio

0.96 Cclead(s) = 7.67 s2
+916s+2.3e5

s2+4e3s+4.3e6 results in Figure 11(b).
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Fig. 11. (a) RBode plot of the loop with a PI controller. (b) RBode plot
of the loop with PI and complex lead compensator.

Now the RBode plot indicates a robustness violation

between 20 rad/sec and 240 rad/sec. A 5.6dB gain does not

change the boundary founctions of the RBode plot and lifts

the loop magnitude into forbidden region. Figure 12 shows

the RBode plot of the final loop.

The final controller used in the implementation is

C(s) = 46.2
(s + 100)(s2 + 916s + 2.3e5)

s(s2 + 4.0e3s + 4.3e6)
(17)

Note that the order of the controller is lower than what would

have been obtained from an H∞ synthesis. The controller

order in H∞ is equal to the order of the augmented plant.

In this case the performance weighting function would

have been at least first order. Likewise, the uncertainty

weighting function would have been first order, and possibly

much higher to get a tight bound on the modeling mismatch.
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Figure 13(a) shows the magnitude of |WsS + WuT | with

respect to frequency on a log-log plot. The magnitude is

below unity for all frequencies, verifying that the design

satisfies the robust performance criterion. As another check,

Figure 13(b) shows the sensitivity functions of the controlled

loop are below the desired upper bound W−1
s . The sensitivity

functions are frequency response data models calculated

directly from the eight collected frequency response data

models and the frequency response of the 3rd order controller

converted from the transfer function.
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Fig. 13. (a) Magnitude of the original robust performance criterion. (b)
Sensitivity functions corresponding to the eight FRD models compensated
by the controller of (17).

E. Simulation

A Simlink model was used to simulate the disturbance

rejection performance of the nominal closed-loop system

(Figure 14). The Simulink model injected LTM data collected

during open-loop operation as an output disturbance. Figure

15 shows the simulation results of the nominal loop when the

reference signal is zero. The simulation shows a reduction

of the LTM by approximately 70%.

IV. CONCLUSION

This paper presented an improved version of the RBode

plot where the robust performance criterion is explicitly

represented as allowable and forbidden regions on the

conventional Bode plot. The paper also presented a new

derivation of the RBode plot that more clearly shows the

relationship between the robust performance criterion and

3-rd order

controller
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Plant

Scope

sim_dis
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Collected from Tape Drive
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Fig. 14. Simulink model to simulate the nominal loop’s performance.
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Fig. 15. Simulation results of the nominal loop.

the boundary functions of the forbidden regions with the aid

of several graphs. An important feature of the RBode plot is

the weighting functions do not need to be transfer functions.

The design example showed how to use the RBode plot

for designing a controller with loop shaping to achieve

robust performance. Significantly the uncertainty weighting

function was obtained directly from experimental frequency

response data rather than being the magnitude response of a

transfer function. The resulting design had lower order than

what would have been obtained from an automated synthesis

method without order reduction.

REFERENCES

[1] G.J. Balas, J. Doyle, K. Glover, A. Packard, and R.Smith, µ-Analysis
and Synthesis Toolbox User’s guide. The Mathworks Inc., Second
Edition, 1995.

[2] D. McFarlane and K. Glover, A loop shaping design procedure using
H∞ synthesis, IEEE Transactions on Automatic Control, 37(6),1992.

[3] L. Xia and W. Messner, Loop shaping for robust performance using the
RBode plot, Proceedings of the 2005 American Controls Conference,
Portland, OR, June 2005, p. 2869-74.

[4] J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory.
Macmillan Publishing Company, 1992.

[5] W. Messner, Some advances in loop shaping with applications to disk
drives, Proceedings of the 2002 American Control Conference, 37(2),
2001.

[6] S.C. Smith and W. Messner, Loop shaping with closed-loop magnitude
contours on the Bode plot, Proceedings of the 2002 American Controls

Conference, Anchorage, AK, May 2002, p 2747-52.

4945


