
  

  

Abstract—An optimal PID controller design procedure is 
formulated for 2nd order systems where the computation of the 
PID gains is equivalent to a state feedback design problem. As a 
result, any optimal state feedback control design method can be 
used. Furthermore, this method can be extended to higher 
order systems using model reduction techniques. The 
procedure is verified experimentally using a ball and beam 
apparatus. 

I. INTRODUCTION 
HE Proportional-Integral-Derivative (PID) controller is 
the standard for industrial control with over 90% of 

industrial control systems using PID control [1]. The 
ubiquitous nature of PID control stems from its simple 
structure, the distinct effect of each of the three PID terms, 
its established use in industry, and an engineer’s preference 
to improve existing methods before adopting a new method 
[1]. This paper presents a novel and relatively simple 
approach to optimal PID controller design that does not 
require advanced optimization techniques. 
 For a 2nd order system, a state feedback regulator (with an 
integrator augmented to the original dynamics) yields a PID 
controller structure. Therefore, any optimal control method 
can be applied to obtain an optimal PID controller. For 
higher order systems, model reduction techniques can be 
used either to reduce the plant to a 2nd order system or to 
reduce the higher-order optimal controller to a PID structure 
[2]. In this paper, this optimal PID controller design problem 
is formulated for a 2nd order system and verified using an 
experimental Ball and Beam apparatus from Quanser, Inc.1  

There has been considerable research into the design of an 
optimal PID controller. This research can be divided into 
two categories: parametric optimization and tuning (see [3] 
for a review of tuning methods and [4] for tuning methods 
using Internal Model Control). While the method in this 
paper does not involve parametric optimization, it is 
comparable to the papers in the first category. 

In the optimization category, linear quadratic Gaussian 
methods are used in [5] and a mixed 2 /H H∞  method is 
used in [6]. Genetic algorithms and fuzzy logic are used in 
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[7, 8]. Model matching methods are employed in [9], based 
on least squares approximation of the desired impulse 
response, and in [10], based on approximation of the desired 
loop shape using a PID controller.  

In this paper, the PID gains are computed directly (i.e., 
without parametric optimization) using a linear quadratic 
regulator (LQR) approach. As a result, practicing engineers 
should find the method more accessible because the optimal 
PID controller is relatively simple to compute. Furthermore, 
any optimal state feedback control method can be used.  

The remainder of the paper is organized as follows. 
Section II contains a description of the proposed optimal 
PID control design method for 2nd order systems. Section III 
describes the extension of this procedure to higher order 
systems. Section IV describes the experimental apparatus 
and procedure used to verify the theoretical results. Section 
V contains conclusions and areas for future work. 

II. OPTIMAL PID CONTROLLER DESIGN FOR 2ND ORDER 
SYSTEMS 

Consider a standard 2nd order system where y  is the 
position and y  is the velocity. The system model takes the 
form  
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with [ ]Tx y y= . To design a state feedback regulator with 
integral action, the plant in (1) is augmented with an integral 
to form 
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where 
T

w y y y⎡ ⎤= ⎣ ⎦∫ . For the system in (2), a state 

feedback controller has the form  
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and, clearly, has a PID structure. Therefore, an optimal state 
feedback control design method will yield an optimal PID 
controller. A similar approach is used in [6] where the PID 
design problem is formulated as an output feedback problem 
and can accommodate higher order systems. However, the 
resulting output feedback problem in [6] is more difficult, in 
general, to solve than the state feedback problem in the 
proposed design method.  
 The implementation of the control law (3) requires full 
state feedback. If the velocity can not be measured, a 
reduced order filter can be used to maintain a standard 
controller structure. Using the measurement of  y  and the 

computation of y∫ , the reduced order observer for the plant 

in (2)  has the form (see [11, pp. 272-274]) 
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where ŷ  is the estimated velocity and [ ]1 2L L L=  is the 
observer gain. If the control law in (3) is implemented using 
the velocity estimator in (4), the resulting control law has a 
transfer function of the form  
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and has a PI-lead structure. Note the 2H  and H∞  optimal 
reduced order filtering problems have been addressed in [12] 
and [13], respectively.  

III. OPTIMAL PID CONTROLLER DESIGN FOR HIGHER ORDER 
SYSTEMS 

To consider a general (i.e., higher than 2nd order) system 
as in [6], model reduction techniques can be employed to 
reduce the plant to a 2nd order system and the results of 
Section II can be applied directly. Alternatively, a full order 
optimal controller can be designed using the full plant model 
and then model reduction techniques can be applied to 
reduce this controller to a PID structure [2]. Fig. 1 shows the 
two options for optimal PID controller design using the state 
feedback formulation from Section II. Note that any optimal 
model reduction technique can be employed. 
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Fig. 1.  Two options for optimal PID controller design for higher (>2) 
order systems 

The use of approximation (i.e., model reduction) in 
optimal PID controller design is similar to the approach in 
[10] where the optimal PID controller is computed using the 
solution of a weighted H∞  approximation. Specifically, the 
approximation problem is to minimize the norm  

 

 ( )ˆW L L
∞

−  (6) 

 
over the set of approximate loop gains L̂  where L  is the 
desired loop gain (determined from the  performance 
criteria), ( ) 11W L −

= +  is the desired sensitivity. In [10], the 

approximate loop gain is defined as  ˆ
PIDL GC=  where G  is 

the plant, and PIDC  is the PID controller. Note the PID 
controller is computed by performing a parametric 
optimization (over the PID gains) to determine the solution 
of the minimization problem.  

The two options shown in Fig. 1 can be viewed as 
suboptimal solutions of this problem. If the plant is reduced 
to 2nd order, the approximate loop gain is defined as 

2
ˆˆ

PIDL G C=  where 2Ĝ  is the 2nd order approximation of the 
G  and PIDC  is the optimal PID controller designed using 
the method in Section II. If a full order controller C  is 

designed and reduced to a PID structure ˆ
PIDC , the 

approximate loop gain is defined as ˆˆ
PIDL GC= .  

The proposed optimal PID controller design method has 
two advantages over the methods in [6] and [10]. The design 
method is uses standard optimization methods and is more 
likely to be accepted by practicing engineers. In addition, 
this method avoids parametric optimization and, therefore, 
the optimal PID controller is relatively simple to compute.  

 

4734



  

IV. EXPERIMENTAL VERIFICATION OF OPTIMAL PID 
CONTROLLER 

A. Experimental apparatus and procedure 
The optimal PID controller design method in Sections II 

and III is verified using a ball and beam apparatus from 
Quanser, Inc. shown in Fig. 2. The objective of the 
experiment is to verify that the optimal PID controller 
design maintains the properties of the optimal design 
method. In this case, LQR methods are used and it is 
verified that the optimal PID controller produces a lower 
combined sum square error and sum square voltage (input). 

 The ball and beam system is an excellent platform for 
testing the proposed design method because its dynamics are 
4th order but can be approximated by a 2nd order system. The 
block diagram of the closed-loop system is shown in Fig. 3. 
The dominant dynamics are two integrators due to the nearly 
frictionless rolling that occurs when the beam moves off the 
horizontal. The servo motor loop used to actuate the beam 
adds two additional states to the system dynamics. 
Typically, the servo loop is designed so that these dynamics 
are much faster than the desired closed-loop dynamics.  In 
this work, a PI controller, ( )( ) 5.36 32.6C s s s= + , is used 
to achieve a gain-crossover frequency of 6 rad/sec and a 
phase margin of 50°. The resulting servo (inner loop) 
response has a settling time of about 1.1 sec and the 2nd 
modeling assumption is valid because the ball position 
(outer loop) response has a settling time of over 6 sec. In 
this case, the model reduction from the 4th order system to 
the 2nd order system is performed by inspection and more 
sophisticated techniques are not required. 

 
Fig. 2. Ball and Ball Apparatus from Quanser, Inc. 
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Fig. 3. Closed-loop Ball and Ball System 

 
The performance of the optimal PID controller is 

compared with a PID controller design using classical 
design methods and with a PID design using standard tuning 
methods [14]. In the classical design methods, the desired 
time response characteristics are used to define the desired 
dominant closed-loop poles and the PID controller is 
designed to place the dominant closed-loop at the desired 
locations. In the tuning methods, the PID gains are 
computed from measured time response parameters. 

B. Experimental results 
1) Tuning 

 The standard tuning method is the Ziegler-Nichols' 
tuning method (see [14, pp. 134-151]).  The first step in this 
method is to find the open loop step response, and compute 
a linear approximation of it as the system approaches a 
constant velocity (see Fig. 3).  
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Fig. 3. Open-loop ball and beam response 

 
 The ball and beam system has a constant acceleration in 

open loop that makes the linear fit difficult. However, since 
the beam length limits the ball’s motion, the ball does 
approach a constant velocity as it nears the end of the beam.  
This maximum velocity is best fit by the linear 
approximation 8.2 27x t= −  as shown in Fig. 3. 

Since the movement starts at 1.25sect = , the 
measurement of a  and L  reference to that time (see [14, 
p.135]). The line crosses 4.8cmx = −  at 2.71sect =  and it 
follows that 2.71 1.25 1.46L = − = .  The line crosses time 

1.25sect =  at 16.78cmx = −  and it follows that 
( )4.79 16.78 12a = − − − = . According to Ziegler-Nichols 

method, the PID gains are  
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The Chen, Hrones, and Reswick setpoint method [14] 

improves upon the Ziegler-Nichols method using the time 
constant, T , of the open-loop system. For a double 
integrator system, however, the time constant is infinite and, 
as a result, the integral gain is zero (i.e., a PD controller is 
obtained) since the integral gain is inversely proportional to 
T . To obtain a PID controller,  the Chen, Hrones, and 
Reswick method is applied for increasing values for 

1,3,10,30secT = .  
In Table I, the Ziegler-Nichols method is the first iteration 

and the four cases for T  are iterations 2-5. The sum squared 
error (∑e2) is a measure of tracking performance and sum 
squared voltage (∑v2) is a measure of control input energy 
consumed. The experimental responses for these iterations 
(except iteration 2) are shown in Fig. 4. Note that as the time 
constant T  in iterations 2-5, the steady-state error (SSE) 
increases as the integral gain is reduced.  
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Fig. 4. Closed-loop ball and beam responses using PID tuning methods 

 

2) Classical and optimal designs 
For both the classical and optimal design methods,  a 

model of the ball and beam system is required. The model 
has the form of (2) where  

 

 
0 1 0 0
0 0 0 , 2.37
1 0 0 0

A B
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (8) 

 
The performance goal is to minimize the percent overshoot 
while keeping the settling time (as defined in the sequel) 
under 7 seconds.  

For classical control, the position is measured (i.e., 

[ ]1 0 0C = ) and the transfer function is 2

2.37( )bbG s
s

= .   

The dominant desired poles are specified as  
 

( )21d n ns jζω ω ζ= − ± −  from the desired natural 

frequency, nω , and damping coefficient, ζ . The third pole 
is placed at ns ω= −  in an adhoc attempt to limit control 
input usage. Finally, the PID gains are computed using 
Ackermann's formula. Table II lists the results for the 
classical design method.   

Fig. 5 depicts the progression of classical designs outputs.  
The tabulated values are the average value from three tests 
of each iteration.  Due to the static friciton in the system, the 
2% settling times are exaggerated and, as a result, an 
alternative settling time is defined as the elapsed time until 
the response is within 10% of the full (initial) displacement 
(or 0.48cm± ). Using this definition, this settling time is 
independent of the value of the system at the end of the 
experiment (i.e., 20sect = ) because the integral term will 
eventually force the ball to 0cmx = .  The 7th classical 
design yields the best performance. 

 

TABLE I  
TUNING ITERATIONS 

Run ∑e2 ∑v2 PO ts SSE 

1  37.0 3.6 33.33 8.39 0.30 
2 207. 6.0 96.19 >>20 N/A 
3 44.3 3.1 24.6 8.87 0.08 
4 41 3.1 0.30 14.88 0.40 
5  125.3 2.4 0.00 3.77 1.13 

TABLE II 
CLASSICAL ITERATIONS 

Run ωn ζ ∑e2 ∑v2 PO ts 

1 1 .707 24.0 340 36.2 5.57 
2 .5 .707 30.0 60.0 9.6 3.53 
3 1 .850 24.0 360 35.2 5.5 
4 .75 .950 24.5 325 23.7 7.0 
5 .6 .950 26.0 260 15.1 9.2 
6 .25 .707 100. 22.0 0 >20 
7 .35 .707 45.6 32.6 0.9 6.25 
8 .32 .707 56.0 25.0 0 10.3 
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Fig. 5. Closed-loop ball and beam responses using classical PID design 

methods 

 
For the optimal PID design, LQR methods [2] are used 

with the procedure discussed in Secitons II and III.  The 
design inputs are the unit cost, r , and a velocity weight, v . 
The unit cost governs the use of control energy and alows 
the engineer to compromise between performance and 
energy conservation.  A large cost implies the control input 
is expensive and limits its use. A small cost admits a faster 
response through the use of larger inputs. All three PID 
gains tend to decrease as the unit cost, r , increases. The 
velocity weight provides a means to adjust the damping the 
response. For the plant in (8), the output matrix is 

[ ]0 1C v=  so that the velocity is weighted to control 
damping and overshoot and the integral of the position (or 
regulation error) is weighted to control steady-state error. 
Note that the integral weight is independent of v  and the 
proportional and derivative gains tend to increases as v  
increases. Table III lists the results for the optimal design 
iterations. The optimal design is iterated to yield comparible 
performance with the classical design in terms of sum 
squred error and settling time. 
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Fig. 6. Closed-loop ball and beam responses using optimal PID design 

methods 

 
As expected, a comparison of Tables I, II, and III shows 

that the optimal PID controller produces a lower combined 
∑e2 and ∑v2. The best results of each of the three methods 
(tuning, classical and optimal) are shown in Table IV.  
While the tuning methods provide a stable closed-loop 
response, the classical and optimal methods provide give the 
engineer much more control over the closed loop 
performance assuming a model of the system is available.  

V. CONCLUSION 
This paper presented the formulation and experimental 

verification of a novel and relatively simple approach to 
optimal PID controller design that does not require advanced 
optimization techniques.  For a 2nd order system, a state 
feedback regulator (with an integrator augmented to the 
original dynamics) yields a PID controller structure. 
Therefore, any optimal control method can be applied to 
obtain an optimal PID controller. For higher order systems, 
model reduction techniques can be used either to reduce the 
plant to a 2nd order system or to reduce the higher-order 
optimal controller to a PID structure. The proposed optimal 
design method was verified using an experimental ball and 
beam apparatus and compared with PID controllers designed 
using classical and standard tuning methods. 

In future work, the authors intend to explore the 
generalization of this design method to higher order systems. 
Specifically, the both plant and controller reductions 
methods will be explore to determine their impact on 
performance and robustness of the resulting PID controller.  

TABLE III 
OPTIMAL ITERATIONS 

Run r v ∑e2 ∑v2 PO ts 

1 1 0 35 390 74.6 3.97 
2 3 0.5 33 355 63.1 6.68 
3 20 1 30 250 37.5 5.6 
4 20 0 26 175 35.2 6.26 
5 100 0 27 105 18.3 9.04 
6 20 -1 24 200 22.5 7.47 
7 100 -1 25 90 17.0 8.81 
8 1000 -1 34 30 3.4 4.72 
9 1000 -2 35 34 3.3 4.64 
10 1000 -10 33.6 66 4.75 4.76 
11 5000 -2 42.3 14.5 0.00 6.11 

TABLE IV 
TYPE COMPARISON 

Type Total 
runs ∑e2 ∑v2 Best 

PO ts 

Tuning 5 125.3 2.4 0.00 3.77 
Classical 8 45.6 32.6 0.9 6.25 
Optimal 11 42.3 14.5 0.00 6.11 
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