
Decentralized Estimation and Control of Graph Connectivity in Mobile
Sensor Networks

Peng Yang Randy A. Freeman Geoffrey J. Gordon Kevin M. Lynch Siddhartha S. Srinivasa

Rahul Sukthankar

Abstract— The ability of a robot team to reconfigure itself is
useful in many applications: for metamorphic robots to change
shape, for swarm motion towards a goal, for biological systems
to avoid predators, or for mobile buoys to clean up oil spills.
In many situations, auxiliary constraints, such as connectivity
between team members and limits on the maximum hop-count,
must be satisfied during reconfiguration. In this paper, we show
that both the estimation and control of the graph connectivity
can be accomplished in a decentralized manner. We describe
a decentralized estimation procedure that allows each agent to
track the algebraic connectivity of a time-varying graph. Based
on this estimator, we further propose a decentralized gradient
controller for each agent to maintain global connectivity during
motion.

I. INTRODUCTION

In this paper we consider the problem of maintaining

connectivity in mobile sensor networks. Here, each sensor

plans its own motion and communicates with other sensors

within a limited range.

Recent advances in wireless communications and elec-

tronics have enabled the development of low-cost sensor

networks [1]. In mobile sensor network systems, current

research areas include target tracking [14], [22], [11], for-

mation and coverage control [2]–[4], [6], environmental

monitoring [10], [16], [18], and several others. To accomplish

these tasks, it is often desirable to maintain a connected infor-

mation flow during agent motions. So far this connectivity

maintenance problem in mobile sensor networks has been

addressed using two different approaches, based on local and

global connectivity.

The first approach focuses on devising decentralized con-

trollers for each agent to maintain local connectivity. For

discrete-time second-order agents, a feasible control space

is computed in [13] for each agent to maintain all existing

pairwise connections. In comparison, in [17] each agent tries

to maintain its two-hop communication neighbors. The use of

local connectivity measures allows each agent to compute a

feasible motion controller with only local information, yet

This work was supported in part by NSF grants ECS-0601661 and IIS-
0308224.

Peng Yang and Kevin Lynch are with the Department of Mechanical
Engineering, Northwestern University, Evanston, IL 60208-3111, USA
p-yang@northwestern.edu, kmlynch@northwestern.edu.

Randy Freeman is with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60208-3118,
USA freeman@ece.northwestern.edu.

Geoffrey Gordon is with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213, USA ggordon@cs.cmu.edu.

Siddhartha Srinivasa and Rahul Sukthankar are with Intel Research, Pitts-
burgh, PA 15213, USA siddh@cs.cmu.edu, rahuls@cs.cmu.edu.

the resulting controls may be too restrictive to allow the

agents to accomplish any other task.

The second approach in [20], [21] uses global connectivity

measures such as algebraic connectivity [5]. Given a graph,

k-connectivity matrix1 is computed in [20]. To maintain

graph connectivity, gradient controllers are designed such

that each off-diagonal entry of the n-connectivity matrix

remains positive over time (where n is the total number

of agents). In comparison, the gradient controller designed

in [21] uses the fact that a graph being connected is equiva-

lent to the determinant of the deflated Laplacian matrix being

positive. However, computing the k-connectivity matrix and

the determinant of a deflated Laplacian matrix are both

centralized procedures.

In this paper we approach the problem in a different way.

The key component in our solution is a decentralized power
iteration algorithm that estimates the eigenvector correspond-

ing to the second smallest eigenvalue of a weighted Laplacian

matrix. This eigenvector estimation procedure is then used

to estimate the algebraic connectivity of a graph. We use

this estimate in a decentralized controller that maintains the

global connectivity of the graph over time.

The rest of the paper is organized as follows. We sum-

marize the necessary graph theoretical background in the

Preliminaries. In Section III, we first review the centralized

discrete-time power iteration algorithm and then describe

two continuous versions. In Section IV, we describe a

decentralized continuous-time power iteration procedure and

use it to estimate the connectivity of a graph. A controller

to maintain connectivity is proposed in Section V. Finally in

the Appendix we analyze the convergence of the centralized

power iteration algorithm.

II. PRELIMINARIES

Given n mobile agents, their communication graph G and

edge set E, the adjacency matrix A ∈ R
n×n is defined as

Aij =
{

Aji = f(pi, pj), i and j are connected

0, otherwise.
(1)

where pi, pj ∈ R
m are the positions of node i and j and we

restrict f(pi, pj) > 0 to be a positive weighting function

symmetric in its arguments. The degree of each node is

di =
∑n

j=1 Aij or d = A1 where 1 is a column vector

of all ones. The degree matrix is defined as D = diag(d),
and the weighted Laplacian matrix of the graph is defined

1Given a graph’s adjacency matrix A, its k-connectivity matrix is defined
as I + A + · · · + Ak for k ∈ {1, · · · , n}.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB07.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2678

as L = D − A. The unweighted Laplacian matrix L can

be treated as a special case here where f(pi, pj) = 1. The

spectral properties of L have been shown to be critical in

many multiagent applications, such as formation control [4],

[6], consensus seeking [15] and direction alignment [8].

For the weighted Laplacian L, we make the common

assumption that the weights Aij are positive [12], in which

case the spectral properties of L are similar to those of L.

Specifically, we know

1) L1 = 0.

2) The spectrum of L satisfies 0 = λ1 ≥ λ2 ≥ · · · ≥
λn, and λ2 > 0 iff the graph is connected. (Here

the definition of connectedness is the same as the

unweighted case.) As in the unweighted case, we call

λ2 the algebraic connectivity of the graph.

III. CENTRALIZED POWER ITERATION

We want to build an algorithm to estimate the graph

connectivity measure λ2. To do this, we first estimate the

corresponding eigenvector v2 (Lv2 = λ2v2), which is then

used to determine λ2.

Throughout the rest of the paper, we use superscripts to

index the agents and components of a vector, and subscripts

to index eigenvalues, eigenvectors, and their estimates. For

example, a Laplacian L has n eigenvalues λ1, . . . , λn and n
eigenvectors v1, . . . , vn. The components of an eigenvector

are vi = (v1
i , . . . , vn

i)T . In addition, if x ∈ R
n is the

network’s estimate of the eigenvector v2, then xi ∈ R is

the ith component of the estimate x, stored by agent i. We

also write λi
2 ∈ R for agent i’s estimate of λ2.

A. Discrete-time Power Iteration

Given a square matrix Q and its spectrum μ1 > μ2 · · · >
μn, power iteration is an established iterative method to

compute its leading eigenvalue μ1 and its associated eigen-

vector [19]. Now assume instead of μ1, we are interested in

its second largest eigenvalue μ2. If we already know μ1 and

its associated eigenvector v1, we can estimate μ2 by running

the power iteration on the deflated matrix

Q̃ = Q− v1v
T

1 . (2)

Specifically this iterative power iteration procedure is

carried out in three steps. For a random initial vector w,

1) Deflate Q to get Q̃, as in (2).

2) Power Iteration: x← Q̃w.

3) Renormalization: w ← x
‖x‖ . Then go to step 3.

This power iteration method converges linearly in the ratio

μ2/μ3. Once it converges, w is the eigenvector corresponding

to the second largest eigenvalue μ2 of Q. In the case of

repeated eigenvalues where μ2 = . . . = μk−1 > μk, the

iteration converges in the ratio of μ2/μk. If μ2 = . . . = μn,

then any unit vector w is a solution.

B. Continuous-time Power Iteration

To get the second smallest eigenvalue λ2, the basic idea

here is to run the power iteration on a deflated matrix of

−L where −λ2 becomes the leading eigenvalue. However,

because |λ2| ≤ |λn|, running the discrete-time iteration will

cause the state w to converge to the eigenvector vn associated

with λn. Here we construct a continuous-time power iteration

to instead converge to v2. Let x = (x1 . . . xn)T ∈ R
n

be the estimate of the eigenvector v2. The continuous-time

algorithm has three parts:

1) Deflation: ẋ = −Ave({xi})1
2) Power Iteration: ẋ = −Lx
3) Renormalization: ẋ = −(Ave({(xi)2})− 1)x

where the function Ave({qi}) � (
∑

i qi)/n. (In the next

section, we will substitute each Ave(·) operation with a

decentralized consensus estimation process.) Step 1 drives

x to the null space of 1. The power iteration in step 2 drives

x toward the direction of v2. Step 3 drives x toward the unit

sphere.

Now we combine the three pieces in a linearly weighted

fashion:

ẋ = −k1Ave({xi})1− k2Lx− k3(Ave({(xi)2})− 1)x (3)

To investigate the gain conditions of k1, k2 and k3 that

guarantee correct convergence of system (3), first we look at

a simplified version of this system.

C. Modified Continuous-time Power Iteration

We begin by showing that S1 = {x |1T x = 0} is an

invariant manifold for system (3). For any initial estimate

x ∈ S1, system (3) in forward time satisfies

d

dt
(1T x) = −k21T Lx = 0. (4)

We can force the estimate x into the manifold S1 by

doing a reinitialization step. Starting with an arbitrary initial

condition x(0), the system does one discrete-time power

iteration step and resets its state to x(0+) = −Lx(0). It

is easy to verify that x(0+) ∈ S1. With this new initial

condition x(0+), system (3) evolves within S1 and its

dynamics simplifies to

ẋ = −k2Lx− k3(Ave({(xi)2})− 1)x. (5)

Based on the following theorem we know system (5) con-

verges to a desired eigenvector v2 (not necessarily normal-

ized) for proper choices of k2 and k3.

Theorem 1: When the gain condition

k3 > k2λn (6)

is satisfied, for almost all initial conditions system (5) con-

verges to an eigenvector ṽ2 corresponding to the eigenvalue

−λ2 of the weighted Laplacian matrix −L satisfying ‖ṽ2‖ =√
n(k3−k2λ2

k3
).

Proof: See the Appendix.

2679

Each agent can satisfy this condition without knowing the

graph topology. First we know∑
i

λi = trace(L) = 2
∑

(i,j)∈E

Aij < n(n− 1) max
(i,j)∈E

Aij .

Additionally, in our exponentially-decaying edge weighting

scheme introduced in Section V, we have Aij ≤ 1. There-

fore in this paper, each agent can satisfy (6) by choosing

k3 > n(n − 1)k2 (assuming n is known to every agent),

although the simulation in Example 2 shows this is a rather

conservative bound.

Based on Theorem 1, the heuristic gain conditions we use

for tuning system (3) are k1 � k3, k3I − k2L > 0. Under

this condition we know k1 � k3, k1 � k2. By perturbation

analysis [9], system (3) first converges close to S1, and then

the evolution of its dynamics is similar to the dynamics of

system (5).

Although both estimation procedures (3) and (5) apply to

time-varying graphs, in practice procedure (3) is numerically

superior. This is because (5) requires the system state to

iterate within a reduced-dimensional manifold, and in our

MATLAB implementation numerical error causes the state

to deviate from the manifold. Numerical error accumulates

and causes incorrect convergence.

Next we modify the continuous-time power iteration (3)

and (5) so that these algorithms can be decentralized over

the graph.

IV. DECENTRALIZED POWER ITERATION AND

CONNECTIVITY ESTIMATION

Both (3) and (5) are centralized processes only because

of the averaging operation Ave(·) in each algorithm. (Imple-

mentation of ẋ = −Lx requires only local communication.)

We can use the PI average consensus estimator [7] to

decentralize this averaging operation. We need two consensus

estimators to decentralize the dynamics (3), and only one

for the dynamics (5). Consensus estimators allow n agents,

each of which measures some time-varying scalar αi(t), to

compute an approximation of α(t) = 1
n

∑
i αi(t) using only

local communication. The PI estimator has the form (see [7]

for details):

ẏi =γ(αi − yi)−KP

∑
j∈N i

[
yi − yj

]
+ KI

∑
j∈N i

[
wi − wj

] (7)

ẇi =−KI

∑
j∈N i

[
yi − yj

]
. (8)

Here yi is the average estimate, γ > 0 is the rate new

information replaces old information, N i contains all one-

hop neighbors of agent i in the communication network, and

KP , KI are estimator gains. When the network is connected,

the estimator error ei(t) = yi(t) − 1
n

∑n
i=1 αi(t) for each

agent i approaches to an arbitrarily small ball around zero

for slowly time-varying inputs αi(t) [7].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−150

−100

−50

0

50

100
Eigenvalue Estimation −− Method 1

5 10 15 20
0

0.5

1

1.5

2

Node 1

Node 2

Node 3

Node 4

Node 5

Actual

(a) (b)

Fig. 1. (a) A five-node network with all weights equal to 1. (b) Eigenvalue
estimation with the second method (equation (10)).

In the decentralized implementation of (3), agent i main-

tains a scalar xi (which converges to the i-th compo-

nent of the eigenvector ṽ2) and four consensus estima-

tor states {yi,1, wi,1, yi,2, wi,2} (yi,1 and yi,2 are agent

i’s estimates for Ave({xi}) and Ave({(xi)2}) respec-

tively) and receives from communication its neighbors’

{xj , yj,1, wj,1, yj,2, wj,2} for all j ∈ N i. Noticing −Lv2 =
λ2v2, agent i can estimate λ2 through

λi
2 = −

∑
j∈N i Lijx

j

xi
(9)

when xi
� 0.

There is a second way to estimate λ2. From Theorem 1

we know yi,2 → k3−k2λ2
k3

. Therefore agent i can compute its

estimate as

λi
2 =

k3

k2
(1− yi,2). (10)

Note that no single agent maintains an estimate of the

entire eigenvector v2; instead, agent i maintains the single

component xi of the network’s estimate x of v2. This is

sufficient to maintain an estimate λi
2 of λ2.

Example 1: We simulate these two eigenvalue estimation

algorithms over the 5-node constant graph (Fig. 1), where the

weights are set as f(pi, pj) = 1. The eigenvalue spectrum

of its Laplacian matrix is {0, 0.83, 2, 69, 4.00, 4.48}.
The gains for the two PI average consensus estimators are

γ = 25, KP = 50, KI = 10 and the gains for the eigenvector

estimator are k1 = 6, k2 = 1, k3 = 20. Fig. 1 and Fig. 2 show

the estimated λi
2 for each node i. With both methods each

node’s estimate converges to the correct eigenvalue λ2 =
0.83. However, in the first method the trajectory of some

node i will be nonsmooth when ṽi
2 is close to zero. Therefore,

method 2 is preferred in practice.

V. CONTROL TO MAINTAIN CONNECTIVITY

We start by showing one additional property of λ2.

Lemma 2: Given any positively weighted graph G, λ2 is

a nondecreasing function of each weight Aij .

Remark 1: This lemma is easily demonstrated from the

following alternative definition of λ2:

λ2 = min
x⊥1,x �=0

xT Lx

xT x
= min

x⊥1,x �=0

∑
(i,j)∈E Aij(xi − xj)2

xT x
.

(11)

2680

0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

4
Eigenvalue Estimation −− Method 2

Node 1

Node 2

Node 3

Node 4

Node 5

Actual

Fig. 2. Eigenvalue estimation with the first method (equation (9)).

Nonsmooth behavior arises when individual ṽj
2 is close to 0.

Based on this property, we can design a position-dependent

weight function that is monotonically decreasing with respect

to the inter-agent distance. Then we can design connectivity-

maintaining motion controllers by bringing agents closer to

each other.

If the maximal inter-agent communication distance is r,

one simple weighting choice is

Aij =
{

e−‖xi−xj‖2
2/2σ2

, ‖xi − xj‖2 ≤ r
0, otherwise.

The weight decreases as the inter-agent distance gets larger.

We choose the parameter σ to satisfy a threshold condition

e−r2/2σ2
= ε, with ε being a small predefined threshold.

We know λ2 > 0 for connected graphs, and based on

Lemma 2, λ2 increases as the graph adds more links or

as individual link weights increase as two agents come

closer. We can design a gradient controller where each node

moves to maximize λ2, and this will in effect maintain

the connectivity of a graph. The gradient controller in [21]

was designed based on a similar idea. In that paper, each

node moves to maximize the determinant of the deflated

Laplacian matrix of a graph, in effect guaranteeing the

algebraic connectivity μ2 is bounded away from 0.

Next we derive the analytical form of the gradient con-

troller for fully-actuated first-order agents. Given a normal-

ized eigenvector v̂2 (‖v̂2‖ = 1) of λ2, the differential of λ2

is

dλ2 = d(v̂T

2 Lv̂2)
= dv̂T

2 Lv2 + v̂T

2 dLv̂2 + v̂T

2 Ldv̂2. (12)

Because LT = L, we know that

v̂T

2 Ldv̂2 = dv̂T

2 Lv2 = λ2dv̂T

2 v̂2 =
1
2
d(v̂T

2 v̂2) = 0. (13)

Based on (12) and (13), the gradient controller for agent k
is

uk = ṗk =
∂λ2

∂pk
= v̂T

2

∂L

∂pk
v̂2. (14)

Next we replace the v̂2 in (14) with the ṽ2 in Theorem 1,

which scales the control effort but not its direction:

uk = ṽT

2

∂L

∂pk
ṽ2 =

∑
(i,j)∈E

∂Aij

∂pk
(ṽi

2 − ṽj
2)

2. (15)

Since we have defined Aij = e−‖pi−pj‖2
2/2σ2

, we can

compute

∂Aij

∂pi
= −Aij(pi − pj)/σ2 i 	= j (16)

∂Aij

∂pj
= Aij(pi − pj)/σ2 i 	= j (17)

∂Aii

∂pi
= 0 (18)

∂Aij

∂pk
= 0 k 	= i, j. (19)

Plugging (16)-(19) into (15), we get

uk =
∑

j such that (k,j)∈E

∂Akj

∂pk
(ṽk

2 − ṽj
2)

2

=
∑

j such that (k,j)∈E

−Akj(ṽk
2 − ṽj

2)
2 pk − pj

σ2
. (20)

Compared to the eigenvector estimators (9) and (10),

the implementation of (20) requires agent k to additionally

obtain its neighbors’ positions {pj , j ∈ N i} through com-

munication. Then agent k can approximate the desired ṽk
2 , ṽj

2

with the estimates xk, xj :

uk =
∑

j such that (k,j)∈E

−Akj(xk − xj)2
pk − pj

σ2
. (21)

Example 2: We simulate the connectivity-maintaining al-

gorithm over a randomly-generated 6-node network. The

communication radius is r = 20 and we set the threshold

ε = 0.01. In this network, the 3 big nodes are leaders. They

all follow the same sinusoidal motion model ṗi
x(t) = −0.2,

ṗi
y(t) = 0.5 cos(pi

x) with different initial configurations. The

three small nodes run (21) to move along with the leaders

and maintain graph connectivity.

The gains for the two average consensus estimators

are γ = 100, KP = 50, KI = 200 and the gains for

the eigenvector estimator are k1 = 18, k2 = 3, k3 = 60.

We choose the consensus and eigenvector estimator gains

to approximately achieve a time-scale separation: The

time constant of consensus estimation is significantly less

than the time constant of eigenvector estimation, which

is significantly less than the time constant of the motion

controller. Fig. 3 shows four snapshots of these nodes during

the motion and Fig. 4 shows the estimated λi
2 of each node

i during the motion. A complete video of the simulation

is available at http://lims.mech.northwestern.
edu/projects/swarm/ConnectivityMain/
Connectivity_Sin_Bigmag.wmv.

2681

−25 −20 −15 −10 −5 0 5 10 15
−10

−5

0

5

 (a)

−25 −20 −15 −10 −5 0 5 10 15
−10

−5

0

5

(b)

−25 −20 −15 −10 −5 0 5 10 15
−10

−5

0

5

(c)

−25 −20 −15 −10 −5 0 5 10 15
−10

−5

0

5

(d)

Fig. 3. Snapshots of the agents during motion: (a) t = 0; (b) t = 14;
(c) t = 27; (d) t = 47.

0 5 10 15 20 25 30 35 40 45 50
−5

−4

−3

−2

−1

0

1

2

3
Decentralized Estimation of the Network Connectivity

node 1

node 2

node 3

node 4

node 5

node 6

Actual

Fig. 4. Each agent’s estimate of the the graph connectivity λ2 over
time (Method 2). All agents’s estimates converge to the true algebraic
connectivity of the graph within a few seconds.

VI. FUTURE WORK

We are interested in extending algorithm (3) in two

possible ways. First, we would like to use certain local

renormalization schemes other than the consensus scheme

Ave({(xi)2}) that can lessen the communication requirement

and still guarantee correct convergence. Second, we would

like to incorporate the information of the change of agent

positions into either the eigenvector estimator or the con-

sensus estimator, so that a rigorous small-gain type stability

condition can be derived.

APPENDIX

We first show several stability properties of system (5)

through three propositions, and at the end use these stability

properties to prove Theorem 1.

Proposition 3: System (5) has an equilibrium point x = 0,

and it is unstable when −k2L + k3I > 0.

Proof: It is easy to verify that x = 0 is an equilibrium

state of system (5). Linearizing the system around the point

x = x̃ we get

ẋ = [−k2L− k3(
x̃T x̃

n
− 1 + 2

x̃x̃T

n
)I]x (22)

For the point x = 0, we can choose the gain condition

− k2L + k3I > 0 (23)

to make it an unstable equilibrium point.

Now we proceed to investigate the other equilibrium points

of system (5).

The weighted Laplacian matrix L is real symmetric, so it

has an eigenvalue decomposition L = T T L∗T with L∗ =

diag(0, λ2, · · · , λn). We denote y = Tx and change the

variable of system (5) to y = (y1 · · · yn)T ∈ R
n:

ẏ = −k2L
∗y − k3(Ave({(yi)2})− 1)y. (24)

Taking out the first row of equation (24), which is ẏ1 = 0
(because x ∈ null{1}), we get a reduced (n−1)-dimensional

system⎛⎜⎝ ẏ2

...

ẏn

⎞⎟⎠ = −k2L̃
∗

⎛⎜⎝ y2

...

yn

⎞⎟⎠−k3(
yT y

n
−1)

⎛⎜⎝ y2

...

yn

⎞⎟⎠ (25)

with L̃∗ = diag{λ2, · · · , λn}.
To simplify the analysis, in the following two propositions

we only deal with the case when the eigenvalue spectrum of

L has no repeated eigenvalues. The repeated eigenvalue case

is discussed in the remark after Theorem 1.

Proposition 4: System (25) has n−1 distinct equilibrium

points {yi | 2 ≤ i ≤ n} where yi is

yj
i =

{
0, 2 ≤ j ≤ n, j 	= i

±
√

n(k3−k2λi

k3
), j = i

(26)

Of all the n−1 equilibriums, only y2 is stable when the gain

condition (23) is satisfied.

Proof: For any nonzero equilibrium point of sys-

tem (25), it has to be that (y2 · · · yn)T is an eigenvector

of the matrix L̃∗ with an associated eigenvalue k3
k2

(yT y
n −1).

There are n− 1 distinct equilibrium points {yi | 2 ≤ i ≤ n}
and for each equilibrium yi

yj
i =

{
0, 2 ≤ j ≤ n, j 	= i

±
√

n(k3−k2λi

k3
) j = i.

(27)

The linearized model of system (25) is

ẏ = [−k2L̃
∗ − k3(

yT
0 y0

n
− 1 + 2

y0y
T
0

n
)I]y. (28)

Then for the equilibrium point yi, its eigenvalue spectrum

{μj
i | j = 2, · · · , n} is{

μj
i = k2(λi − λj), j = 2, · · · , n, j 	= i

μi
i = −2(−k2λi + k3).

(29)

Because 0 < λ2 ≤ · · · ≤ λn, yi is unstable for any i > 2
(at least in some directions), and y2 is stable when (23) is

satisfied.

Next we show system (5) will not converge to any limit

cycle. We denote ‖x‖ =
√

xT x as the Euclidean norm of

the estimate.

Proposition 5: Given system (5) and the gain condi-

tion (6), for almost all initial conditions y ∈ S1/{0}, y
converges to one of the two equilibria of y2.

Proof: Given V1 = xT x, we have

V̇1 = 2xT ẋ

= 2xT [−k2L− k3(
xT x

n
− 1)I]x

= 2xT T T [−k2L
∗ − k3(

xT x

n
− 1)I]Tx. (30)

2682

The first entry of Tx is 0 because x ∈ S1. Now given 0 <
λ2 ≤ · · · ≤ λn, we know V̇1 < 0 if

− k2λ2 − k3(
xT x

n
− 1) < 0 (31)

and similarly V̇1 > 0 if

− k2λn − k3(
xT x

n
− 1) > 0. (32)

From (31) and (32) we conclude ‖x‖ must converge into

the bounded region
[√

n(k3−k2λn

k3
),

√
n(k3−k2λ2

k3
)
]
. Now

assume there exists a limit cycle on which ‖x‖ is bounded

away from the upper bound
√

n(k3−k2λ2
k3

) by ε > 0. Then

the first line in equation (25) gives

ẏ2 = (−k2λ2 − k3(
yT y

n
− 1))y2 > εy2. (33)

Therefore

‖x‖ = ‖y‖ ≥ ‖y2‖ → ∞ (34)

as long as system (25) doesn’t start from the measure zero

manifold y2 = 0 (all the n−2 unstable equilibrium points in

Theorem 4 are on this plane). This contradicts the finite upper

bound of ‖x‖ and therefore each trajectory must converge to

the sphere

{
y| ‖y‖ =

√
n(

k3 − k2λ2

k3
)

}
(35)

On this sphere, the other y-coordinates have dynamics

ẏi = k2(λ2 − λi)yi (36)

for i > 2. In the case of distinct eigenvalues yi → 0,

system (25) eventually converges to the stable equilibrium

y2.

Based on previous discussions, now we can prove Theo-

rem 1.

Proof: When the spectrum of L has no repeated eigenvalues,

the result follows from Proposition 3, 4 and 5.

Remark 2: In case of repeated eigenvalues λ2 = · · · =
λk < λk+1, Theorem 1 still holds. In this case almost all

trajectories still converge to the sphere in equation (35).

Furthermore, yi → 0 for i > k and system (25) converges to

the k-dimensional manifold {y| ‖y‖ =
√

n(k3−k2λ2
k3

) , yi =
0,∀i > k} and it can be verified every point on that

manifold is an equilibrium. The results are also verified

through simulations.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communication Magazine, 40(8):102–114,
2002.

[2] C. Belta and V. Kumar. Abstraction and control for groups of robots.
IEEE Transactions on Robotics, 20(5):865–875, Oct. 2004.

[3] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo. Coverage control
for mobile sensing networks. IEEE Transactions on Robotics and
Automation, 20(2):243–255, 2004.

[4] J. A. Fax and R. M. Murray. Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control,
49(9):1465–1476, Sep 2004.

[5] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23(98):298–305, 1973.

[6] R. A. Freeman, P. Yang, and K. M. Lynch. Distributed estimation
and control of swarm formation statistics. In American Control
Conference, 2006.

[7] R. A. Freeman, P. Yang, and K. M. Lynch. Stability and convergence
properties of dynamic consensus estimators. In IEEE International
Conference on Decision and Control, 2006.

[8] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, Jun 2003.

[9] H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River,
New Jersey, third edition, 2002.

[10] N. E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and
R. Davis. Collective motion, sensor networks, and ocean sampling. In
Proceedings of the IEEE Special Issue on Networked Control Systems,
volume 95, pages 48–74, Jan 2007.

[11] S. Martı́nez and F. Bullo. Optimal sensor placement and motion
coordination for target tracking. Automatica, 42:661–668, Apr 2006.

[12] B. Mohar. The Laplacian spectrum of graphs. Graph Theory,
Combinatorics, and Applications, 2:871–898, 1991.

[13] G. Notarstefano, K. Savla, F. Bullo, and A. Jadbabaie. Maintaining
limited-range connectivity among second-order agents. In American
Control Conference, pages 2124–2129, 2006.

[14] S. Oh and S. Sastry. Tracking on a graph. In Proc. of the
Fourth International Conference on Information Processing in Sensor
Networks (IPSN05), Los Angeles, CA, April 2005.

[15] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Trans. Automat.
Contr., 49(9):1520–1533, Sept. 2004.

[16] S. Simic and S. Sastry. Distributed environmental monitoring using
random sensor networks. In Proceedings of the 2nd International
Workshop on Information Processing in Sensor Networks, pages 582–
592, Palo Alto, California, 2003.

[17] D. P. Spanos and R. M. Murray. Controlling connectivity of dynamic
graphs. In IEEE International Conference on Decision and Control,
2005.

[18] S. Susca, S. Martı́nez, and F. Bullo. Monitoring environmental
boundaries with a robotic sensor network. In American Control
Conference, pages 2072–2077, 2006.

[19] L. Trefethen and D. Bau. Numerical Linear Algebra. SIAM,
Philadelphia, 1997.

[20] M. M. Zavlanos and G. J. Pappas. Controlling connectivity of dynamic
graphs. In IEEE Conference on Decision and Control, pages 6388–
6393, Dec 2005.

[21] M. M. Zavlanos and G. J. Pappas. Potential fields for maintaining
connectivity of mobile networks. IEEE Transactions on Robotics,
23(4):812–816, Aug 2007.

[22] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor
collaboration for tracking applications. IEEE Signal Processing
Magazine, 19(2):61–72, March 2002.

2683

