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Abstract— This paper addresses laser beam tracking control
problem for tracing dynamic trajectories subject to random
disturbances. A variable-order adaptive control scheme based
on a recursive least-squares lattice filter is applied for sup-
pressing random jitter. For tracking a reference trajectory
generated by a deterministic dynamic model, an internal model
principle based feedback loop is introduced as an outer loop
to the adaptive feedback loop to achieve asymptotic tracking
performance. Particularly a repetitive control is applied to
track periodic trajectories. A feature of the control system
proposed in this paper is that the design of the adaptive and
repetitive control are independent because each design is based
only on the plant model. Experiment conducted on a two-axis
fast steering mirror for tracking diamond-shaped beam path
demonstrates the ability of the integrated control to achieve
asymptotic tracking of periodic trajectories by the repetitive
control while optimally rejecting random disturbances by the
adaptive control.

I. INTRODUCTION

Precise laser beam tracking of dynamic trajectories with

high-bandwidth rejection of disturbances produced by plat-

form vibration and atmospheric turbulence are critical to

applications such as high-energy laser systems, laser based

medical operations, and laser cutting and welding. The laser

beam is required to generate deterministic trajectories, for

example, projectile motion, raster scan traces, or manu-

factured part contours subject to jitter sources composed

of random disturbances with multiple bandwidths coming

from platform vibration filtered by lightly damped structural

modes, atmospheric turbulence, and laser plumes in the beam

path. The actuator used to steer laser beams are typically

electromechanical, MEMS-based fast steering mirrors, or

more recent liquid crystal optical phased arrays.

Effective control systems for above mentioned applica-

tions should address the deterministic nature of the tracking

problem and the random and time varying characteristic

of the disturbance rejection problem, where the actuator

dynamics are usually time invariant and identified a’priori.

This motivates us to propose a control system, which applies

the internal model principle for asymptotic tracking and

adaptive control for rejection of time varying stochastic

disturbances.

Recent research on jitter control has produced adaptive

control methods that employ least-mean-square (LMS) [1]–

This work was supported by the U.S. Air Force Office of Scientific
Research under Grant F49620-02-01-0319 and the U.S Naval Office of
Research under Grant N00014-07-1-1063.

The authors are with the Mechanical and Aerospace Engineer-
ing Department, University of California, Los Angeles 90095-1597,
chiying@seas.ucla.edu, yencheng@ucla.edu, ttsao@seas.ucla.edu, gib-
son@ucla.edu.

[3] adaptive filtering and recursive least-squares (RLS) adap-

tive filtering [4]–[6]. The trade off is between a simpler

algorithm (hence computational economy) with LMS versus

faster convergence and exact minimum-variance steady-state

performance with RLS. The RLS based adaptive control

compensates for both random and deterministic disturbances

by minimizing the RMS value of the output with respect to

a fixed order FIR filter. Due to the averaging nature of the

RMS value, the adaptive control’s high frequency tracking

performance is sometimes less desirable as short duration

large error could still exist for minimized RMS value. In

many applications, the laser beam is required to generate

traces that in the time domain are represented by periodic

signals in each axis. This motivates the use of repetitive

control, which includes the periodic signal dynamics in

the feedback loop based on the internal model principle.

Repetitive controls by stable inversion approach [7], [8] or

by robust performance design [9] have been shown to be

effective for motion control applications. However, broad-

band frequency components are usually present in the laser

beam system.

Utilizing Youla-parametrization (internal model control)

control structure, the design and parametrization of these two

control actions can be made to be independent of each other

but dependent only on the a’priori identified plant dynamics.

The superior performance achieved by the synergy of the

adaptive and repetitive control schemes that is not achievable

by individual adaptive or repetitive control scheme will be

demonstrated by experimental results.

The experiment described in this paper is similar to that

used for [4]–[6], [10], but the fast steering mirror used as

the control actuator here has very different dynamics from

that of the MEMS mirror used for [5], [6], [10]. Because

of this difference and the complex jitter profile used for

the experiments reported here, the closed-loop performance

benefits from much higher adaptive-filter orders than those

used in [4]–[6], [10].

Section II describes the experimental system. Section III

describes the design of the control system, which consists of

linear time-invariant (LTI) feedback loops augmented by the

adaptive control and repetitive control loops. Experimental

results are presented in Section IV followed by concluding

remarks given in Section V.

II. DESCRIPTION OF THE EXPERIMENTAL

SYSTEM

The main components of the beam steering experiment,

shown in Fig. 1 and its representative block diagram depicted
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Fig. 1. UCLA laser beam steering experiment. Upper left: laser source.
Upper right: FSM 1, disturbance actuator. Lower right: FSM 2, control
actuator, mounted on shaker. Lower left: optical position sensor.

Fig. 2. Diagram of the experiment.

in Fig. 2, are a 635nm laser, two Fast Steering Mirrors (FSM

1 and FSM 2), and an On-Trak optical position sensor (OPS)

that tracks the position of the image that the laser beam forms

on the plane of the sensor. The two-dimensional vector y

denotes the measured position of the laser spot. The steering

mirror labeled FSM 2 is used as the control actuator and is

driven by a control sequence v, while the mirror labeled FSM

1 is used to add disturbance to the beam, and is driven with a

designed disturbance sequence dM . The beam path between

the control actuator FSM 2 and the optical position sensor

is 1 meter so 1 mm displacement on the OPS corresponds

to 1 milli-radians beam angle change when the beam emits

from a fixed point in FSM 2.

The control actuator FSM 2 is a Newport model FSM-200

mirror, which includes differential impedance transducers

and an internal analog feedback control loop for angular sta-

bilization of the mirror. This internal feedback loop remained

turned on for all experiments reported in this paper, so that

the digital adaptive and optimal control loops used here

augment the existing internal control loop. The disturbance

generator FSM 1 is a Newport model FSM-100 mirror.

The control, disturbance and measurement sequences are

processed in real-time using MATLAB’s xPC software with

a stand alone target machine operating at a sample-and-

hold rate of 2kHz. In order to inject a wider variety of

disturbances the control actuator was mounted on top of a
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Fig. 3. Block diagram of the plant model including the LTI integrator
feedback loop. dS = disturbance command to shaker; dM = disturbance
command to FSM 1; dB = building vibration; aS = acceleration produced
by shaker; ŵ = estimated combined disturbance.

shaker which was commanded with a desired disturbance

sequence dS to the amplifier and generated vibration in the

vertical direction. This vertical vibration excites motion in

both angular axes of the control mirror. As can be expected,

the effect is stronger on the optical position sensor Axis 2

than Axis 1. Furthermore, although unintentionally, the test

bench was exposed to a third disturbance source, the building

floor vibration.

III. CONTROL SYSTEM

A. LTI Feedback Loops

The Newport fast steering mirror denoted as FSM 2 is

the actuator for the beam control system. The mirror has an

analog control loop that feeds back internal measurements

of the position of the mirror relative to its case. This loop

effectively stabilizes the mirror’s torsional vibration mode

at approximately 10 Hz. The internal feedback controller

can be disengaged and replaced by a feedback loop of the

users’ choice. However, a goal of this paper is to demon-

strate that the adaptive controller can be used to augment

whatever stabilizing LTI feedback controller is already in

place. Hence, the internal controller was not replaced with

a high-performance robust feedback loop similar to any of

those used in [4], [6], [10]. Only an integral feedback of

the beam position error was added to the internal feedback

loop, as shown in Fig. 3. Hence, there are two LTI feedback

control loops: the internal controller and the integrator loop.

The integrator gain Ki was chosen to maximize the

error-rejection bandwidth without amplifying high-frequency

disturbance. The closed-loop transfer function, from u to y,

which includes the internal feedback loop and the integrator

loop will be referred to as G(z) in following sections.

B. Adaptive Control Loop

In typical beam-steering applications the dynamic models

of the fast steering mirrors either are known or can be

determined by a one-time identification. The disturbance
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Fig. 4. Block diagram of the control system with adaptive and repetitive
control.

characteristics, however, depend on the atmospheric condi-

tions in the optical paths and on the excited vibration modes

of the structures on which the optical systems are mounted,

so that the disturbance characteristics commonly vary during

operation of a beam steering system. Therefore, the adaptive

control algorithm presented in this paper assumes known LTI

plant dynamics but unknown disturbance dynamics.

To model the random disturbance inputs, the various

jitter sources are convolved with the transfer functions from

those sources to the output error, with the LTI feedback

loops closed, to produce the net jitter that the adaptive

loop controls. The jitter model is represented as an output

disturbance in an innovations state-space form:

zxW = AW xW + BW ε

w = CW xW + ε
(1)

where ε is a zero-mean, stationary, white-noise sequence,

and the matrix BW is a Kalman predictor gain. The jitter

model Ŵ (z) has both zeros and poles strictly inside the unit

circle.

It follows from well known results on linear optimal

control that, when (G = Ĝ) holds, the optimal controller

can be parameterized as in Fig. 4 where F is a stable LTI

filter. It follows that the steady-state variance of y is equal

to square of the performance index

J2 = ‖(I + GF )W‖
2
‖ε‖2 (2)

where || · ||2 is the H2 norm for stable LTI systems, and

‖ε‖2 is the standard deviation of ε (a constant independent

of the controller). The adaptive control implicitly identify

the disturbance dynamics and minimizes the variance of the

position error y in Fig. 4, wherein it is treated that Crep=0.

The minimization being over controllers having the structure

of the adaptive loop in Fig. 4 with an FIR filter F (z) of order

N .

The adaptive controller requires an estimate Ĝ(z) of

the closed-loop transfer function from the adaptive control

command to the measured beam position error y, without the

adaptive loop closed. The RLS lattice filter in the adaptive

control loop tracks the statistics of the disturbance and

identifies gains to minimize the RMS value of the possibly

noisy output error signal y.

The adaptive FIR lattice filter F (z) is the main component

of the adaptive controller. In this paper, the two-channel

reference signal, or input to F (z), is constructed from

the two-axis output error y, as indicated in Fig. 4. The

tuning signal for the adaptive filter also is y. Because of

the multichannel nature of the lattice filter, the adaptive

control algorithm can accommodate additional signals, such

as accelerometer measurements [11], [12]. For the results

presented in this paper, the two channels of the adaptive

controller were uncoupled, although the adaptive lattice filter

permits the use of multiple sensor channels for generating the

command for each control channel.

The details of the lattice-filter algorithms used here are

beyond the scope of this paper. These algorithms are repa-

rameterized versions of algorithms in Jiang and Gibson

[13]. The current parameterization of the lattice algorithms

is optimized for indefinite real-time operation. The current

lattice filter maintains two important characteristics of the

RLS lattice filter in Jiang and Gibson [13]: channel or-

thogonalization, which is essential to numerical stability in

multichannel applications, and the unwindowed property of

the lattice filter, which is essential to rapid convergence.

In addition to the disturbance rejection when reference

tracking is also considered for the adaptive control, the

reference signal r enters the adaptive control loop similar

to the disturbance w as suggested in Fig. 2. In this case the

reference signal, like the disturbance signal, is considered

as a stochastic process. Since in many applications, the

reference signals, such as harmonic and periodic signals,

can be generated by deterministic dynamics, it is possible to

achieve asymptotic tracking by applying the internal model

principle. Particularly it will be useful to integrate a repetitive

control loop for tracking periodic references with the above

formulated adaptive control.

C. Repetitive Control

The integrated adaptive and repetitive control is shown in

Fig. 4, where Crep is the repetitive controller. If (G = Ĝ), the

transfer function from the reference signal r and disturbance

w to the error signal e is

e =
1

1 + ĜCrep

r −
1 + ĜF

1 + ĜCrep

w (3)

This compares to the case that only the adaptive control

is applied, where the reference r is treated similar to the

disturbance w:

e = (1 + ĜF )w − (1 + ĜF )r (4)
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The repetitive controller Crep, can be considered as a plug-

in to the adaptive control and is designed based on the LTI

closed loop plant model Ĝ, disregarding the adaptive filter F .

When only repetitive control is realized, The adaptive filter

F (z) = 0. For the integrated adaptive and repetitive control,

both the adaptive filter F and the fixed repetitive controller

Crep are active.

The repetitive controller includes an internal model and is

in the following filter from [7], [8]:

Crep =
q(z, z−1)z−Np+l

1 − q(z, z−1)z−Np

Krep(z) (5)

Np stands for the period of the reference signal, l is the

sum of the plant delay and the controller delay which comes

from the inversion of the unstable zero part in the closed

loop plant Ĝ. q(z, z−1) is a zero phase low pass filter for

establishing robust stability in the following form:

q(z, z−1) = (az−1 + b + az)p (6)

where a & b satisfies a + 2b = 1 for unity d.c. gain and

p is a positive integer.

Krep(z) can be obtained by a zero phase error compen-

sation [7] as an approximate stable inversion of Ĝ, or from

robust control approaches by formulating and solving a µ-

synthesis problem [9]. Although q(z, z−1) is a non-causal

filter, the controller’s causality is still assured because of the

cascaded long delay terms z−Np and z−Np+l.

IV. EXPERIMENTAL RESULTS

In the experimental results presented below the laser beam

control is to track periodic reference trajectories of 0.05

second period interval for each of the two axes shown

in Fig. 5. These reference signals make a diamond-shaped

profile in the XY coordinate frame. The Fourier harmonics

of the periodic trajectories clearly stand out in the spectrum

plot in Fig. 5 at the frequencies (20 + 40k) Hz, k ∈ Z. The

spectral contents of the disturbances injected to the shaker

and the mirror FSM 1 as well as the low frequency building

vibration are shown in Fig. 6. These disturbance signals,

which correspond to w in Fig. 2, were acquired from the

experimental output responses with the LTI feedback loop

closed when the reference was set to zero. As can be seen the

disturbance spectra contain two broad bandwidth humps and

a number of narrow bandwidth signals at various frequencies

where some of them coincide with the integer multiples of

20 Hz.

Two groups of experiment, one without and one with the

random disturbance input injected, will be shown. All the

controllers are based on the plant model (Ĝ), which contains

the LTI integrator feedback loop. In each group, the results

of three control schemes, first with the adaptive control only,

second with the repetitive control only, and finally with both

the adaptive and repetitive control applied, are presented. The

adaptive lattice filter in the experiment was of 30th order.

The steady state tracking error of each of the six cases

are shown in Fig. 7. Without the random disturbance, the
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Fig. 5. 20 Hz triangular wave tracking profile. (blue: 1st axis; red: 2nd
axis). Upper: time domain; lower: frequency domain.
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Fig. 6. Disturbance Power Spectral Density. (blue: 1st axis; red: 2nd axis).
Upper: time domain; lower: frequency domain.

13 13.2 13.4 13.6 13.8 14

-0.1

-0.05

0

0.05

0.1

Adaptive Control Only

O
u

tp
u

t 
(m

m
)

13 13.2 13.4 13.6 13.8 14

-0.1

-0.05

0

0.05

0.1

Adaptive and Repetitive Control

Time (sec)

O
u

tp
u

t 
(m

m
)

13 13.2 13.4 13.6 13.8 14

-0.1

-0.05

0

0.05

0.1

Adaptive and Repetitive Control

Time (sec)

O
u

tp
u

t 
(m

m
)

6 6.2 6.4 6.6 6.8 7

-0.1

-0.05

0

0.05

0.1

Repetitive Control Only

O
u

tp
u

t 
(m

m
)

13 13.2 13.4 13.6 13.8 14

-0.1

-0.05

0

0.05

0.1

Adaptive Control Only

O
u

tp
u

t 
(m

m
)

6 6.2 6.4 6.6 6.8 7

-0.1

-0.05

0

0.05

0.1

Repetitive Control Only

O
u

tp
u

t 
(m

m
)

Fig. 7. Tracking error steady state performance for each axis (blue: 1st axis;
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Fig. 8. Power spectrum of the steady state tracking error (blue: 1st axis;
red: 2nd axis). Upper left: adaptive control without disturbance; upper right:
adaptive control with disturbance; middle left: repetitive control without
disturbance; middle right: repetitive control with disturbance; lower left:
adaptive + repetitive control without disturbance; lower right: adaptive +
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adaptive control performs reasonable well for tracking. The

repetitive control, however, shows even smaller error. When

the random disturbance is present, the adaptive control rejects

the disturbance by minimizing the output variance. As the

plot shows, the repetitive control is not capable of rejecting

the random disturbance, but the repetitive and adaptive

control together achieves superior performance. The power

spectra of the steady state error signals shown in Fig. 8

further elucidate the comparisons and synergy. Clearly the

adaptive control suppress the two broad bandwidth humps

but significant narrow band spikes remain. The repetitive

control suppresses the Fourier harmonic frequencies at in-

teger multiples of 20 Hz for up to about 400 Hz, beyond

which the repetitive control is inactive due to the bandwidth

of the filter Q. The adaptive and repetitive control together

push down the error spectra and make the shapes relatively

flat.

It is also interesting to observe the steady state profiles

traced by the laser beams for these various cases, which

are shown in Fig. 9 over 100 cycles. Here the contour

traced by the LTI (ie. the integrator loop) feedback is also

shown for comparison. Clearly adaptive or repetitive control

substantially increases the tracking bandwidth and traces the

diamond shape closely. The profiles generated by the adap-

tive control have significant overshoots near the vertex of the

diamond but they are not present in the repetitive control. On

the other hand, when the disturbance is present, the adaptive

control generates profiles with much less variations than

those of the repetitive control. The synergy of combining

both control schemes to generate the precise profile with

minimal variations is evident from the plot.

V. CONCLUSIONS

This paper has demonstrated control of a laser-beam

steering experiment for optimal random jitter rejection and

deterministic trajectory tracking. For random disturbance

rejection, the high order adaptive controller based on the

recursive-least-squares lattice filter achieves the experimen-

tal performance approximates the performance theoretically

achievable by an optimal H2 controller based on perfect

a priori knowledge of the plant and jitter statistics. The

adaptive controller requires an estimated model of the plant

but no a priori information about the jitter. For the periodic

reference trajectory tracking, the repetitive control based

on the internal model principle and robust control design

achieves the experimental performance close to asymptotic

perfect tracking. The repetitive controller requires an esti-

mated model of the plant and the knowledge of the reference

signal’s period but no a priori information about the trajec-

tory. The combined adaptive and repetitive control structure

has the feature that each controller is designed based on the

plant model and as such is independent of each other and

has the ability to reject the random disturbance and track

deterministic reference input.
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Fig. 9. Tracing a 20 Hz Diamond-shaped Contour. Steady state results for 100 cycles. The left column plots are without injected disturbances. The right
column plots are with injected disturbances. From top to bottom the four cases are LTI feedback control only, adaptive control + LTI, repetitive control +
LTI, adaptive control + repetitive control + LTI control
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