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Abstract— In this paper, a method of operator based robust
control for nonlinear systems with uncertain non-symmetric
backlash is proposed. In details, using robust right coprime fac-
torization condition, the operator based controller is designed
for stabilizing the nonlinear systems.

I. INTRODUCTION

In recent papers, a great deal of effort has been made

for analysis and design of nonlinear output feedback control

systems (for example, [1,-,5]). In particular, the problem of

designing the nonlinear control systems by using operator

based robust right coprime factorization approach is a prob-

lem of considerable practical importance [1,2].

The purpose of the paper is to discuss the design problem

of nonlinear control systems with uncertain non-symmetric

backlash by using operator based robust right coprime fac-

torization approach. That is, by proposing a new robust con-

dition such that the robust stability of the control system with

uncertain non-symmetric backlash can be guaranteed. So far,

operator based robust conditions have been established for

ensuring robust stability of nonlinear uncertain systems [1,2].

However, it is difficult to apply the above conditions to

plants with uncertain non-symmetric backlash. In this paper,

a robust condition for plants with uncertain non-symmetric

backlash is given. Under the existence of the uncertain non-

symmetric backlash, a robust nonlinear control system design

method based on the proposed condition is studied.

II. PROBLEM STATEMENT

Consider a nonlinear unstable system P : U → Y , where

U and Y are the input and output spaces respectively. It’s

described by the following right coprime factorization:

P = ND−1 (1)

where D : W → U and N : W → Y are stable operators

from the quasi-state space W to the input and output spaces.

A feedback control system is said to be well-posed if every

signal in the control system is uniquely determined for any

input signal in U . For the above nonlinear system (1), under

the condition of well-posedness, N and D are said to be

right coprime factorization if there exist two stable operators

A : Y → U and B : U → U satisfying the following Bezout

identity

AN + BD = M, for some M ∈ S(W,U) (2)
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where S(W,U) is the set of unimodular operator. Then

controller A and B could stabilize the unstable system (1).

Let the overall plant with perturbation ∆P be P̃ , shown

as: P̃ = P + ∆P , where P̃ and P are nonlinear and

unstable operators. As above mentioned, the right coprime

factorization of P̃ is P̃ = P + ∆P = N(D + ∆D)−1. We

assume that ∆D is unknown but the upper and lower bounds

of it are known. According to (2), we can obtain

AN + B(D + ∆D) = M, for some M ∈ S(W,U) (3)

However, in some case, (3) is not satisfied since ∆D is

unknown. The stability of the nonlinear feedback system with

perturbation is guaranteed by Theorem 1 of [2].

Our considering system is either nonlinear or preceded by

a non-symmetric backlash which is defined as follows [3,5].

u(t) = Ba(v(t)) (4)

=







mr(v(t) − h), if v̇(t) > 0 and u(t) = mr(v(t) − h)
ml(v(t) + h), if v̇(t) < 0 and u(t) = ml(v(t) + h)
u(t−), otherwise

where the parameters mr and ml stand for the right and left

slope of the backlash, h > 0 is the backlash distance.

Assumption 1: The coefficients mr, ml are strictly posi-

tive and unknown.

Assumption 2: The maximum and the minimum values of

the slopes of the backlash are known, max{ml,mr} = m,

min{ml, mr} = m.

III. PROPOSED DESIGN SCHEME

The original nonlinear system is preceded by the non-

symmetric backlash. Namely, the output of the backlash is

the input of the original nonlinear system. Based on (3),

the original nonlinear system could be stabilized by two

stable controllers A and B. However, since the existence

of backlash, the stabilization will be affected. So the non-

symmetric backlash will considered as one part of the origi-

nal nonlinear system for being stabilized by new controllers

based on Bezout identity.

As (4) shown, according to the conditions, the non-

symmetric backlash is regarded as two cases: one is the case

of linear relationship between input v(t) and output u(t); the

other is the case of output u(t) holding on.

For the first case, we define an operator Db to describe

the slopes of the backlash.

u(t) = Db(v(t) ± h) = m0(v(t) ± h) (5)

where m0 is the designed slope. For the backlash distance h,

we regard it as disturbance. So operator Db could be fused in
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D to be D̃ = D−1
b D. Based on the above presentation, two

controllers A and B are designed to satisfy AN + BD̃ =
M , where M is the unimodular operator. And the output of

system is obtained, y(t) = N(AN +BD̃)−1(r∗(t)±B(h)).
Since the coefficients mr and ml are unknown and mr 6=

ml, we have the following lemma to guarantee the stability

of the nonlinear feedback control system with uncertain non-

symmetric backlash based on Theorem 1 of [2]. Before the

lemma, some notations should be introduced. As (4) shown,

Db(v(t)) = m0v(t), so D−1
b = 1/m0. D̃ can be represented

by D̃0, D̃1 and D̃2 when m = m0,m,m, respectively.

Lemma 1: Let Ue and Y e be two extended linear spaces,

which are associated respectively with two given Banach

spaces UB and YB . Let De be a linear subspace of Ue and

let (BD̃1 − BD̃0)M
−1 ∈ Lip(De), (BD̃2 − BD̃0)M

−1 ∈
Lip(De). Let the Bezout identity of the nominal plant be

AN + BD̃0 = M ∈ S(W,U), AN + BD̃1 = M̃1 or

AN + BD̃2 = M̃2, when slope of backlash is m or m.

Under the condition of controller A to satisfying (3), if

‖[BD̃1 − BD̃0]M
−1‖ < 1, ‖[BD̃2 − BD̃0]M

−1‖ < 1 (6)

the system is stable, where ‖ · ‖ is defined as

‖F‖ := sup
T∈[0,∞)

sup
x, x̃ ∈ De

xT 6= x̃T

‖[Fx]T − [Fx̃]T ‖YB

‖xT − x̃T ‖UB

(7)

Proof: M is unimodular operator, then M is invertible.

From AN + BD̃0 = M , AN + BD̃1 = M̃1, we have

M̃1 = M + [BD̃1 − BD̃0]. (8)

SinceM̃1 = M+[BD̃1−BD̃0] = [I+(BD̃1−BD̃0)M
−1]M

and (BD̃1−BD̃0)M
−1 ∈ Lip(De), I+(BD̃1−BD̃0)M

−1

is invertible based on the result in [2], where I is the identity

operator. Consequently, we have M̃1
−1

= M−1[I +(BD̃1−
BD̃0)M

−1]−1. Meanwhile, since M̃1 = M +[BD̃1−BD̃0],
(BD̃1 − BD̃0)M

−1 ∈ Lip(De), and M ∈ U(W,U), we

have M̃1 ∈ U(W,U). For AN + BD̃2 = M̃2, it can also be

proofed by the same method.

Then we define Z = max{ 1
m0

− 1
m , 1

m − 1
m0

}. Let the

exact plant be AN + BD̃ = M̃ , because m ∈ [m,m], we

obtain

||[BD̃ − BD̃0]M
−1|| ≤ ||[BD · Z]M−1|| < 1 (9)

So M̃ ∈ U(W,U). Refer to the proof of theorem in [2], the

nonlinear system is overall stable.

For the second case, we regard u(t−) as disturbance and

Db needs not be considered. So we can design another two

controllers A∗ and B∗ which are satisfying (2) to stabilize the

nonlinear system, and the output of the system is obtained,

y(t) = N(A∗N + B∗D)−1(r∗(t) + B(u(t−))).

IV. NUMERICAL EXAMPLE

In this section, a numerical example is given to show the

effectiveness of the proposed condition of robust stability.

Let the given plant operator P = ND−1 be defined

by P (u∗(t)) =
∫ t

0
u∗1/3(τ)dτ + et/3u∗1/3(t), N(w(t)) =

∫ t

0
eτ/3w1/3(τ)dτ + w1/3(t), D(w(t)) = e−tw(t), where

u∗ ∈ U∗, P (u∗) ∈ Y , we choose space W = U . Obviously,

operator D−1 is unstable.

As above section mentioned, the non-symmetric backlash

can be regarded as two cases. Since the second case is not

related to the proposed condition, we just consider the first

case here. Let the input r∗ of the considering system be

bounded, and bounds of the slopes be mr ∈ [1, 1.2], ml ∈
[0.92, 1.1]. That is m = max(mr) = 1.2, m = min(ml) =
0.92. According to the designed framework, we design the

controllers A and B as follows:

A(y(t)) = (et − 1)(g(t))3, B(u(t)) = m0u(t) (10)

where g(t) = e−t/3w1/3(t), m0 = 1.05.

Then the output of considering system is obtained as

y(t) = N(AN + BD̃)−1(r∗(t) ± B(h)) (11)

From (4), we obtain that h is bounded, Db and D−1
b are

stable operators. For proofing the operators D and N stable

[1], we pick any x ∈ W . There is a constant k such that

‖x‖∞ < k. Then for all t ∈ [0,∞), | D(x(t)) |= e−t |
x(t) |< k and |

∫ t

0
e−τ/3x1/3(τ)dτ |< k1/3 |

∫ t

0
e−τ/3dτ |≤

3k1/3, so that |N(x(t))| < 4k1/3. Thus both D and N
are stable. Since the input r∗ is bounded, the output y(t)
is bounded if (AN + BD̃)−1 is stable.

According to known parameters,

‖[BD̃1 − BD̃0]M
−1‖ = ‖

(

m0

m
−

m0

m0

)

e−tM−1‖ < 1

is obtained. We can also get ‖[BD̃2 −BD̃0]M
−1‖ < 1, the

robust condition in Lemma 1 is satisfied.

Let AN + BD̃ = M̃ , according to Lemma 1, we obtain

M̃ ∈ S(W,U), because m ∈ [m, m]. Since S(W,U) is

the set of unimodular operator, (AN + BD̃)−1 is stable.

Thus, the output y(t) is bounded. The unstable nonlinear

system with uncertain non-symmetric backlash is stabilized

depending on the proposed robust condition.

V. CONCLUSION

Operator based robust control for nonlinear systems with

uncertain non-symmetric backlash is studied. Using the pro-

posed robust condition, the operator based controller is de-

signed for nonlinear systems with uncertain non-symmetric

backlash.
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