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Abstract— We concern ourselves with flow control of a
class of positive compartmental systems, which represent
interconnected networks of reservoirs and the flow of
material between these reservoirs. Using a sliding mode
control approach, we design controllers which, using only
knowledge of the amount of material in their own section
and the flow out of the network, match a desired through-
put profile between the inlet and outlet ports. One of the
advantages of this control strategy is that, since it is not
required that each section have knowledge of the states
of all other sections, it requires only a limited amount of
communication between sections. Exploiting the particular
compartmental structure of the system, we give proofs of
asymptotic stability of the control scheme, along with an
upper bound on the time needed for the tracking error to
fall below a prescribed level. We also analyze the role of
the positivity constraints on the state and control variables
of the system on closed-loop performance.

I. INTRODUCTION

We are concerned with the control of positive com-
partmental systems. These types of systems represent
the flow of material through a network of intercon-
nected reservoirs and their dynamics is dictated by mass
conservation laws and the underlying structure of the
interconnection network [3]. These types of models can
be used to describe a variety of different systems in-
cluding automobile or aircraft traffic flow, job-balancing
in computer clusters [5], or any system of connected
reservoirs with natural constraints, such as irrigation
networks [4].

In this paper, we show how to design distributed
control policies for such systems in which controllers
in charge of different sections can locally direct flow so
as to match a desired network outflow. By “distributed”
we mean that controllers need only share a small amount
of information regarding the states of their sections with
each other. Our design strategy builds on techniques
from the theory of sliding mode control. In particular,
and as is typical of this field, we can guarantee that
this control law produces a tracking error between the
true and desired outflow which converges to zero in
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finite time, provided some assumptions on the system’s
parameters hold. This is in contrast with some of our
earlier results presented in [2], in which the tracking
error could only be guaranteed to have bounded L2-
norm. For the present result to hold, however, we need
to know the inflow rate function exactly.

In order to demonstrate the applicability of our
method, we use it to design control laws for a very sim-
ple network of air traffic flow described by an Eulerian
flow model, results of which are presented in Section
IV. Eulerian models have recently become popular in the
control-oriented modeling of air traffic in the National
Airspace System. This type of model describes the
dynamics of groups of aircraft instead of focusing on
individual vehicles in the limit of dense traffic (see
[8] for a survey of available Eulerian framework and
a comparison of their predictive abilities).

II. PROBLEM DESCRIPTION

We focus on networks consisting of one inlet and one
outlet port. The route between the inlet and outlet port
is represented by a directed graph connecting different
sections. The flow out of a given section can diverge
and enter multiple subsequent sections, including itself,
and similarly, flow from multiple sections can converge
and enter one subsequent section.

For our later modeling assumptions to make sense,
we require that the graph is such that (i) every vertex
is connected to the inlet and outlet ports, (ii) given a
specific vertex (including the outlet port), every path
between the inlet port and this vertex has the same
length. In that case, we can structure the graph into
levels by saying that a section i belongs to level L if all
paths from the inlet to section i have length L. We will
use SL to represent the set of sections in level L, that
is, if section i is in level L, then i ∈ SL. We assume
that there are m + 2 levels overall in the graph, namely
L ∈ {I}∪{1, ...,m}∪{F}, where the symbols I and F
refer to the ‘initial’ and ‘final’ levels, respectively. We
make the convention that material flows from sections in
level L to sections in level L + 1. Material flowing into
the network at the inlet port enters sections in the initial
level and material flowing out of sections in the final
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Fig. 1. Example of a network of flow between inlet port, A, and
outlet port, B. Sections 1, 2 and 3 are in level I, sections 4, 5, 6 are
in level 1 and sections 7, 8, 9 are in level F .

level exits the network at the outlet port. An example of
this type of network structure is given in Fig. 1.

The state of a section i ∈ SL, which represents the
amount of material in that section, is denoted by xi(t).
Since we are dealing with positive systems, xi(t) must
be a nonnegative value for all t. Material in each section
is assumed to be traveling at the maximum allowable
speed, corresponding to a section traversal time of τi.
The control input, ui, can be thought of as a recirculation
rate, that is, the control input is modeled as taking part
of the natural outflow of the section and recirculating
it back into that same section, thus effectively reducing
the outflow of the section. With parameters defined in
this way, we can define the outflow rate of section i as

fi(t) =
xi(t)
τi

− ui(t).

The terms βij , 0 ≤ βij ≤ 1, denote the fraction of the
outflow rate of section i that flows into section j. Clearly,
if i ∈ SL and L 6= F ,

∑
j∈SL+1

βij = 1, since all
material leaving a section in level L must enter a section
in level L+1 by definition of the levels. We consider the
fractions βij to be given as a part of the network model,
which is only appropriate when considering operations
around a given regime with routing control performed
at a higher level. Incorporating flow routing as a control
input is the subject of future work. The time-varying
rate at which material enters the system from port A is
denoted by d. Finally, 0 ≤ γi ≤ 1 denotes the fraction
of the inflow rate from port A that enters into section i.
Our assumption on the structure of the network requires
that γi 6= 0 if and only if i ∈ SI .

The dynamics of section i ∈ SL can now be given by

ẋi = −xi

τi
+ ui +

∑
j∈SL−1

βji

(
xj

τj
− uj

)
+ γid, (1)

which is a continuous time analog of the Eulerian model
of air traffic flow introduced in [7].

The global outflow from sections in the final level,
namely z =

∑
i∈SF fi, is used as a performance

output. The control design problem is then to determine
feedback control policies u = (u1, ..., un)T such that the
system is internally stable in closed-loop and the output
z behaves satisfactorily. More precisely, we measure the

performance of the closed-loop system by comparing z
to a desired output zd generated by a given target system

ξ̇ = Ãξ + B̃d

zd = C̃ξ,
(2)

with ξ(t) ∈ Rñ for all t ≥ 0. The parameters of (2) must
be chosen to generate a desired output that is meaningful
in relation to the system being controlled. The faster
the error e = z − zd approaches zero (or falls below a
prescribed level ε), i.e., the smaller Tε defined as follows
is, the better the performance:

Tε := min{t | |e(s)| ≤ ε, ∀ s ≥ t}.

In other words, we desire to achieve asymptotic tracking
of zd in closed-loop. In addition to these closed-loop
stability and performance requirements, the following
constraints are imposed on the control input u:
• Positivity: Since the control input, ui(t), acts only

to recirculate a fraction of the nominal outflow of
section i and thus can only decrease the outflow, it
must satisfy 0 ≤ ui(t) ≤ xi(t)

τi
.

• Decentralization: In order to limit the amount
of inter-section communication, ui(t) should not
depend on all the components of the state vector
x(t) = (x1(t), ..., xn(t))T but, preferably, only on
xi(t) and a small number of other components.

III. CONTROL STRATEGY AND CLOSED-LOOP
PROPERTIES

In order to achieve our control design objective while
respecting the positivity and decentralization constraints,
we propose to use a control law of the form

ui(t) = α(t)
xi(t)
τi

for all i = 1, ..., n, (3)

for some function α to be determined later. The rationale
for the structure of (3) is that (i) it agrees with the
interpretation that ui is a fraction of the outflow and
positivity of the controller is easily recognized, (ii) if we
could make α constant, this structure would give a fully
decentralized controller. Substituting this expression into
equation (1), we see that the closed-loop dynamics of
each section is

ẋi = −(1−α(t))
xi

τi
+
∑

j∈SL−1

βji(1−α(t))
xj

τj
+γid, (4)

and that, if 0 ≤ α(t) ≤ 1 for all t,

xi(0) ∈ R+ for all i
d(t) ∈ R+ for all t ≥ 0

}
⇒ xi(t) ∈ R+, ∀ i.
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To simplify later developments, we need to introduce
some new notation. First, we combine the dynamics of
all individual sections specified by (1) in the form

ẋ = Ax + Bu + Bd d

z = Cx + Du,
(5)

where matrices A, B, Bd, C, and D are derived from
the interconnection of subsystems (1). We also rewrite
control law (3) as u = Kx where K = αT−1, and
T−1 = diag( 1

τ1
, 1

τ2
, . . . , 1

τn
). With this representation of

K, α is the only design parameter.
With this notation, the closed-loop system is given by

ẋ =
(
A + αBT−1

)
x + Bd d

z =
(
C + αDT−1

)
x.

(6)

Due to the specific structure of the interconnected sys-
tems, illustrated in Fig. 1, the output of the system
is the controlled outflow of the system at port B and
depends only on the material in level F . Thus, we see
that C = DT−1, both of which will be denoted by wT

where wi = 1
τi

for i ∈ SF and wi = 0 otherwise. Thus,
we can express the output as

z = (1− α) wT x. (7)

A. Closed-loop Stability

We start by focusing on closed-loop stability. We
show that, as long as the function α in control law
(3) is chosen so that 0 ≤ α(t) < 1 for all t ≥ 0,
the closed-loop system (6) exhibits global asymptotic
stability. This is mainly due to the fact that, because of
its compartmental structure, system (6) admits a fixed
Lyapunov function, which is independent of the time-
varying function α.

It should be noted, however, that traditional Lyapunov
stability results, as given, e.g., in [6], cannot be readily
applied in the present problem, since our candidate
Lyapunov function will only be decreasing over Rn

+,
which does not contain the origin of state space in its
interior. We thus need to provide a variant of these
results suited to positive systems. This is the content
of the following theorem.

Theorem 1: Let system (5) be a positive system (i.e.,
x(t) ∈ Rn

+ for all t) and x = 0 be an equilibrium
point of system (5). Assume there exists a continuously
differentiable function V : Rn

+ → R such that

V (0) = 0 and V (x) > 0, ∀ x ∈ Rn
+ − {0}

lim
‖x‖→∞, x∈Rn

+

V (x) = +∞

V̇ (x) < 0, ∀ x ∈ Rn
+ − {0}

Then, x = 0 is globally asymptotically stable.

The proof is presented in [1] and follows similar steps
as the proof of Lyapunov’s stability theorem given in [6].

Using Theorem 1, we can prove the stability of system
(5) under state-feedback control with varying α. With
K = α(t)T−1 we will show that the closed-loop system
is stable for any α(t) satisfying 0 ≤ α < 1.

First we must show that the closed-loop system is
positive. In closed-loop, recalling the expression for ẋi

in equation (4) with d = 0, 0 ≤ α < 1, xi ≥ 0, ∀ i,

(1− α)
n∑

j=1

βji

τj
xj ≥ 0 (8)

−(1− α)
1
τi

xi ≤ 0. (9)

We see that whenever xi = 0, the only possibly negative
component of ẋi, namely (9), is zero. Thus, if x(0) ≥ 0,

xi = 0 ⇒ ẋi ≥ 0
⇒ xi(t) ≥ 0, ∀ t ≥ 0.

Now we can use Theorem 1 to show that the closed-
loop system is stable. Define a function V (x) = lT x
where l is a column vector of length n defined such that
l1 > l2 > · · · > ln > 0. Since we are dealing with
positive systems, it is clear that V (x) ≥ 0 for all t ≥
0. Also note that, on Rn

+, V (x) is radially unbounded,
V (0) = 0, and V (x) > 0 if x 6= 0. Taking the time
derivative of V and after some algebra we have

V̇ (x) = −(1− α)
n∑

i=1


li −

∑
j∈SL+1

ljβij

 xi

τi

 .

Let l̄i = maxj∈SL+1 lj < li, thus we have

V̇ (x) < −(1− α)
n∑

i=1

{[
li − l̄i

] xi

τi

}
.

Since 0 ≤ α < 1, and x ≥ 0, we see that V̇ (x) ≤
0 along trajectories of the system. Further, V̇ (x) <
0, ∀ x > 0. Thus, using Theorem 1 we conclude that
the closed-loop system is globally asymptotically stable
for 0 ≤ α(t) < 1 and x(0) ∈ Rn

+.

B. Development of Sliding Mode Controller

In this section, we make a specific choice of function
α in (3), so as to solve the tracking problem outlined in
Section II. From here on, we assume that the input d to
both system (5) and target system (2) is a known step
function. In other words, we are interested in designing
a controller which achieves good tracking performance
in closed-loop for a given input.
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More precisely, we use sliding mode control to bring
the closed-loop system to the manifold defined in state-
space by the equation e = z − zd. The sliding mode
controller will drive the system to e = 0 and then
slide along the e = 0 manifold, which is precisely how
we would like our system to behave. Using the system
output specified in (7) and the reference output specified
in (2) we define the output error as

e = (1− α) wT x− C̃ξ.

The general method of developing a sliding mode con-
troller involves choosing a Lyapunov candidate function,
V , and choosing dynamics for the control parameter
such that V̇ ≤ −c0|e|, for some constant c0 > 0. Here,
our only control parameter is the value α(t) and thus
our goal is to use the theory of sliding mode control to
specify the dynamics of α, that is, find an expression
for α̇.

We will start with the Lyapunov candidate function
V (x, ξ) = 1

2e2. Computing V̇ along trajectories of the
system, we have

V̇ = e
[
(1− α) wT ẋ− C̃ξ̇

]
− eα̇wT x.

We want to find α̇ such that V̇ ≤ −c0|e|. Given this
expression for V̇ , we must find ρ(x, ξ) ≥ 0 satisfying

ρ(x, ξ) ≥

∣∣∣∣∣ (1− α) wT ẋ− C̃ξ̇

wT x

∣∣∣∣∣ (10)

Once such a bound is found, we will have

V̇ ≤ |e|ρ(x, ξ)wT x− eα̇wT x.

With the following choice of α̇

α̇ = η(x, ξ)sgn(e), (11)

where

η(x, ξ) = η0 +
c0

wT x
+ ρ(x, ξ) ≥ 0, (12)

for some constant η0 ≥ 0, we obtain

V̇ ≤ −c0|e| − η0

(
wT x

)
≤ −c0|e|. (13)

Note that because α depends on the state of all
sections in level F , the proposed control law is not fully
decentralized, in spite of the structure (3): the control
input applied to each section not only depends on its
local state, but also on the global outflow of the system.

In order to construct such a controller, we must find
a function ρ(x, ξ) that satisfies (10). We can split up the
absolute value expression on the right hand side of (10)
and find upper bounds on the terms

∣∣∣∣ (1− α) wT ẋ

wT x

∣∣∣∣ and

∣∣∣∣∣ C̃ξ̇

wT x

∣∣∣∣∣ . (14)

Since γi = 0, ∀ i ∈ SF , and recalling that, due to
the interconnection structure of the system, all material
entering sections in SF must come from sections in Sm,
and all material leaving a section in Sm must enter a
section in SF and that we require α to satisfy 0 ≤ α ≤ 1
we find the following bound on the first term in (14)∣∣∣∣ (1− α) wT ẋ

wT x

∣∣∣∣ ≤ 1
τmin

(∑
j∈Sm

xj

τj

wT x

)
where τmin = mini∈SF {τi}.

In order to find a bound for the second term in (14)
with the dynamics of ξ defined in (2), we need to make
the following assumptions: ξ(0) = 0, d(t) is step or
square wave function with amplitude d0 > 0 and (2) is
a stable first order linear system with Ã < 0 and B̃ > 0.
We can then solve for ξ(t) and differentiate to find the
maximum of ξ̇(t) and thus arrive at the following bound∣∣∣∣∣ C̃ξ̇

wT x

∣∣∣∣∣ ≤ B̃d0

wT x
.

The details of these derivations can be found in [1].
Thus we arrive at an expression for ρ(x, ξ) which

satisfies (10),

ρ(x, ξ) =
1

τmin

(∑
j∈Sm

xj

τj

wT x

)
+

B̃d0

wT x
.

With this choice of α̇ given in (11), V = 1
2e2 is

always decreasing along trajectories of the system, thus,
|e| decreases until it reaches zero and e = 0 for all t
after this point.

In practice (and even in simulation), there will be
delay between the time that e changes sign and the
time that α̇ switches from η(x, ξ) to −η(x, ξ), or vice
versa. This delay will cause e to become nonzero for
some amount of time before being brought back to the
manifold e = 0. This will occur each time the system
approaches the manifold, thus resulting in chattering of
the controller. A common resolution of this problem is
to implement the control law

α̇ = η(x, ξ)sat
(e

ε

)
(15)

for some chosen ε > 0 where

sat(y) =
{

y, if |y| ≤ 1
sgn(y), if |y| > 1 .

If implementing this control law on a physical system,
e will not remain fixed at e = 0 once the trajectory first
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reaches the manifold, instead, |e| ≤ ε will be satisfied
once e comes within ε of zero. The value of ε is a design
parameter and must be chosen as an acceptable level of
error.

C. Performance Measure

With the proposed dynamics of α given by (15), the
natural performance measure is the time required for
the system to reach the boundary of |e| ≤ ε, which, as
mentioned in Section II, we will denote as Tε.

Define W =
√

2V = |e| and notice that D+W ≤
−c0, where D+ indicates the upper right-hand deriva-
tive. Now we can use the comparison lemma (see [6])
along with the upper bound on V̇ given in (13) to state

W (e (t)) ≤ W (e (0))− c0t. (16)

Use (16) to find a value of Tε which satisfies

|e(Tε)| ≤ ε. (17)

By solving |e(0)| − c0Tε ≤ ε we find that the smallest
value of Tε which satisfies (17) is Tε = |e(0)|−ε

c0
. For all

t ≥ Tε, we know that |e(t)| ≤ ε.

D. Constraints on Controller

Throughout the derivation of the dynamics of α we
have assumed that 0 ≤ α ≤ 1. Looking closely at the
final expression for α̇ given in (11), we see that α will
remain bounded from above by 1, provided that the state
of the target system remains positive. To see this, note
that

α(t) = 1 ⇒ e(t) = −C̃ξ < 0.

Hence, according to control law (11),

α(t) = 1 ⇒ α̇(t) < 0,

and we can then conclude that α(t) < 1 for all time
t > 0, if α(0) < 1. As a result, the state of closed-loop
system (4) remains strictly positive for all time under
the sliding mode control law (11).

Unfortunately, this control law does not ensure that
α remain positive. If (1 − α(t))wT x(t) < C̃ξ(t) over
some time interval (i.e., if e < 0 and α is decreasing over
an interval), it is possible for α to be driven negative.
This means that the input u(t) = α(t)T−1x(t) may be
negative for some time t.

In order to ensure that the control input is always
physically meaningful, as captured by the Positivity
requirement, we can simply set α to zero whenever
relation (11) fails to naturally impose this constraint.
As we have proved earlier, setting α to zero in such a
way does not affect closed-loop stability. However, this

Fig. 2. Airspace between airports A and B divided into sections of
1-D flow, arrows indicate direction of flow.

may affect tracking performance, prevent the error e to
monotonically decrease, or even converge to zero.

Extensive numerical simulations for systems consist-
ing of two levels of sections, with parameters and
network input similar to those used in the example
presented in Section IV, were performed. The results
seem to indicate that for a certain class of parameters
of the model and target systems, initial conditions and
network input, control law (11) results in a strictly
positive function α. This leads us to conjecture that,
for every system of the form (5), there exists a class of
target systems for which control law (11) leads to finite-
time convergence of the tracking error e, while satisfying
both the Positivity and Decentralization requirements.
Characterizing this class of target systems rigorously is
the subject of our current research.

IV. APPLICATION EXAMPLE

In this section, we focus on the network presented
in Fig. 2 representing the flow of aircraft between two
airports and apply the sliding mode controller developed
in Section III-B. Compartments correspond to sections
of airspace and the state and dynamics of each section
represent aggregate quantities, see [1] or [2] for more
details. In this network, all aircraft take off from airport
A and land at airport B. The state-space representation
of this model is given by

Figure 2: Airspace between airports A and B divided into sections of 1-D flow, arrows indicate direction of
flow.

for more details. In this network, all aircraft take off from airport A and land at airport B. The state-space
representation of this model is given by

ẋ =





− 1
τ1

0 0 0
0 − 1

τ2
0 0

1
τ1

β23
τ2

− 1
τ3

0
0 β24

τ2
0 − 1

τ4




x +





1 0 0 0
0 1 0 0
−1 −β23 1 0
0 −β24 0 1



u +





γ1

γ2

0
0



 d

z =
[

0 0 1
τ3

1
τ4

]
x +

[
0 0 −1 −1

]
u,

where x = [x1, . . . , x4]
T is a vector of state variables and u = [u1, . . . , u4]

T is the control input.
The parameter values used in the simulation are as follows

τ1 = 0.625, τ2 = 0.938, τ3 = 0.208, τ4 = 0.250,

β23 = 0.7, β24 = 0.3, γ1 = 0.5, γ2 = 0.5.

The traversal times, τi, have units of hours and were chosen to be comparable to the parameter values
used in [8]. We desire to match a first-order system with time-constant 0.5. The system and model values
used here are the same as those used in the example in [2]. The constant values in (15) were chosen to be
η0 = 0, c0 = 10. We chose ε = 1, indicating that an acceptable error in the landing rate is 1 aircraft per
hour.

The initial conditions used are x0 = [1, 1, 1, 1]T , ξ0 = 0. With these initial conditions, the initial error is
approximately 8.8 aircraft per hour. The input, d(t), is a square wave function oscillating between 0 and 50
aircraft per hour, period of 24 hours, and pulse width of 50%. With this input, a total of 600 aircraft enter
the system. The uncontrolled system output is plotted along with the desired landing rate in Fig. 3. At
this scale, the controlled landing rate is indistinguishable from the desired landing rate for most of the time
history and is therefore not included in the plot.

A plot of α over the course of the simulation is presented in Fig. 3. Notice that α does not go below
zero at any time during the simulation. Thus, we can conclude that |e(t)| ≤ ε will be satisfied for all t ≥ Tε.
Also note that α remains fixed for all t greater than about 20 hours. This is because at this point, both the
controlled outflow and the desired landing rate become less than ε and the adaptive controller is turned off.

Under the proposed control, the landing rate error is guaranteed to be within ε of zero by Tε = 0.78 hours.
In simulation, the error actually enters this region before about 0.1 hours. Over the course of the 24 hours of
the simulation, the uncontrolled system accumulates a total error of 104 aircraft, while the controlled system
accumulates an error of only 2 aircraft.

where x = [x1, . . . , x4]
T is a vector of state variables

and u = [u1, . . . , u4]
T is the control input.

The parameter values used in the simulation are

τ1 = 0.625, τ2 = 0.938, τ3 = 0.208, τ4 = 0.250,

β23 = 0.7, β24 = 0.3, γ1 = 0.5, γ2 = 0.5.

The traversal times, τi, have units of hours and were
chosen to be comparable to the parameter values used in
[7]. We desire to match a first-order system with time-
constant 0.5. The system and model values used here
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Fig. 3. Left: Desired landing rate and uncontrolled landing rate.
Right: Control parameter α as a function of time.

are the same as those used in the example in [2]. The
constant values in (12) were chosen to be η0 = 0, c0 =
10. We chose ε = 1, indicating that an acceptable error
in the landing rate is 1 aircraft per hour.

The initial conditions used are x0 = [1, 1, 1, 1]T ,
ξ0 = 0. With these initial conditions, the initial error
is approximately 8.8 aircraft per hour. The input, d(t),
is a square wave function oscillating between 0 and 50
aircraft per hour, with a period of 24 hours and pulse
width of 50%. With this input, a total of 600 aircraft
enter the system. The uncontrolled system output is
plotted along with the desired landing rate in Fig. 3. At
this scale, the controlled landing rate is indistinguishable
from the desired landing rate for most of the time history
and is therefore not included in the plot.

A plot of α over the course of the simulation is
presented in Fig. 3. Notice that α does not go below
zero at any time during the simulation. Thus, we can
conclude that |e(t)| ≤ ε will be satisfied for all t ≥ Tε.
Also note that α remains fixed for all t greater than
about 20 hours. This is because at this point, both the
controlled outflow and the desired landing rate become
less than ε and the adaptive controller is turned off.

Under the proposed control, the landing rate error is
guaranteed to be within ε of zero by Tε = 0.78 hours.
In simulation, the error actually enters this region before
about 0.1 hours. Over the course of the 24 hours of
the simulation, the uncontrolled system accumulates a
total error of 104 aircraft, while the controlled system
accumulates an error of only 2 aircraft.

V. CONCLUSION & FUTURE WORK

We developed a sliding mode control technique for
network flow control with the goal of tracking a desired
outflow. We provide a performance measure in the form
of an upper bound on the time required for the outflow
error, e, to be within some specified value, ε, after which
|e| ≤ ε will be satisfied. This performance measure is
valid only for certain combinations of network, inflow
rate, desired outflow rate and initial conditions, which

result in nonnegative control input, i.e., α ≥ 0, under
the proposed control law. We will continue to search
for a mathematical description of the conditions under
which the control input is nonnegative and thus the
performance measure holds.

The controller developed here is not fully decentral-
ized since it depends on the transfer of information from
final sections to all other sections. Alternatively, we will
look into methods that only involve the exchange of
information between nearest neighbors. Such a method
will likely result in the use of different values of α,
which may evolve independently, for each section.

Focusing on air traffic management, large networks
and multiple take-off and landing airports should be
incorporated to better model realistic air traffic flow sce-
narios. One of the challenges associated with modeling
multiple airports is that sections are not naturally layered
into levels, in contrast to our assumptions of Section
II. We have investigated the application of this control
scheme to larger single inlet/outlet networks with some
results and challenges detailed in [1].
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