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Abstract— In this paper, we present a parameter identi-
fication algorithm for the discovery of a genetic regulatory
network. The genetic network is modeled, via a mechanistic
approach, as a nonlinear stochastic regulatory network, in
which transcription, translation and degradation processes are
described as discrete stochastic events which depend nonlinearly
on the number of molecules inside the cell. The system depends
on several unknowns, namely the rates of transcription, the
rates of translation and the degradation rates. Furthermore,
the system is observable through the measure, at regular time
intervals, of the factorial cumulants of the molecule counts.
The unknown parameters are uncovered by studying the system
output response to an arbitrary command input. The parameter
search is posed as an optimization program, in which the
cost function is the deviation between the observed factorial
cumulants and the model output, and in which the constraint
is the parameterized ordinary differential equation (ODE)
governing the time evolution of the factorial cumulants. The
optimization problem is solved via an adjoint-based quasi-
Newton algorithm. The command input is found to have an
important impact on the parameter search: Oscillatory input
signals yield better parameter discovery than flat input signals.
Finally, numerical results are presented for two systems: a Hill
feedback and a Michaelis Menten process.

I. INTRODUCTION

Cells can be viewed as robust stochastic molecular ma-
chines which respond to external cues via a sequence of
biochemical reactions. Each reaction change the state of the
cell. The transition from one state to another is probabilistic
and can be quantitatively described by a set of transition
probabilities. Using the words of S. Chandrasekhar [2],
the molecular processes represent the “gradual unfolding
of the transition probabilities”. The “gradual unfolding” is
governed by a Master equation [13], [1], [9]. The transition
probabilities, which are the building blocks of the Master
equation, can be identified by measuring the responses of
the molecular system to different input signals. A theory
based on the Master equation which explains the response
of a genetic regulatory network to input signals was outlined
in [1], [9]. For a single input-output pair, the theory was
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used to understand the response of mammalian cells to
heat shocks [7]. For multiple inputs and multiple outputs,
however, the theory of [1], [9] is not sufficient, and must
be accompanied by a procedure that automatically estimates
the transition probabilities using experimental data. The
difficulty of estimating these transition probabilities stems
(1) from the huge number of molecules involved in a genetic
network and (2) from the stochasticity and nonlinearity of
the processes. For example, for a system with only two
molecules, besides the mean and the standard deviation
of each molecule, the statistical correlation between the
two molecules also needs to be modeled. Furthermore, the
nonlinearity of the process will mix lower and higher order
correlations in a nested system of equations. The number
of variables thus increases dramatically with the number
of components of the molecular system. In spite of these
challenges, however, this paper presents a solution to the
estimation problem of the transition probabilities of a Master
equation. This is encouraging since it is known that the
Master equation, although very simple to connect with the
biochemical reactions, is difficult to solve and estimate.

In Section II, we will review the class of models which
we use to describe the genetic network. In Section III, we
will pose the problem of discovering the genetic network
as an optimal control problem for ODEs. Section IV will
demonstrate the methodology which we use in order to solve
such optimization problems and Section V will outline the
practical implementation of our method. In Section V, we
will motivate the use of oscillatory input signals in order
to enhance the discovery of the network. Finally, in Section
VI, we will show numerical results for a Hill feedback and
a Michaelis Menten process.

II. SYSTEM MODEL: NONLINEAR STOCHASTIC
REGULATORY NETWORK

In this section, we present the class of systems which
we use to model the genetic network. The model relies on
a mathematical framework developed by Lipan, Achimescu
and Wong [9], [1], [8], and describes the system as a non-
linear stochastic network. If N denotes the number of genes
involved in the network, the state variables of the system are
the number of mRNA molecules and the number of protein
products of the N genes. The dynamics of the system is
driven by a continuous time Markov chain, in which the
state transitions are governed by transcription, translation and
degradation processes. The probability of occurrence of these
transition events are given in a parametric form as nonlinear
functions of the 2N state variables of the system. Finally,
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the parameters of these transition probabilities need to be
identified in order to reveal the genetic network.

Fig. 1. Representation of the interaction between two genes as a network
diagram. The protein product of gene 1 activates the transcription of gene
2. The command input G(t) activates the transcription of gene 1.

As an example, consider the interaction between two
genes, depicted in Figure 1. The variables r1 and p1 re-
spectively represent the number of mRNA molecules and
the number of protein products of gene 1. Similarly r2
and p2 represent the number of mRNA and the number
of protein products of gene 2. Protein 1 is a transcription
factor of gene 2, which means that protein 1 activates
the transcription of gene 1 and therefore the production
of mRNA 2. Gene 2 is assumed to have no effect on
gene 1. The state variable of this system, denoted by X =
(r1, p1,r2, p2) ∈ N

4
+, evolves according to a continuous time

Markov chain. The transitions of the Markov chain are
denoted by εi ∈ {−1,0,1}4, i = −4, . . . ,4, and represent
translation or transcription events. For instance, the transition
from (r1, p1,r2, p2) to (r1 + 1, p1,r2, p2), denoted by ε1 =
(1,0,0,0), represents the production of one molecule of
mRNA 1 via the transcription of gene 1. The transition
from (r1, p1,r2, p2) to (r1, p1,r2, p2 + 1), denoted by ε4 =
(0,0,0,1), represents the production of one protein product
of gene 2 via the translation of mRNA 2.

The transition probabilities Tεi , i = −4, . . . ,4, are func-
tions of the state variable X and the command input G(t),
and are expressed in a parametrized form. For example,
the probability of transition Tε2 , which is supposed to be
proportional to the number of molecules r1 is expressed as
Tε2 = k1r1. Of course, the choice of the parametrization can
be more general and can include some nonlinear terms. We
denote by θ ∈ R

d the vector containing all parameters. In
the present example θ = (k1,γr1 ,γp1 ,h,k2,γr2 ,γp2) ∈ R

7.
Given the expression for these transition probabilities, the

probability distribution of X can be derived as the solution
of a so-called Master equation [9], [1]. If P(x, t) denotes the
probability that X = x at time t, then at time t +dt

P(x, t +dt) = P(x, t)
(
1−dt ∑

ε
Tε(x, t)

)

+∑
ε

P(x− ε , t)Tε(x− ε , t)dt, (1)

in which the sums are taken over all possible transitions ε .
Therefore the equation governing the probability distribution
of X reads

∂P(x, t)
∂ t

= ∑
ε

P(x− ε , t)Tε(x− ε , t)−∑
ε

P(x, t)Tε(x, t). (2)

Note that P(x, t) implicitly depends on the vector of pa-
rameters θ and the input G(t) through the transition proba-
bilities Tε . Similarly to the resolution of partial differential
equations, the complexity of solving this Master equation
grows combinatorially with the dimension of the system. In
practice, because of hardware memory constraints, it can be
solved up to dimension of five. However from this equation
we can derive an ordinary differential equation (ODE) gov-
erning the factorial cumulants of the molecule counts (the
factorial cumulants of a random variable are analogous to its
moments; however they present better convergence properties
and are therefore used for this analysis). This ODE has the
general form

H(κ(t),θ )
dκ(t)

dt
= A(κ(t),θ )+G(t)B(κ(t),θ ), (3)

in which H is an n× n matrix whose entries are nonlinear
function of κ(t), and θ , A, and B are column vectors.

The detailed procedure leading to the derivation of the
cumulants is explained in [1]. In particular, it relies on taking
the Z -transform of the state probability P(X , t).

III. PARAMETER IDENTIFICATION PROBLEM
FORMULATION

With the technique of flow cytometry [12], it is possible
to measure the status of tens of thousands of cells in a
few seconds. Based on these samples, the entire statistics
of the molecule numbers can be derived and, in particular,
the factorial cumulants can be computed. Given a set of ob-
servations κobs

1 , . . . ,κobs
n , for the m first cumulants collected

at times t1, . . . , tn = T , n ∈ N, the problem of finding the
unknown parameters of the system can be posed as the one
of minimizing the mean square error between the observed
cumulants and the outputs of the simulation

minimize J = ∑n
k=1 |κobs

k −κ(tk)|2

subject to H(κ(t),θ ) dκ(t)
dt = A(κ(t),θ )

+G(t)B(κ(t),θ ).

(P.1)

Note that this approach of matching the first order factorial
cumulants is similar to the so-called method of moments used
in parameter identification of stochastic processes [5], [10].
Note also that in the present case, due to the large size of
the sample population, the estimates of the factorial cumu-
lants have converged and therefore the difference between
the factorial cumulants and their estimates is only due to
measurement noise. Because we assume white measurement
noise, in (P.1) we minimize the least square error between
the estimates of the factorial cumulants and the simulated
factorial cumulants.
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IV. SOLUTION METHOD

The problem of finding the unknown parameters of the
genetic network has been formulated through (P.1) as an op-
timization program involving ODEs. In this section, we show
how such an optimization program can be (locally) solved
efficiently using an adjoint-based quasi-Newton algorithm
[4], [3] in the parameter space, R

d . From a control theory
standpoint, the algorithm consists of iteratively solving the
Pontryagin necessary conditions for optimality. From an op-
timization theory point of view, it consists of a quasi-Newton
method, in which the gradient of the objective function with
respect to the vector of parameters θ is computed via the
adjoint method in order to efficiently deal with the ODE
constraint.

A. Gradient Computation

In order to perform the quasi-Newton method, we first
need to compute the gradient of the objective function with
respect to the vector of parameters. The computation of
the gradient relies on two steps. First, the derivative of the
cost function is calculated by application of the calculus
of variations for ODEs. This step leaves the derivative of
the cost function expressed as a function of the derivative
of the factorial cumulants with respect to the parameters
θ . Since the linear ODE governing the derivative of the
factorial cumulants cannot be solved in closed form, the
second step consists of eliminating the terms which depend
on the factorial cumulant derivative in the expression of the
cost function derivative. This second step is performed using
the adjoint method [6], [11].

1) Calculus of Variations:

Proposition 1. Under differentiability and growth conditions
on A,B and H, the derivative of the cost function J ∈R with
respect to the vector of parameters θ ∈ R

d in the direction
θ̂ ∈ R

d is given by

lim
h→0

J(θ +hθ̂)− J(θ )

h
= 2

n

∑
k=1

(
κ(tk)−κobs

k
)>κ̂(tk) , (4)

in which κ̂ ∈C1(0,T ;Rm) is the solution of

∇κH(κ(t),θ )κ̂(t)
dκ(t)

dt
+∇θ H(κ(t),θ )θ̂

dκ(t)
dt

+

H(κ(t),θ )
dκ̂(t)

dt
= ∇κA(κ(t),θ )κ̂(t)+∇θ A(κ(t),θ )θ̂

+G(t)∇κB(κ(t),θ )κ̂(t)+G(t)∇θ B(κ(t),θ )θ̂ .

(5)

2) Adjoint Method:

Proposition 2. Let an arbitrary process p ∈ PC1(0,T,Rm)
be the unique solution of

dH(κ(t),θ )>p(t)
dt

= K1(κ(t), κ̇(t),θ )>p(t)

−
(
∇κA(κ(t),θ )+G(t)∇κB(κ(t),θ )

)>p(t),
(6)

on ]tk, tk+1] , k = 0, . . . ,n−1; with boundary conditions,

H(κ(tn),θ )>p(tn) = κ(tn)−κobs
n

H(κ(t−k ),θ )>p(t−k ) = H(κ(t+k ),θ )>p(t+k )+κ(tk)−κobs
k ,

k = n−1, . . . ,1,

(7)
in which t0 = 0 and

K1(κ(t), κ̇(t),θ ) =




∑m
i=1

dκi(t)
dt ∇κH1i(κ(t),θ )

∑m
i=1

dκi(t)
dt ∇κH2i(κ(t),θ )

...
∑m

i=1
dκi(t)

dt ∇κHmi(κ(t),θ )




. (8)

Furthermore, let us pose

K2(κ(t), κ̇(t),θ ) =




∑m
i=1

dκi(t)
dt ∇θ H1i(κ(t),θ )

∑m
i=1

dκi(t)
dt ∇θ H2i(κ(t),θ )

...
∑m

i=1
dκi(t)

dt ∇θ Hmi(κ(t),θ ),




(9)

then

lim
h→0

J(θ +hθ̂)− J(θ )

h
=−

tn∫

0

p(t)>K2(κ(t), κ̇(t),θ )θ̂ dt

+

tn∫

0

p(t)>
(
∇θ A(κ(t),θ )+G(t)∇θ B(κ(t),θ )

)
θ̂ dt.

(10)
p is referred to as the adjoint process.

Corollary 1. The gradient ∇J ∈R
d of the cost function J ∈R

with respect to the vector of parameters θ ∈ R
d is

∇J = −

tn∫

0

K2(κ(t), κ̇(t),θ )>p(t)dt

+

tn∫

0

(∇θ A(κ(t),θ )+G(t)∇θ B(κ(t),θ ))>p(t)dt.

(11)

Because the computation of the gradient requires solving
both the primal ODE (3) and the adjoint ODE (6), the
complexity of forming the gradient is equal to the sum of
the complexity of solving ODE (3) and ODE (6). Since
the primal and the adjoint ODEs roughly have the same
complexity [11], [6], the gradient computation complexity
is twice the complexity of solving ODE (3). Note that the
alternative method of finite difference yields a complexity
of 2d times the complexity of solving ODE (3), which is d
times the complexity of the adjoint method.

B. Quasi-Newton Method

With the gradient in hand, it is now possible to perform
an effective descent algorithm, namely the quasi-Newton
method, in which the Hessian, or second derivative of the
objective function, is approximated via finite difference on
the gradient [3], [4].
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Algorithm 1 (Adjoint-based quasi-Newton algorithm).

Start by guessing an initial value for θ (for instance, take
θ guess = 0) as well as an initial guess for the approximate
Hessian ∇̃2J (for instance take ∇̃2J

guess
= Id).

Repeat
1. Compute the quasi Newton step.

a. Solve the governing ODE (3) for κ based on
the current value of θ .
b. Solve the adjoint ODE backward for p, based
on (6) and on boundary conditions (7).
c. Form the gradient ∇J according to (11).

d. Form the Newton step ∆θnt =−∇̃2J
−1

∇J.
2. Line search: compute the step size β > 0 such that
J(θ +β∆θnt) is minimized.
3. Update θ := θ +β∆θnt.
4. Update ∇̃2J via finite gradient difference.

until |∇J>∇̃2J
−1

∇J| is smaller than stopping criterion.
Return θ opt = θ .

If Problem (P.1) is convex, then the quasi-Newton method
converges to an optimal vector of parameters. However, if
Problem (P.1) is not convex, the quasi-Newton algorithm
only guarantees convergence to a local optimum [4], [3]. In
general, the algorithm is tractable when the dimension of the
governing ODE (3) is less than 1,000 and local convergence
of the quasi-Newton method is typically obtained in 20 to
50 iterations.

V. CHOICE OF THE INPUT SIGNAL: OSCILLATORY VS.
FLAT INPUT SIGNAL

In order to enhance the discovery of the genetic pathway,
we have the freedom to choose the network input signal
G(t) , 0 ≤ t ≤ T . Traditionally, flat command inputs have
been used in biology under the form of growth factors.
However, it has been argued that oscillatory signals could
be implemented as well, and yield better system discovery
[9]. In this section, we first motivate the use of oscillatory
signals by an experimental analysis argument and then we
show that oscillatory signals indeed yield better parameter
identification.

A. Motivation

Frequently in wet lab experiments, a trend (or offset) is
superimposed on the biological response. Such a trend can
appear because of the cell growth, but it is not connected
with the genetic network. In this case, problem (P.1) can-
not be used to estimate the unknown parameters because
the observed cumulants are erroneous. However, the trend
can be eliminated by spectral analysis. Let κ trend(t) be an
unknown constant: κ trend(t) = K trend and let us suppose that
the observed data κobs(t) are given by the superposition of
the genetic response κ true(t) and the trend κ trend(t)

κobs(t) = κ true(t)+κ trend(t). (12)

In order to eliminate the trend, let us take the product of
equation (12) with an arbitrary signal a : t→ a(t) ∈ R

a(t)κobs(t) = a(t)κ true(t)+a(t)κ trend(t). (13)

Now if we observe the process at N different times such that:
t1 = T

N , t2 = 2T
N , . . . , tN = T , we can choose

an(t) = cos(
2πnt

T
), n = 1, . . . ,N−1, (14)

so that
N

∑
k=1

an(tk)κ trend(tk) = 0 , ∀n = 1, . . . ,N−1. (15)

Instead of matching the observable time series data, the
parameter identification problem can be posed as the one of
matching the spectral components of the data. Namely,

minimize J =
N−1
∑

n=1
|∑N

k=1 cos( 2πntk
T )(κobserved(tk)−κ(tk))|2

subject to H(κ(t),θ ) dκ(t)
dt = A(κ(t),θ )+G(t)B(κ(t),θ ).

(P.2)

In steady state, the spectral components of the factorial
cumulants will not be zero if and only if an oscillatory signal
input G(t) is used to excite the system. Therefore, the use of
oscillatory input signals is mandatory in order to eliminate
trends from the experimental data.

B. Performance Measure

Even if no trend is present in the observed data, we will
show in the next section that the use of oscillatory signals
improves the performance of the genetic network discovery
algorithm. For this purpose, we proceed as follows. We de-
note by θ true ∈R

d the true values of the unknown parameters.
We then deviate from this value by setting the initial guess
for the parameters equal to their true value plus some noise
(typically 500% noise): ∀k ∈ {1, . . . ,m},θ guess

k = 5ηk θ true
k ,

where {ηk |k = 1, . . . ,m} are random variables uniformly
distributed between −1 and 1. Finally we run the search
algorithm. We compare the parameters returned, in the case
of the oscillatory input signal and in the case of the flat
command input, in terms of two metrics.

1) The first metric is the final cost J returned by the al-
gorithm. It represents the quadratic deviation between
the output of the simulation and the observed data.

2) The second metric δ =
d
∑

k=1

|θk−θ true
k |

|θ true
k |

is the relative

error between the returned parameters and the true
parameters.

We expect that, regardless of the signal input, the cost
function J will tend to zero when the number of iterations
performed by the algorithm increases. However, the second
metric, which represents the real performance of the search
algorithm may be larger in one case than the other.
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VI. RESULTS

Results are given for the two following systems:
• A single gene auto-regulated by a Hill feedback
• A catalytic enzymatic process.

A. Hill Feedback

This system has two state variables: the number of mRNA
molecules r and the number of proteins p of the gene under
investigation. Transitions can occur if the gene is transcribed
(ε1 = (1,0)), if the gene is translated (ε2 = (0,1)), if one
mRNA molecule is degraded (ε−1 =(−1,0)) or if one protein
molecule is degraded (ε−2 = (0,−1)). The probability of
transitions are given by

Tε1 = G(t)+
a1 +a2 p

b1 +b2 p+b3 p(p−1)
Tε−1 = γrr

Tε2 = kr Tε−2 = γp p

TABLE I. Hill feedback: Probability of transitions.

In the case of a flat input signal as well as in the case of
the oscillatory input signal, the algorithm matches the desired
data to a very good precision. This is indicated by the low
value of the cost function J, always lower than or equal to
10e−6. Furthermore, δ , the relative error between the true
parameters and the parameters returned by the optimization
algorithm, is quite informative. It is systematically smaller
in the case of the oscillatory signal, which loosely means
that the oscillatory signal reveals more information about the
system than the flat signal. This difference is clear for the
long time horizon case, in which the flat input only reveals
the steady state of the system. For the short time horizon;
independently of the input signal, the observations reveal part
of the transient response, a great source of information about
the system. Therefore, the difference between the oscillatory
signal and the flat signal is not as large in this case.

Step signal
G(t)=60

Oscillatory signal
G(t)=50(1+cos(t))

T = 4 hours J = 1.0e−6 J = 2.7e−8

T = 96 hours J = 5.1e−8 J = 1.5e−7

TABLE II. Hill feedback: Optimal cost J returned by the search algorithm.
The cost represents the quadratic deviation between the output of the
simulation and the observed data.

The figures display the state variable over time. Figure 2
shows the initial guess for the state variable corresponding
to θ = θ guess. All other figures show the result of the
algorithm (after the final iteration). The red crosses represent
the observed data. The green line is the returned state
variable and the blue circles (displayed in Figures 3 to 8)
are the pseudo true data, which we can only observe at the

Step signal
G(t)=60

Oscillatory signal
G(t)=50(1+cos(t))

T = 4 hours δ = 3.2897 δ = 2.1915

T = 96 hours δ = 2.5443 δ = 0.0357

TABLE III. Hill feedback: Relative error between the true parameters and
the parameters returned by the search algorithm.

observation times tk ,k = 1, . . . ,n, marked by the red crosses.
Therefore, each red cross coincides by definition with a blue
circle at times tk.

time t in hours
Fig. 2. Hill feedback, oscillatory input, short time horizon: Display of the
initial guess of the six first factorial cumulants (green line), which have been
used at the beginning of the search algorithm. The red crosses represent the
observable data. The time horizon is four hours. G(t) = 50(1+ cos(t)).

B. Michaelis Menten Process

We now consider the enzymatic (E) catalytic process of
transforming a substrate (S) into a product (P) through the
formation of a complex (C):

E + S
k1−→←−

k−1
C

k2−→←−
k−2

E + P . (16)

The state variables of the system are the number of
enzymes E, the number of substrate molecules S, the
number of complexes C and the number of products P.
Nine transitions may occur: the production of one enzyme
ε1 = (1,0,0,0) provoked by the command input, the natural
degradation of one enzyme ε−1 =(−1,0,0,0), the production
of one molecule of substrata ε2 = (0,1,0,0), the degradation
of one molecule of substrata ε−2 = (0,−1,0,0), the four
chemical reactions ε3 = (−1,−1,1,0), ε−3 = (1,1,−1,0),
ε4 = (1,0,−1,1), ε−4 = (−1,0,1,−1), and finally the natural
degradation of one molecule P, ε−5 = (0,0,0,−1).

The results are shown in Table 5 and 6 and in Figures
7, 8, 9 and 10. They corroborate the results for the Hill
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time t in hours
Fig. 3. Hill feedback, oscillatory input, short time horizon: Comparison
between the output of the search algorithm (green line) and the output of
the simulation corresponding to the true parameters (blue circles), for the
six first factorial cumulants. The two outputs are very close to each other,
which means that the search algorithm has properly converged. This will be
the case for all results shown in Figures 4 to 8. The red crosses represent
the observable data and are by definition on top of the blue circles at times
tk . The time horizon is four hours. G(t) = 50(1+ cos(t)).

time t in hours
Fig. 4. Hill feedback, flat input, short time horizon: Comparison between
the output of the search algorithm (green line) and the output of the
simulation corresponding to the true parameters (blue circles). The red
crosses represent the observable data and are by definition on top of the
blue circles at times tk. The time horizon is four hours. G(t) = 50.

Tε1 = G(t) Tε−1 = γE E Tε2 = KS Tε−2 = γSS Tε−5 = γPP

Tε3 = k1ES Tε−3 = k−1C Tε4 = k2C Tε−4 = k−2EP

TABLE IV. Michaelis Menten process: Probability of transitions.

time t in hours
Fig. 5. Hill feedback, oscillatory input, long time horizon: Comparison
between the output of the search algorithm (green line) and the output of
the simulation corresponding to the true parameters (blue circles). The red
crosses represent the observable data and are by definition on top of the blue
circles at times tk . The time horizon is 96 hours. G(t) = 50(1+ cos(t)).

time t in hours
Fig. 6. Hill feedback, flat input, long time horizon: Comparison between the
output of the search algorithm (green line) and the output of the simulation
corresponding to the true parameters (blue circles). The red crosses represent
the observable data and are by definition on top of the blue circles at times
tk . The time horizon is 96 hours. G(t) = 50.

feedback example. In particular, oscillatory signals yield
better parameter identification than flat input signals.

VII. CONCLUSIONS

With the emergence of new measurement tools, such as
flow cytometry, allowing for simultaneous measurements
of thousands of samples of gene expression levels, it is
now possible to observe with high accuracy the statistics of
genetic networks, and in particular it is possible to observe
high order moments of gene molecule numbers. Using this
precious information, optimal control theory allowed us
to perform efficient parameter identification on a general
class of stochastic genetic networks, introduced in [9], [1].
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Step signal
G(t)=200

Oscillatory signal
G(t)=300(1+cos(t))

T = 4 hours J = 1.4e−7 J = 1.6e−7

T = 96 hours J = 3.2e−8 J = 3.2e−9

TABLE V. Michaelis Menten process: Optimal cost returned by the search
algorithm. The cost represents the quadratic deviation between the output
of the simulation and the observed data.

Step signal
G(t)=200

Oscillatory signal
G(t)=300(1+cos(t))

T = 4 hours δ = 1.9e−3 δ = 1.3e−3

T = 96 hours δ = 4.6e−3 δ = 1.52e−4

TABLE VI. Michaelis Menten process: Relative error between the true
parameters and the parameters returned by the search algorithm.

Furthermore, the use of an oscillatory signal as an input in
the genetic network was advocated in order to increase the
amount of information revealed by the system and therefore
to improve the network discovery.
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