
 
 

 

  

Abstract — This paper presents a nonlinear optimal control 
technique based on approximating the solution to the 
Hamilton-Jacobi-Bellman (HJB) equation.  The HJB solution 
(value function) is approximated as the output of a radial basis 
function neural network (RBFNN) with unknown parameters 
(weights, centers, and widths) whose inputs are the system’s 
states. The problem of solving the HJB equation is therefore 
converted to estimating the parameters of the RBFNN. The 
RBFNN’s parameters estimation is then recognized as an 
associated state estimation problem. An adaptive extended 
Kalman filter (AEKF) algorithm is developed for estimating 
the associated states (parameters) of the RBFNN. Numerical 
examples illustrate the merits of the proposed approach. 

I. INTRODUCTION 

Optimal control is an important aspect of control theory 
because of guaranteed closed loop performance for a given 
system. Optimal control of linear time invariant (LTI) 
systems has been well studied and practiced with much 
success [1]. The optimal control design for LTI systems 
generally involves the solution of algebraic Riccati equation 
(ARE). One special extension to nonlinear systems involves 
state dependent Riccati equation (SDRE) technique, which 
provides high performance control. This method consists of 
changing the nonlinear system into a state dependent 
pseudo-linear form and involves the solution of an algebraic 
SDRE along the system’s trajectory to obtain a nonlinear 
feedback controller [2]. 

For most nonlinear systems, however, the optimal control 
design requires the solution of Hamilton-Jacobi-Bellman 
(HJB) equation. The HJB equation in general cannot be 
solved analytically. There have been a number of approaches 
to solve the HJB equation. These approaches, generally, 
involve approximation techniques. One method of solution 
is based on power series approximation of HJB equation. 
The basic idea of this method is to approximate the value 
function as a truncated power series and to find the 
corresponding terms of the series by fitting it in the HJB 
equation [3], [4].  

There are also other approximation techniques. Saridis et 
al. [5] developed a recursive approximation technique which 
starts with a stabilizing controller for a given plant and 

 
P. V. Medagam is with the Department of Electrical and Computer 

Engineering, Southern Illinois University Carbondale, Carbondale, IL 
62901-6603 USA (e-mail: pmedagam@phasetechnologies.com). 

F. Pourboghrat is with the Department of Electrical and Computer 
Engineering, Southern Illinois University Carbondale, Carbondale, IL 
62901-6603 USA (e-mail: pour@siu.edu). 

converges point-wise to the optimal control. Based on this 
technique Beard [6] proposed a successive Galerkin 
approximation for generalized Hamilton-Jacobi-Bellman 
(GHJB) equation and showed the convergence of the 
successive approximation for optimal control solution. The 
difficulty with this and other similar methods is the selection 
of basis functions, which are important for the convergence 
of the solution to optimal control. This difficulty may be 
resolved by employing wavelets [7] or neural networks [8] 
as basis functions.  

Neural networks have been widely used in the 
identification, estimation and control of nonlinear systems 
[9], [10]. Offline estimation of the value function using 
neural networks has been studied in [11] where the neural 
network was trained using least square technique. In 
addition, nonlinear H∞  control using radial basis function 
(RBF) neural networks has been reported in [12]. This 
method is based on the estimation of the value function 
using nonlinear RBF neural networks (RBFNN) where the 
network is trained, offline, using gradient method. 

In the present paper, we solve the HJB equation for the 
optimal value function. The value function is needed to 
solve for an optimal control design. RBFNNs are used to 
estimate the value function as the solution to the generalized 
HJB (GHJB) equation. The performance of the RBFNNs 
depends on their weights, centers and widths. The common 
training approach is to first select the RBF centers using 
unsupervised K-means algorithm [13], or randomly from 
input data, and then determine the weights using least square 
or gradient descent method [12]. However, here, the weights 
as well as the centers and widths of the RBFNN are 
unknown and appear nonlinearly. An adaptive extended 
Kalman filter (AEKF) method is therefore developed to train 
the neural network weights, centers, and widths, online, with 
good accuracy. Fast digital signal processors (DSP) can be 
used for real-time implementation.  

II. STATEMENT OF THE PROBLEM 
 

Consider a nonlinear time invariant system described by  
 ( ) ( )x f x g x u= +                                                    (1)  

where nx ∈ Ω ⊂ ℜ , mu ∈ℜ , : n nf ℜ → ℜ , and 

: n n mg ℜ → ℜ ×ℜ . Without loss of generality, it is assumed 
that 0 0x =  is the equilibrium state and that 0( ) 0f x = . 
Moreover the system is Lipschitz continuous on a set Ω 
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in nℜ .   Also consider the cost function of the form   

 
0

( ) [ ]T TV x x Qx u Ru dt
∞

= +∫                       (2) 

where n nQ ×∈ ℜ  and m mR ×∈ℜ  are positive definite 
matrices. The optimal feedback control problem is to find 
the admissible control ∗u  so that the performance index (2) 
is minimized.  

When an optimal control exists, it is given by  

 1 *1 ( ) ( )
2

T Tu R g x V x∗ −= − ∇                          (3)   

where 
x

∂
∇ =

∂
 is the gradient operator, and that ( )V x∗  is 

the value function and it satisfies the following Hamilton-
Jacobi-Bellman (HJB) equation with boundary conditions 

(0) 0V ∗ = ; i.e., 

 * 11
4( ) 0T T T T Tv V V f x Qx V gR g V∗ ∗ − ∗∇ = ∇ + − ∇ ∇ =    (4)  

The above HJB equation is a two point boundary-value 
problem in terms of the value function ( )V x∗ , which in 
general is impossible to solve, analytically. The above 
equation can be also written in the form of generalized 
Hamilton-Jacobi-Bellman (GHJB) equation [3], i.e.,  
 * * * *( , ) ( ) 0T T Tv V u V f gu x Qx u Ru∗ ∗∇ = ∇ + + + =            (5) 

which is a function of both *V∇  and *u . Unlike the HJB 
equation, the above GHJB equation is linear in terms of 

TV ∗∇  and, together with equation (3), can be solved using 
approximation techniques. 

III. NEURAL NETWORK APPROXIMATION OF THE VALUE 
FUNCTION  

Similar to the HJB equation, in general, the GHJB 
equation cannot be solved analytically. Hence, we 
approximate the value function with radial basis function 
neural networks. The RBF neural network has a feed-
forward structure with one nonlinear hidden layer with Nz 
nodes and a linear output layer. Fig.1 shows the schematic 
diagram of the RBF neural network.  

 
Fig. 1- Schematic diagram of the RBF neural network 

The outputs of the hidden nodes are specified as 
( );i i iz z x c σ= −                                                        (6) 

where i=1,..,Nz, x is the input vector to the neural network, 
and that ci’s and iσ ’s are, respectively, the adjustable centers 
and widths of the RBF functions. The activation functions, 

iz ’s, are chosen as 

( ) 1/ 22 2( )i i iz x x c σ
−

= − +             (7) 

The output of the RBF neural network (RBFNN) is given by  
( ) ( , , )Ty x w z x c σ=                                                        (8) 

 where 1[ , , ]
z

T
Nw w w= , 1[ , , ]

z

T
Nc c c=  and 

1[ , , ]
z

T
Nσ σ σ=  are the vectors of adjustable weights, 

centers, and widths of the RBFNN, and that  

1( ) [ , , ]
z

T
Nz x z z=  is the vector of basis functions. 

Realizing that the value function must be positive definite, 
we approximate the unknown value function using the 
output of the RBF neural network as 

1
0 02

1
0 02

( ) ( ) ( )
( ) ( )

= − −

+ − −

T

T
V x x x P x x

y y y y
                   (9) 

where 0 0( , , )Ty w z x c σ= , x0 is the equilibrium point and P  
is the positive definite solution of the Riccati equation 
corresponding to the linearized approximation of the 
nonlinear system (1).  It should be noted that 

0 ( , , )Ty y w x cϕ σ− =                                                   (10) 
where 0( , , ) ( , , ) ( , , )x c z x c z x cϕ σ σ σ= − . More specifically, 
noting that x0=0 and using (10), the value function (9) can be 
expressed as 

1
2

1
2

( )
( , , ) ( , , )

T

T T
V x x P x

x c ww x cϕ σ ϕ σ
=

+
             (11) 

Selecting ( )V x  as above, it can be verified that ( ) 0V x >  
for all nx ∈ ℜ , 0≠x , and that (0) 0=V . Clearly, if the 
RBFNN parameter vectors w, c, and σ can be found so that 
the proposed approximation of the value function in (11) 
satisfies the GHJB equation (5), then ( )V x  will satisfy the 
cost function (2) and its time derivative will be given by 

= − −T TV x Qx u Ru                 (12) 
which is negative definite. But, since ( )V x  is positive 
definite and radially unbounded, this indicates the stability 
of the closed-loop system. A proper parameter estimation 
technique, however, is required to find the unknown 
parameters of the RBFNN for correct approximation of the 
value function ( )V x .  

The gradient of the value function (11) can be written as  
( ) ( , , )( ) ( , , )T T TV xV x P x c ww x c
x

ϕ σ ϕ σ∂
∇ = = + ∇

∂
      (13) 

where ( , , )( , , ) x c
xx c ϕ σϕ σ ∂

∂∇ = .   Substituting for V∇ , from 
the above, in the GHJB equation (5), we get  

( )
( )

( , ) ( , , )( ) ( , , )

( ) ( ) ( ) ( ) ( )

T T T

T T

v V u x P x c ww x c

f x g x u x x Q x u x Ru x

ϕ σ ϕ σ∇ = + ∇

+ + +
   (14) 

The above equation can be equivalently written as  
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( , )h t vξ θ= +                                                        (15) 
where ( ) ( ) ( ( ) ( ) ( ))T T Tx Qx u x Ru x x P f x g x u xξ = − − − +  is a 
known measurable function of x and u, 

( )( , ) ( , , )( ) ( , , ) ( ) ( ) ( )T Th t x c ww x c f x g x u xθ ϕ σ ϕ σ= ∇ +  is a 
known function of the unknown RBFNN parameter vector 

[ , , ]T T Tw cθ σ= , and ( , )v v V u= ∇  is the equation error due 
to approximation of the value function. Clearly, equation 
(15) is nonlinear in terms of the unknown parameter vector 
θ . Hence, in order to estimate the unknown RBFNN 
parameter vector θ, one must use nonlinear parameter 
estimation techniques.  This will be explained in more detail 
in the following section.  

IV. NEURAL NETWORK TRAINING 
Estimating the RBFNN parameters from equation (15) can 

be viewed as state estimation problem for an associated 
parameter system where the RBFNN parameters (weights, 
centers and widths) are the unknown states to be estimated. 
It is known that Kalman filters (KF) can be successfully 
used in the state estimation problem for linear systems. 
However, because of the nonlinearities in the RBFNN 
formulation, instead of the KF method an extended Kalman 
filter (EKF) must be used for state (parameter) estimation. 
Realizing that the unknown state vector (parameter vector 
θ ) is constant, and using equation (15), the associated 
parameter dynamics is given as [15] 

( , )h t v
θ ω
ξ θ

=
= +

                                                           (16) 

where θ  and ξ  are, respectively, the unknown states and 
measurable outputs of this system, and ω  and ν  are white 
noise disturbances, with covariance matrices fQ  and fR , 
affecting the states and outputs. The EKF algorithm is to 
estimate the unknown states θ  of the system and is given as  

( )ˆ ˆ( , )fK h tθ ξ θ= −                                                       (17) 

where the filter gain matrix Kf is given as  
1−= T

f fK SH R                                                           (18) 

where ( )
∧

∂
∂ =

= hTH θ
θ θ θ

 is the observation matrix for the 

linearized model of the system (16) and 0S >  is a 
symmetric positive definite matrix, which satisfies the 
following filter differential Riccati equation [13], i.e.,  
  12 −= + − T

f fS S Q SHR H Sα                       (19) 

where 0 0 0( ) 0= = >TS t S S , 0≥fQ , 0>fR , and 0>α . 
The convergence properties of the EKF are explained in 
[16]. However, the region of convergence for the EKF 
algorithm in this case may be small. Here, to improve the 
region of convergence, an adaptive extended Kalman filter 
(AEKF) is proposed as 

ˆ = fKθ ξ                            (20) 

where ˆ= −ξ ξ ξ , ˆ ˆ( , )= h tξ θ , and the filter gain matrix Kf is 
given by 

1ˆ −= T
f fK SC R                                                        (21) 

Also, the corresponding adaptive output matrix Ĉ  is 
adjusted as 

 ( )ˆ ˆ⎡ ⎤= +⎣ ⎦
TC signλξ γ ξ θ                                                (22) 

2
0 1

0

= + ∫
t

γ γ γ ξ
  

                                                  (23) 

where 0>λ , 
ˆ (0)ˆ ˆ(0) (0) ˆ

∂
= =

∂

hC H
θ

, 0 1, 0>γ γ , 0α > , 

( )( ) ≅sign sat ξ
εξ  and 1ε << . Moreover, the symmetric 

positive definite matrix, 0S > , satisfies a filter differential 
Riccati equation (FDRE) [16], given as 
 1ˆ ˆ2 −= − +T

f fS S SC R CS Qα                                (24) 

where 0(0) (0) 0= = >TS S S . The convergence of the 
RBFNN parameters (weights, centers, and widths) is shown 
in the following lemma.  
 
Lemma:   

Consider the dynamics of the RBFNN parameters (16). If 
these unknown parameters are estimated according to the 
proposed AEKF algorithm (20)-(24), then the output and the 
parameter errors, ξ , θ , converge to zero, asymptotically. 
 
Proof:   

Let ˆθ θ θ= − . Then  

= − +fKθ ξ ω                                      (25) 
Using power series expansion, let us express ( , )h h t θ=  as 

 0 ( , )h h C t θ θ= +                   (26) 
where )0,(0 thh = , and ( , )C t θ  is a nonlinear vector. The 
estimate of ( , )h t θ  can then be written as  

 0
ˆ ˆ ˆ ˆ( , )h h C t θ θ= +                  (27) 

where )ˆ,(ˆ θthh = . Now define ˆ ˆ ˆh h h C Cθ θ= − = − . Then   

 
1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ−

= − = + − −

= + − −T
f

h h h C C C C

C C C S C R C

θ θ θ θ

ω θ ξ θ
                                (28) 

Then, noting that h vξ = +  and using Ĉ  form (22)-(23), 
one can write 

( ) 2
1

1
ˆ ˆ ˆ( )−= − − +T

fC S C R signξ μ ξ λξ γ ξ θ        (29) 

where 1 = + +C C vμ ω θ  is bounded. Now, using the 

Lyapunov function 2=Vξ ξ  and its derivative 2
0≤ −Vξ η ξ , 

with 
max

2
0 min

ˆ2⎛ ⎞
= +⎜ ⎟

⎝ ⎠
η

ξ
η λ θ , 0>η  and 

2

1 maxmin
ˆ − ≥γ θ μ η , 

one can show that ξ  converges to zero. However, since 

+C vθ  is bounded and ˆ ˆ= + = − +h v C C vξ θ θ  goes to 

zero, ˆ ˆCθ  must be bounded and must converge to +C vθ . 

357



 
 

 

Moreover, since 
2

ˆ
ˆ ˆ ˆ T

C
V C C C= =  is lower bounded and its 

derivative ( )ˆ
ˆ ˆ ˆ ˆ2 2T

C
V CC C signθ λξ γ ξ⎡ ⎤= = +⎣ ⎦  converges to 

zero, then 
Ĉ

V  and hence Ĉ  must be bounded. But, since 

ˆ ˆCθ  is bounded, then θ̂  must also be bounded, Now 

consider a Lyapunov function candidate  

 2= Π +TV θ θ ξ                                                         (30) 

where 0>Π=Π T  such that 1−= ΠS  and Π = −Π ΠS . 
Take the time-derivative of ( )V x , apply the Young’s 

inequality to the terms 2 ΠTθ ω  and 1ˆ2 −− T T
fC Rθ ξ , add and 

subtract the term 1ˆ ˆ2 2 −Π +T T T
fC R Cαθ θ θ θ , note that 

2

maxmax
ˆ

1ˆ ˆ− ≤ Π
f

C ST T T
f RC R Cθ θ θ θ , and substitute for ξ  from 

(29). Then, we get  

 

max

1

2
2

max

1

2

maxmax

1

2
1 2

ˆ ˆ
2 4

21
2

ˆ

1 2

2 2
ˆ2 2 2

2

2 2

ˆ ˆ2 2

2

−

Π

Π−

= Π + Π +

= − Π Π + Π − +

≤ − Π Π + Π +

⎡ ⎤+ Π + +⎢ ⎥⎣ ⎦
⎡ ⎤≤ Π − + − Π +⎣ ⎦

⎛
+ + + −

⎝

T

f

f

T T

T T T T
f

T T

T CSC
R

T T
f

C S

R

V

S C R

S

S S SC R CS

α

α

α

θ θ θ θ ξξ

θ θ θ ω θ ξ ξξ

θ θ α θ θ ω

α θ θ ξ ξ ξ

θ α θ ω

α α α

( )2
2

2

2ˆ ˆ(4 1)
1 4

ˆ2 ( )−

⎞
Π⎜ ⎟

⎠
⎡ ⎤+ − − +⎢ ⎥⎣ ⎦

T
f

f

T

R CSC

R
signα

α

θ θ

ξ μ ξ λξ γ ξ θ
   

(31) 

Now substitute for S  from (24) in the above, and note 
that since 0fQ ≥  and 0>fR , the solution S  to the FDRE 
(24) is bounded both from above and below. Let 1 0>α , 

1
2 4≥

fRα , 
2

maxmax
ˆ

1 2≥ + +
f

C S

Rα α α . Then, we get   

( )

max

1

21
2

2

1

ˆ ˆ

ˆ2 ( )

Π−⎡ ⎤≤ − Π + Π +⎣ ⎦
⎡ ⎤+ − +⎢ ⎥⎣ ⎦

T T
f fV Q S C R C S

sign

αθ θ ω

ξ μ λξ γ ξ θ
        (32) 

However, as long as 0ξ ≠ , γ  will increase and, since 

ˆ 0≠θ , after a finite time we have 
2

1 maxmin
ˆ − ≥γ θ μ η  for 

some 0>η .  Now, let 
max

2

0 min
ˆ2⎛ ⎞= +⎜ ⎟

⎝ ⎠
η

ξ
η λ θ  with 0>η . 

Also let { }0 0min
min ,= Π ΠfQλ η  and choose 1 0>α  such 

that max

0

2
1 2 max

Π≥ δα ω  for some 0 0>δ . Then, the derivative 
of the Lyapunov function will become  

 ( )2 2

0 0≤ − + +V λ θ ξ δ                                       (33) 

This proves the boundedness of the Lyapunov function V  
as well as θ and ξ . Moreover, let us define the residual 

set ( ){ }2 2

0 0( , )= + ≤r θ ξ θ ξ ε  where 0

00 0= >δ
λε . Then, 

it is easy to show that the total estimation error 
2 2

+θ ξ  

must converge to the small residual set 0r . Furthermore, in 
case 0=ω , we will have 0 0=ε  and { }0 0=r , and hence V  

and both θ  and ξ  must converge to zero, asymptotically.  

Given 0fQ ≥  and 0fR > , and assuming that the 
associated parameter system is observable, the FDRE (24) 
can be solved for the covariance matrix 0S >  continuously 
and the time varying gain Kf can be determined from 
equation (21). The RBFNN parameters are then estimated 
using equation (20) with the knowledge of Kf and 
measurement of system states x. Assuming the nonlinear 
system is controllable, with the estimated RBFNN 
parameters, the nonlinear system can be controlled using the 
optimal control (3) via the solution of the GHJB equation 
(5). It can be shown that the closed-loop system, consisting 
of the AEKF parameter estimator and the GHJB-based 
optimal control working together, simultaneously, is 
globally stable and that both the estimation and the control 
errors will converge to a small residual set.  

V. SIMULATION RESULTS  
In this section, SISO nonlinear systems are considered for 

regulation problem.  The proposed technique is applied for 
the optimal control design. Two examples are presented.  
 
Example 1:  

Consider the following first order nonlinear system 
3x x u= +                                                                (34) 

The objective is to design the optimal control for this 

system so as to minimize the cost 2 4 2

0

( 2 )
∞

= + +∫J x x u dt .  

In this example we compare our proposed neural network 
based optimal control with the exact optimal control. The 
exact optimal control can be found analytically by solving 
the HJB equation [3], which results in 

2

2
( ) ( ) ( )( ) ( )f x f x l xu x sign bx
b rb

∗ = − − +              (35)  

For the above example, the optimal control is given by 
3( ) 2∗ = − −u x x x                                                           (36) 

For our proposed method the number of basis functions 
and, hence, the number of centers, widths and weights were 
selected to be 5 and the neural network is trained by the 
adaptive EKF algorithm. Fig.2 shows the system states. 
Fig.3 shows a comparison of the value functions 
corresponding to the exact optimal control found in equation 
(36) and that of our proposed method. The comparison 
establishes that our proposed method is nearly optimal. Also, 
Fig.4 shows the norm of the RBFNN parameter vectors ŵ , 
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ĉ  and σ̂ . It can be seen that these parameters converge to 
some constant values, quickly.  

  

 
Fig.2- System state  
 

 
Fig. 3- Performance cost 
 

 
Fig. 4- Norms of the RBFNN parameter vectors   
 
Example 2: 

Consider the following 2nd order SISO nonlinear system 
3
1 2

1 2

0
( ) ( )

1
⎡ ⎤− − ⎡ ⎤

= + = +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

x x
x f x g x u u

x x
                     (37) 

where the state vector x is assumed to be completely known.  
The goal is to find the optimal control so as to minimize the 
performance cost    

∫
∞

+=
0

][ dtRuuQxxJ TT                                      (38) 

where Q and R are the positive definite matrices and chosen 
as R=1 and 2 2×=Q I  for this problem. It can be verified that 
the system has an equilibrium point at 0 (0,0)Tx = .  Again, 
the value function ( )V x  is approximated, using the output of 
an RBF neural network, as  

1 1
2 2( ) ( ) ( )  = +T T TV x x P x x w w xϕ ϕ       (39) 

The positive definite matrix P  of the above value 
function is obtained by linearizing the system (37), around 
its equilibrium point x=0, and by solving the following 
Riccati equation, i.e.,  

01 =−++ − PBBRPQAPPA TT                   (40) 

where 0
0

F
xx
u

A ∂
=∂
=

= , 0
0

F
xu
u

B ∂
=∂
=

= .   

The number of radial basis functions selected for this 
problem is 8. The weights, centers, and widths of the 
RBFNN are estimated, form the GHJB equation, using the 
proposed AEKF algorithm explained in the previous section.  
The optimal control law was then found from the estimated 
value function, based on the proposed method.  In addition, 
for comparative study, two other approximation techniques, 
namely the exact feedback linearization (FL) and successive 
Galerkin approximation (SGA) were used to find the optimal 
control. Consequently, the proposed optimal control, the FL 
control and the SGA control were each applied to the 
system, independently, under the same conditions. The exact 
feedback linearization control law FLu  for this SISO 
nonlinear system was adopted from [14], which is given as  

)(3522.14142.033 2
3
1122

2
1

5
1 xxxxxxxuFL +−+−+=     (41) 

The control law obtained from the SGA method, using 8 
basis functions, is given as [14] 

3
1 2 1

2 2 3
1 2 1 2 2

0.4215 2.2225 0.4784

0.2719 0.6494 0.0588
SGAu x x x

x x x x x

= − − −

+ + +
      (42) 

All the simulations were carried out using MATLAB/ 
SIMULINK. Fig.5 shows the system states x1 and x2 for the 
proposed control.  A comparison of the value function found 
using these control methods with the initial 
conditions 1 1( 0) , [ 1,1]Tx x ∈ −  is shown in Fig.6.  In this 
figure VFL is the value function associated with the control 
law uFL, VSGA is the value function associated with the 
control law uSGA and V is the value function associated with 
the proposed control law based on the RBF neural network.  
From these figures it is clear that the proposed control 
method provides a better approximation of the optimal 
control as compared to those found in [17] for the same 
number of basis functions. It is shown in [17] that the 
controller with 15 basis functions performs better than the 
controller with 8 basis functions. With 15 basis functions, 
the proposed method performs slightly better than 8 basis 
functions and is similar to [17] with 15 basis functions. Fig.7 
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shows the norm of the RBFNN parameter vectors ŵ , ĉ  and 
σ̂ , where they all converge to some constant values. 
 

 
Fig. 5- System states   
    

 
Fig. 6- Performance cost 
 

 
Fig. 7- Norms of the RBFNN parameter vectors   
 

VI. CONCLUSION 
This paper presents an approach to finding the optimal 

control law for nonlinear systems using neural networks. 
The design procedure approximately solves the generalized 
Hamilton-Jacobi-Bellman (GHJB) equation by estimating 
the value function using nonlinear radial basis function 

neural networks (RBFNN). The neural network is trained by 
an adaptive extended Kalman filter (AEKF), which 
estimates the RBFNN parameters, online. The proposed 
nonlinear optimal control method was applied to a 1st and a 
2nd order SISO nonlinear system. In the case of 1st order 
nonlinear system the proposed approximation of the optimal 
control was compared with the exact optimal control to show 
that the proposed method indeed generates a nearly optimal 
control. 
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