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Abstract— This paper presents the central finite-dimensional
H∞ regulator for nonlinear polynomial systems, that is subop-
timal for a given threshold γ with respect to a modified Bolza-
Meyer quadratic criterion including the attenuation control
term with the opposite sign. In contrast to the previously
obtained results, the paper reduces the original H∞ control
problem to the corresponding optimal H2 control problem,
using the technique proposed in [1]. The paper yields the central
suboptimal H∞ regulator for nonlinear polynomial systems in
a closed finite-dimensional form, based on the optimal H2 reg-
ulator obtained in [2]. Numerical simulations are conducted to
verify performance of the designed central suboptimal regulator
for nonlinear polynomial systems against the central suboptimal
H∞ regulator available for the corresponding linearized system.

I. INTRODUCTION

Over the past two decades, the considerable attention

has been paid to the H∞ control (regulator) problems for

linear and nonlinear systems. The seminal H∞ control paper

[1] established a background for consistent treatment of

regulator design problems in the H∞ framework. The H∞

regulator design implies that the resulting closed-loop control

system is robustly stable and achieves a prescribed level

of attenuation from the disturbance input to the output in

L2/l2-norm. A large number of results on this subject have

been reported for systems in the general situation, linear

or nonlinear (see ([3]–[16]). The sufficient conditions for

existence of an H∞ regulator, where the control gain matrices

satisfy Riccati equations, were obtained for linear systems in

[1]. However, the criteria of existence and suboptimality of

solution for the central H∞ control problems based on the

reduction of the original H∞ problem to the induced H2 one,

similar to those obtained in [1] for linear systems, remain

yet unknown for nonlinear polynomial systems.

Although the optimal LQR problem for linear systems was

solved in 1960s [17], [18], the optimal regulator for nonlinear

systems has to be determined using the general principles

of maximum [18] or dynamic programming [19], which do

not provide an explicit form for the optimal control in most

cases. Thus, there is a long tradition of the optimal control
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design for various classes of nonlinear systems (see, for

example, [20]–[25]), in particular, polynomial [2] systems.

This paper presents the central (see [1] for definition)

finite-dimensional H∞ regulator for nonlinear polynomial

systems, that is suboptimal for a given threshold γ with

respect to a modified Bolza-Meyer quadratic criterion in-

cluding the attenuation control term with the opposite sign.

In contrast to the results previously obtained for nonlinear

systems [3]–[8], the paper reduces the original H∞ control

problem to the corresponding optimal H2 control problem,

using the technique proposed in [1]. To the best authors’

knowledge, this is the first paper which applies the reduction

technique of [1] to certain classes of nonlinear systems.

Indeed, application of the reduction technique makes sense,

since the optimal regulator equations solving the H2 control

problems have been obtained for nonlinear polynomial sys-

tems [2]. Designing the central suboptimal H∞ regulator for

nonlinear polynomial systems presents a significant advan-

tage in the control theory and practice, since (1) it enables

one to address H∞ control problems for non-autonomous

nonlinear polynomial systems, where the LMI technique is

hardly applicable and the HJB equation-based methods fail to

provide a closed-form solution, (2) the obtained H∞ regulator

is suboptimal, that is, optimal for any fixed γ with respect to

the H∞ noise attenuation criterion, and (3) the obtained H∞

regulator is finite-dimensional and has the same structure

of the controlled state and gain matrix equations as the

corresponding optimal H2 regulator.

It should be commented that the proposed design of the

central suboptimal H∞ regulator for nonlinear polynomial

systems with integral-quadratically bounded disturbances

naturally carries over from the design of the optimal H2

regulator (see [2]) for nonlinear polynomial systems with

unbounded disturbances (white noises). The entire design ap-

proach creates a complete control algorithm of handling the

nonlinear polynomial systems with unbounded or integral-

quadratically bounded disturbances optimally for all thresh-

olds γ uniformly or for any fixed γ separately. A similar

algorithm for linear systems was developed in [1].

Numerical simulations are conducted to verify perfor-

mance of the designed central suboptimal regulator for non-

linear polynomial systems against the central suboptimal H∞

regulator available for the corresponding linearized system.

The simulation results show a definite advantage in the values

of the noise-output transfer function H∞ norm in favor of the

designed regulator.

The paper is organized as follows. Section 2 presents

the H∞ control problem statement for nonlinear polynomial
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systems. The central suboptimal H∞ regulator for nonlinear

polynomial systems is designed in Section 3. An example

verifying performance of the H∞ regulator designed in Sec-

tion 3 against the central suboptimal H∞ regulator available

for the corresponding linearized system is given in Section

4. Section 5 presents conclusions to this study.

II. H∞ CONTROL PROBLEM STATEMENT FOR

POLYNOMIAL SYSTEMS

Consider the following continuous-time polynomial sys-

tem:

S1 : ẋ(t) = f (x, t)+B(t)u(t)+G(t)ω(t), (1)

x(t0) = x0,

z(t) = L(t)x(t)+D(t)u(t), (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control

input, z(t) ∈ R
q is the output, ω(t) ∈ L k

2 [0,∞) is the distur-

bance input, B(·), D(·), G(·), and L(·) are known continuous

functions.

The nonlinear function f (x, t)∈Rn is considered a polyno-

mial of n variables, components of the state vector x(t)∈ Rn,

with time-dependent coefficients. Since x(t)∈ Rn is a vector,

this requires a special definition of the polynomial for n > 1.

In accordance with [26], a p-degree polynomial of a vector

x(t) ∈ Rn is regarded as a p-linear form of n components of

x(t)
f (x, t) = α0(t)+α1(t)x+α2(t)xxT +

. . .+αp(t)x . . .p times . . .x
T ,

where α0(t) is a vector of dimension n, α1 is a matrix of

dimension n×n, α2 is a 3D tensor of dimension n×n×n, αp

is an (p + 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .×n obtained by p times spatial multiplication of

the vector x(t) by itself (see [26] for more definition). Such

a polynomial can also be expressed in the summation form

fk(x, t)= α0 k(t)+∑
i

α1 ki(t)xi(t)+∑
i j

α2 ki j(t)xi(t)x j(t)+. . .

(3)

+ ∑
i1...ip

αp ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1, . . . , ip = 1, . . . ,n.

For the system (1),(2), the following standard condition

(see [1] for linear systems) are assumed:

• the state x(t) governed by (1) is uniformly stabilizable;

(C1)
• DT (t)L(t) = 0 and DT (t)D(t) is a positive definite

matrix. (C2)

Here, Im is the identity matrix of dimension m×m. The def-

initions of the uniform stabilizability for nonlinear systems

can be found in [27].

The H∞ control problem to be addressed is as follows:

develop a robust H∞ regulator for the polynomial system

(S1), such that the following two requirements are satisfied.

1) The resulting controlled system dynamics (S1) is

robustly asymptotically stable in the absence of dis-

turbances, ω(t) ≡ 0;

2) The controlled system dynamics (S1) ensures a noise

attenuation level γ in an H∞ sense. More specifically,

for zero state initial conditions and any nonzero dis-

turbance input ω(t) ∈ L
p

2 [0,∞), the inequality

‖z(t)‖2
2 < γ2 ‖ω(t)‖2

2 (4)

holds, where ‖ f (t)‖2
2 :=

∫ T1
t0

f T (t) f (t)dt, T1 is the

rightmost point of a time interval where the solution of

(1) exists and is bounded, and γ is a given real positive

scalar.

Remark 1. Hereinafter, the formulated H∞ control prob-

lem is considered in a time interval [t0,T1], T1 < T ∗, T ∗ is

an escape time for the system (1). Thus, the solution of the

state equation (1) still exists and is bounded in [t0,T1].

III. DESIGN OF CENTRAL H∞ REGULATOR FOR

POLYNOMIAL SYSTEMS

The proposed design of the central H∞ regulator (see

Theorem 4 in [1] for definition) for polynomial systems is

based on the general result (see Theorem 3 in [1]) reducing

the H∞ controller problem to the corresponding optimal H2

controller problem. In this paper, only the control (regulator)

part of this result, valid for the entire controller problem, is

used. Then, the optimal H2 polynomial-quadratic regulator

for polynomial systems ([2]) is employed to obtain the

desired result, which is given by the following theorem.

Theorem 1. The central H∞ regulator for the polynomial

state with linear control input (1), ensuring the H∞ noise

attenuation condition (4) for the output z(t), is given by the

control law

u(t) = (DT (t)D(t))−1BT (t)[Q(t)x(t)+ p(t)], (5)

where the matrix function Q(t) is the solution of the

quadratic equation

Q̇(t) = LT (t)L(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+

. . .+ pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t)− (6)

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]−

Q(t)[B(t)(DT (t)D(t))−1BT (t)− γ−2G(t)GT (t)]Q(t),

with the terminal condition Q(T1) = 0, and the vector func-

tion p(t) is the solution of the linear equation

ṗ(t) = −Q(t)a0(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+

. . .+ pap(t)x(t) . . .p−1 times . . .x(t)]
T p(t)− (7)

Q(t)[B(t)(DT (t)D(t))−1BT (t)− γ−2G(t)GT (t)]p(t),

with the terminal condition p(T1) = 0. The optimally con-

trolled system (S1) takes the form

ẋ(t) = f (x, t)+B(t)(DT (t)D(t))−1× (8)

BT (t)[Q(t)x(t)+ p(t)]+G(t)ω(t), x(t0) = x0.

z(t) = L(t)x(t)+D(t)(DT (t)D(t))−1BT (t)[Q(t)x(t)+ p(t)].
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Proof. According to Theorem 3 from [1], the central H∞

control (regulator) problem is equivalent to the H2 optimal

control problem, where the H2 quadratic cost function is in

the Bolza-Meyer form

J =
1

2

∫ T1

t0

[uT (s)(DT (t)D(t))u(s)+ xT (s)(LT (s)L(s))x(s)]ds,

(9)
and the matrix B(t)(DT (t)D(t))−1BT (t) should be changed to

B(t)(DT (t)D(t))−1BT (t)− γ−2G(t)GT (t) in the gain matrix

equation. Therefore, as follows from Theorem 1 in [2], the

solution of the optimal H2 (linear-quadratic) control problem

for the polynomial state (1) with linear control input with

respect to the quadratic criterion (9) is given by the equation

for the optimally controlled state

ẋ(t) = f (x, t)+B(t)(DT (t)D(t))−1(t)× (10)

BT (t)[Q(t)x(t)+ p(t)]+G(t)ω(t), x(t0) = x0.

where the matrix function Q(t) is the solution of the

quadratic equation

Q̇(t) = LT (t)L(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t)−

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]−

Q(t)B(t)(DT (t)D(t))−1BT (t)Q(t),

with the terminal condition Q(T1) = 0, and the vector func-

tion p(t) is the solution of the linear equation

ṗ(t)=−Q(t)a0(t)−[a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+. . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T p(t)− (12)

Q(t)B(t)(DT (t)D(t))−1BT (t)p(t),

with the terminal condition p(T1) = 0. Taking into

account the correspondence between the matrix

B(t)(DT (t)D(t))−1BT (t) in the H2 optimal control problem

and the matrix B(t)(DT (t)D(t))−1BT (t) − γ−2G(t)GT (t)
in the central H∞ control (regulator) problem yields the

result of Theorem 1, i.e., the central H∞ regulator equations

(5)-(8). ¥

Remark 2. The boundedness of the controlled system state

x(t), as well as the regulator gain matrix Q(t) and the vector

p(t), is determined by the definiteness of the most superior

polynomial term in the right-hand sides of (6),(7). If this term

is stable, then x(t), Q(t), and p(t) remain bounded for all

t ∈ [t0,T1], where T1 < ∞ is any finite time moment, and the

regulator gain matrix P(t) also remains negative definite. In

the latter case, it makes sense to consider the H∞ noise-output

attenuation problem with a certain level γ in the infinite

interval [t0,∞). Otherwise, if the most superior polynomial

terms in (6),(7) are unstable, then x(t), Q(t), and p(t) diverge

to infinity for a finite time and the designed regulator does not

work properly for all t ∈ [t0,∞). However, even in this case,

the designed central suboptimal H∞ regulator for polynomial

systems yields the least possible value of the output H∞ norm

in those finite time intervals [t0,T1], where the solution of (8)

exists and is bounded.

Remark 3. According to the comments in Subsection V.G

in [1], the obtained central H∞ regulator (5)–(8) presents a

natural choice for H∞ regulator design among all admissible

H∞ regulators satisfying the inequality (4) for a given thresh-

old γ , since it does not involve any additional actuator loop

(i.e., any additional external state variable) in constructing

the regulator gain matrix. Moreover, the obtained central

H∞ regulator (5)–(8) has the suboptimality property, i.e., it

minimizes the criterion

J = ‖z̃(t)‖2
2 − γ2 ‖ω(t)‖2

2

for any such positive γ > 0 that the the controlled system is

stable.

Remark 4. Following the discussion in Subsection V.G

in [1], note that the complementarity condition always holds

for the obtained H∞ regulator (5)–(8), since the the regulator

gain matrix Q(t) is negative definite as the solution of (6).

Therefore, the stability failure is the only reason why the

designed regulator can stop working.

IV. EXAMPLE: CENTRAL H∞ REGULATOR FOR

POLYNOMIAL SYSTEM

This section presents an example of designing the central

H∞ regulator for a second degree polynomial system with

linear control input and comparing it to the central H∞

regulator available for the corresponding linearized system,

that is the regulator obtained in Theorems 3 and 4 from [1].

Let the system state x(t) = [x1(t),x2(t)] ∈ R2 be given by

ẋ1(t) = x2(t), (13)

ẋ2(t) = 0.1x2
2(t)+u1(t)+w(t),

with the initial condition x(0) = x0 = [x10,x20], and the output

z(t) ∈ R be represented as

z(t) = x1(t)+u2(t), (14)

Here, w(t) is an L2
2 disturbance input. It can be readily

verified that the condition (C2) (see Section 2) holds for the

system (13),(14).

The H∞ control problem to be addressed is the same as

described at the end of Section 2. Note that the second degree

coefficient in (13) is positive, i.e., the superior polynomial

term is unstable (see Remark 1 in Section 3). The control

horizon is set to t1 = 2.1, prior to the escape time for the

system state (13).

The H∞ regulator equations (5)–(8) take the following

particular form for the system (13),(14). The control law (5)

is given by

u∗(t) = Q(t)x(t)+ p(t), (15)

where the entries of the gain matrix Q(t) and the vector p(t)
satisfy the equations

Q̇11(t) = 1− (1− γ−2)Q2
12(t), (16)
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Q̇12(t) = Q11(t)+0.2x2(t)Q12(t)− (1− γ−2)Q12(t)Q22(t),

Q̇22(t) = 2Q12(t)+0.4x2(t)Q22(t)− (1− γ−2)Q2
22(t),

with the zero terminal conditions, Q(2.1) = 0, for all entries

of the matrix Q(t), and

p(t) ≡ 0. (17)

The obtained system (13),(15),(16) can be solved using

simple numerical methods, such as ”shooting.” This method

consists in varying initial conditions of (16) until the given

terminal condition is satisfied.

Upon substituting the control (15),(17) into (13),(14) the

optimally controlled state equations take the form

ẋ1(t) = x2(t), (18)

ẋ2(t) = 0.1x2
2(t)+Q12(t)x1(t)+Q22(t)x2(t)+w(t).

The designed regulator (15)–(18) is compared to the

central H∞ linear regulator given by Theorems 3 and 4 in

[1]. The central H∞ linear regulator, applied to the linearized

system (13),(14) yields the control law is given by

u(t) = Q(t)x(t), (19)

where the entries of the gain matrix Q(t) satisfy the equations

Q̇11(t) = 1− (1− γ−2)Q2
12(t), (20)

Q̇12(t) = Q11(t)+0.2Q12(t)− (1− γ−2)Q12(t)Q22(t),

Q̇22(t) = 2Q12(t)+0.4Q22(t)− (1− γ−2)Q2
22(t),

with the zero terminal conditions, Q(2.1) = 0, for all entries

of the matrix Q(t).
Upon substituting the control (19) into (13),(14) the opti-

mally controlled state equations take the same form as the

equations (18).

For numerical simulation of the system (13),(14) and the

regulator equations (15)–(18) and (19),(20), the initial values

x1(0) = 1 and x2(0) = 0 are assigned. The L2 disturbance

w(t) is realized as w1(t) = 1/(1+ t)2. The attenuation level

value is set to γ = 1.05.

The following graphs are obtained: graphs of the H∞ con-

trolled output z(t) corresponding to the regulator (15)–(18);

graphs of the H∞ controlled output z(t) corresponding to

the regulator (19),(20) (Fig. 1). The graphs of the controlled

outputs are shown in the entire simulation interval from

t0 = 0 to t1 = 2.1. Figure 1 also demonstrates the dynamics

of the noise-output H∞ norms corresponding to the shown

H∞ controlled outputs in each case.

The following values of the noise-output H∞ norm T =
‖z(t)‖/‖ω(t)‖ are obtained for the simulated disturbance

w(t) at the final simulation time t1 = 2.1: T = 0.05 for the H∞

controlled output z(t) corresponding to the regulator (15)–

(18); T = 0.48 for the H∞ controlled output z(t) correspond-

ing to the regulator (19),(20).

It can be concluded that the central suboptimal H∞ regu-

lator (15)–(18) provides reliably convergent behavior of the

output, yielding very small values of the corresponding H∞

norm, even in comparison to the assigned threshold value

γ = 1.05, and almost zero output values in the final time.

In contrast, the conventional central H∞ regulator (19),(20)

provides divergent behavior of the output, yielding a larger

value of the corresponding H∞ norm. Thus, the simulation

results show definite advantages of the designed central sub-

optimal H∞ regulator for polynomial systems, in comparison

to the previously known conventional H∞ linear regulator.
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Fig. 1. Above. Graphs of the H∞ controlled outputs corresponding to the
regulator (15)–(18) (thick line) and the regulator (19),(20) (thin line), in the
simulation interval [0,2.1]. Below. Graph of the noise-output H∞ norm T for
the shown H∞ controlled outputs corresponding to the regulator (15)–(18)
(thick line) and the regulator (19),(20) (thin line), in the simulation interval
[0,2.1].

V. CONCLUSIONS

This paper designs the central finite-dimensional H∞ reg-

ulator for nonlinear polynomial systems, that is subopti-

mal for a given threshold γ with respect to a modified

Bolza-Meyer quadratic criterion including the attenuation

control term with the opposite sign. In the example, the

numerical simulations are conducted to verify performance

of the designed central suboptimal regulator for a second

order polynomial system against the central suboptimal H∞

regulator available for the corresponding linearized system.

The simulation results show a definite advantage in the values

of the noise-output transfer function H∞ norm in favor of the

designed regulator. In particular, the estimation error given

by the obtained regulator converges to zero, whereas the

estimation error of the conventional regulator diverges. This

significant improvement in the estimate behavior is obtained

due to the more careful selection of the control gain matrix

in the designed regulator. Although this conclusion follows

from the developed theory, the numerical simulation serves

as a convincing illustration.
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The proposed design of the central suboptimal H∞ reg-

ulators for nonlinear polynomial systems with integral-

quadratically bounded disturbances naturally carries over

from the design of the optimal H2 regulators for nonlinear

polynomial systems with unbounded disturbances (white

noises). The entire design approach creates a complete con-

trol algorithm of handling the nonlinear polynomial systems

with unbounded or integral-quadratically bounded distur-

bances optimally for all thresholds γ uniformly or for any

fixed γ separately. The presented approach would be applied

in the future to obtain the central suboptimal H∞ regulators

for nonlinear polynomial time-delay systems.
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