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Abstract— Control of smart actuators is limited due to strong
hysteresis effects which affect the accuracy of these actuators
in micropositioning applications. In this paper, generalized
Prandtl-Ishlinskii hysteresis model and its inverse are presented
to characterize and to compensate hysteresis effects in smart
actuators, where a generalized symmetric play operator is
adopted to form the generalized Prandtl-Ishlinskii model. The
capability of the formulated model to characterize hysteresis in
smart actuators is demonstrated by comparing its outputs with
experimental results obtained from a piezoceramics actuator.
Inverse of the generalized Prandtl-Ishlinskii model is also
constructed and it can be implemented as a feedforward
compensator to migrate the effects of the hysteresis in different
types of smart actuators. To improve the robustness and ensure
the stability of the closed-loop system, a robust adaptive control
is developed considering the system dynamics. The simulation
results validate the effectiveness of the proposed approach.1

I. INTRODUCTION

Hysteresis is a nonlinear phenomenon that appears in

various systems including smart actuators and materials

[1]-[4][7]. Smart actuators, such as piezoceramic actuators,

magnetostrictive actuators, and shape memory alloy (SMA)

actuators have been widely used in micropositioning ap-

plications. However, these actuators show strong hysteresis

effects in their output responses. These effects can cause

inaccuracy and oscillations in the system response, and could

lead to instability of the closed loop system [5]. A number

of hysteresis models have been developed for characterizing

the hysteresis properties of materials and actuators. The

primary goal of these models is to accurately characterize the

hysteresis behavior to study the effects in order to facilitate

the design of controllers for compensating for the hysteresis

effects [1].

The most widely cited hysteresis models are: operator-

based and differential equation-based hysteresis models.

Operator-based hysteresis models include Preisach model

[2], Krasnosel’skii-Pokrovskii model [4], and Prandtl-

Ishlinskii model [3], while differential equation-based hys-

teresis models include Duhem model [19] and Bouc-Wen

model [19]. Therein, the Prandtl-Ishlinskii hysteresis model

is one of the most widely used phenomological based-

operator models in applications involving hysteresis mod-

eling and compensation of hysteresis in smart actuators

[6] [12]. The hysteresis in the Prandtl-Ishlinskii model is

considered as a cumulative effect of a number of play or
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stop operators, which are parameterized by single threshold,

and density function [3].

Based on the above formulated hysteresis models two

control strategies are generally adopted in the literature to

compensate hysteresis effects in smart actuators [8]-[19]. The

first scheme is to design a nonlinear controller that yields

input signals that directly incorporate actuator nonlinearities

[12]. The second scheme is to construct the inverse of the

hysteresis model and apply it as a feedforward compensator.

For the control scheme to construct the inverse of the

hysteresis model, the inversion of Preisach, Krasnosel’skii-

Pokrovskii model, and PrandtlIshlinskii model have been

addressed to compensate hysteresis effects of smart ac-

tuators e.g. [6], [10]. In [6], the hysteresis effects of a

piezoceramic actuator is compensated by constructing the

inverse of Prandtl-Ishlinskii model. Approximation inver-

sion of Krasnosel’skii-Pokrovskii model was developed in

[10] to mitigate the effects of hysteresis in piezoceramic

actuator. For theoretical point of view, the system stability

and the dynamics of the actuators should be considered.

Some closed-loop control approaches are addressed based

on the inverse of hysteresis model to achieve better tracking

performance. In [18], inverse Preisach model is used as a

feedforward compensator with PID feedback control system

to reduce hysteresis effects in a piezoceramic actuator. In

[21], a robust control system to compensate hysteresis effects

in a magnetostrictive actuator is proposed, which is based

on the inverse of Preisach model. In [15], a robust control

designs for smart material actuators operating in nonlinear

and hysteretic regimes is developed to achieve high tracking

performance, and approximate inversion for the formulated

hysteresis model is employed in a closed-loop control sys-

tem.

By re-defining the play operator, the Prandtl-Ishlinskii

model is extended to describe more general hysteresis shapes.

In this paper, and as a further development, a corresponding

inverse is also provided for compensations of the generalized

Prandtl-Ishlinskii model for different smart actuators. Such

compensations are illustrated by the example for the hystere-

sis in a piezoceramic actuator. Considering the dynamics of

the actuators, the corresponding adaptive robust control law

is designed to improve the system performance.

The paper is organized as follows: Section 2 describes

the characteristics of the Prandtl-Ishlinskii model. Section

3 states the generalized Prandtl-Ishlinskii model based on

the generalized play operator. In Section 4, the inverse of

the generalized Prandtl-Ishlinskii model is presented and the

simulation results for generalized Prandtl-Ishlinkii model and
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its inverse is introduced in Section 5. Consider the linear

dynamics in piezoceramic actuators, a robust adaptive control

is proposed and simulation results are presented in Section

6 to demonstrate the effectiveness of the approach. Finally,

Section 7 concludes the paper.

II. PRANDTL-ISHLINSKII MODEL

In this paper, the hysteresis nonlinearity is presented by the

Prandtl-Ishlinskii model. We shall introduce an essential well

known hysteresis operator in order to present the generalized

Prandtl-Ishlinskii model.

A. Play hysteresis operator

Play hysteresis operator is a continuous and rate-

independent hysteresis operator. A detailed discussion about

this operator can be found in [3]. Analytically, let Cm[0, tE ]
represent the space of piecewise monotone continuous func-

tions. For any input v(t) ∈ Cm[0, tE ], let 0 = t0 < t1 <

. . . , < tN = tE be a partition of [0, tE] such that the

function vis monotone on each of the sub-intervals [ti, ti+1].

Then, the output of the play operator is defined by [3]:

Fr[v](0) = fr (v(0), 0) = w(0) (1)

w(t) = Fr[v](t) = fr (v(t), Fr[v](ti)) ;

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

where fr(v, w) = max (v − r,min(v + r, w))

The argument of the operator is written in square brackets

to indicate the functional dependence, since it maps a func-

tion to another function. The play operator is characterized

by input v and the threshold r. Due to the nature of the play

operator, the above definition is based on v(t) ∈ Cm[0, tE ]
of continuous and piecewise monotone functions. This,

however, can be extended to space C[0, tE ] of continuous

functions [3].

B. Prandtl-Ishlinskii Model

The Prandtl-Ishlinskii model utilizes the play operator

Fr[v] to describe relationship between output H[v](t) and

input v(t) [3] [6]:

H[v](t) = qv(t) +

R
∫

0

p(r)Fr[v](t)dr (2)

where p(r) is a density function, satisfying p(r) ≥ 0, which

is generally identified from experimental data. q is a positive

constant. The Prandtl-Ishlinskii model with the density func-

tion maps C[to,∞)into C[to,∞). Since the density function

p(r) vanishes for large values of r, the choice of R = ∞ as

upper limit of integration, widely used in the literature, is just

a matter of convenience [3]. The above model was applied

to predict and to reduce hysteresis effects of piezoceramic

actuators [6]. The reasonably good validity of the model was

further demonstrated by comparing the model predictions

with the measured data of a piezoceramic actuator.

Fig. 1. Play hysteresis operator.

III. A GENERALIZED PRANDTL-ISHLINSKII MODEL

BASED GENERALIZED PLAY OPERATOR

Owing to the nature of the play operator, the Prandtl-

Ishlinskii model predictions were limited to symmetric hys-

teresis loops of piezoceramic actuators. Moreover, this model

cannot show saturation property in hysteresis loops. This

property has been widely demonstrated in magnetorestric-

tive and SMA actuators. Alternatively, the generalized play

operator, described in Fig. 2, could be utilized to realize

input-output relationships of the smart actuators.

Fig. 2. Input-output relationship of a generalized play operator.

The generalized play operator is a nonlinear play operator,

where an increase in input v causes the output w to increase

along the curve γl or a decrease in input v causes the output

w to decrease along the curve γr, resulting in asymmetric

hysteresis loops about the input or the output. The curves γl

and γr are continuous non decreasing functions with γl ≤ γr

[4]. Analytically, the output of the generalized play operator

for any input v(t) ∈ Cm[0, tE ] is defined by [3] [19]:

F
γ
lr[v](0) = f

γ
lr (v(0), 0) = w(0) (3)

w(t) = F
γ
lr[v](t) = f

γ
lr (v(t), F γ

lr[v](ti)) ;

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

where f
γ
lr(v, w) = max (γl(v) − r,min(γr(v) + r, w))

A. Symmetric generalized play operator

In this paper, a generalized Prandtl-Ishlinskii model is

formulated using symmetric generalized play operator. Ana-
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lytically, the output of the operator is expressed as:

F γ
r [v](0) = fγ

r (v(0), 0) = w(0) (4)

w(t) = F γ
r [v](t) = fγ

r (v(t), F γ
r [v](ti)) ;

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

fγ
r (v, w) = max (γ(v) − r,min(γ(v) + r, w))

where γ : R → R is an envelope function; strictly increasing,

continuous and odd.

Some of mathematical properties of the generalized play

operator are:

• Lipschitz-continuity:

For a given input v(t), Lipschitz-continuity of the

generalized play operator can be ensured if the function

γ(v(t)) is Lipschitz continuous [3].

• Rate-Independent:

The generalized play operator F γ
r [v] is rate independent

hysteresis operator if:

F γ
r [v]oϕ = F γ

r [voϕ] (5)

where ϕ is continuous increasing function ϕ : [0, T ]
satisfying ϕ(0) = 0 and ϕ(T ) = T .

• Range :

For a given input v(t) ∈ C[0, T ] and r ≥ 0 the range

of the output of the generalized play operator is:

max
t∈[0,T ]

F γ
r [v](t) = fr( max

t∈[0,T ]
γ(v(t)), w(0)) (6)

min
t∈[0,T ]

F γ
r [v](t) = fr( min

t∈[0,T ]
γ(v(t)), w(0)) (7)

B. Generalized Prandtl-Ishlinskii model

Generalized Prandtl-Ishlinskii model is formulated using

symmetric generalized play operator F γ
r [v](t) to yield output

P [v](t) as [22]:

P [v](t) = qγ(v(t)) +

R
∫

0

p(r)F γ
r [v](t)dr (8)

Using the generalized play operator, the generalized Prandtl-

Ishlinskii model can be employed to characterize hysteresis

effects of different smart actuators. The above analytical in-

verse can also be numerically implemented. The generalized

model can be also described as:

P (t) = qγ(v(t)) +
n

∑

j=1

pjF
γ
rj

[v](t) (9)

where n is the number of the generalized play operator.

Remark 1: The classical Prandtl-Ishlinskii model is a

special case of the generalized model. For identical envelope

function, the generalized model reduces to the classical

Prandtl-Ishlinskii model, described in (2).

IV. INVERSE GENERALIZED PRANDTL-ISHLINKSII

MODEL

In this paper, inversion of the generalized Prandtl-

Ishlinskii model is presented for the purpose of reducing

the hysteresis effects in control systems. The inverse of

generalized Prandtl-Ishlinskii model is used as a feedforward

compensator to compensate hysteresis effects. It should be

mentioned that this inverse is computed analytically. In other

words, exact inverse of this model is reachable, consequently

making it more attractive for real-time applications of smart

actuators.

For the generalized Prandtl-Ishlinskii model in equation

(9), and the generalized play operator used in equation (4),

if the inverse of the envelope function γ−1 : R → R exists;

the inverse of the generalized Prandtl-Ishlinskii model that

is presented in (9) can be analytically expressed as:

P−1 = γ−1
(

H−1
)

(10)

where

H−1[v](t) = q−1v(t) +
n

∑

j=1

g(r̂j)Fr̂j
[v](t) (11)

where r̂ is the threshold of the inverse generalized Prandtl-

Ishlinskii model and g is the density function of the inverse

model.The parameters of the inverse are expressed as [6]:

q−1 =
1

q
(12)

r̂j = qrj +

j−1
∑

i=1

pi(rj−ri) (13)

gj = −
pj

(q +
j

∑

i=1

pi)(q +
j−1
∑

i=1

pi)

(14)

The above analytical inverse can also be numerically imple-

mented. Using the discrete input v(k) corresponding to an

interval k(k = 0, 1, 2, 3, . . . , N) as:

P (k) = qγ(v(k)) +
n

∑

j=1

pjF
γ
rj

[v](k) (15)

where n is the number of the generalized play operators. The

output of the inverse is expressed numerically as:

P−1(k) = γ−1(q−1v(k) +
n

∑

j=1

gjFr̂j
[v](k)) (16)

V. SIMULATION RESULTS FOR GENERALIZED

PRANDTL-ISHLINKSII MODEL AND ITS INVERSE

In this section, an input signal of the form: v(t) =
3sin(t) + 2cos(1.3t) is considered to evaluate minor as

well as major hysteresis loops. For the generalized Prandtl-

Ishlinskii model (8), the density function is selected as

p(r) = 0.1e−0.1r, r ∈ [0, 5], where the threshold r is selected

as:

rj = 0.24j j = 1, 2, 3, . . . , n = 20 (17)
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and the following envelope function is used to construct the

generalized Prandtl-Ishlinskii model:

γ(v) = 1.3v − 0.4 (18)

The chosen simulation parameters are: T = 25, ∆t = 0.001,

q = 0.18.

Fig.3 shows the simulation results of the generalized

Prandtl-Ishlinskii model and its inverse. The hysteresis shape

is shown in Fig. 3(a) based on the generalized Prandtl-

Ishlinskii model in (8), and the corresponding inverse of the

generalized Prandtl-Ishlinskii model defined in (10) is shown

in Fig. 3(b), then, the compensation result is shown in Fig.

3(c). The results show the capability of the model and its

inverse to compensate hysteresis effects .

Remark 2: The output of the generalized Prandtl-Ishlinskii

model strongly depends upon the generalized play opera-

tor, the envelope function, and the density function. For

example, the envelope function can be selected as γ(v) =
a0tanh(a1v + a2) + a3 to describe the saturated hysteresis

nonlinearities existing in some smart actuators, such as

shape memory alloy (SMA) actuators and magnetostrictive

actuators, where a0, a1, a2 and a3 are adjusted parameters.

VI. ADAPTIVE ROBUST CONTROL DESIGN

A. controller design

For these smart material-based actuators, the construction

of the inverse of the generalized Prandtl-Ishlinskii model can

mitigate the effects of the unknown hysteresis nonlinearities.

However, it is a open-loop approach, and does not consider

the influence of the dynamics, which can degrade the system

performance in high-frequency operation. Therefore, a robust

adaptive controller is proposed in this section to ensure

the closed-loop system stability and improve the tracking

precision. As an example, the generalized Prandtl-Ishlinskii

model is used to describe the hysteresis existing in the piezo-

ceramic actuators in this section, and the linear dynamics

of piezoceramic actuators is identified as a second-order

linear dynamics, then the system equations of motion can

be described as

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = z(t) (19)

where x(t) is the system output (actuator displacement),

z(t) is the hysteretic relation between the input voltage and

the excitation force. Based on the definition of generalized

Prandtl-Ishlinskii model in (7), we have

z(t) = P [u](t) (20)

where u(t) it the input voltage.

According to the compensation scheme proposed in this

paper, the output of the inverse generalized Prandtl-Ishlinskii

model P−1[u](t) is added to mitigate the effect of hysteresis,

we can obtain

z(t) = P [v](t) (21)

where

v(t) = P−1[u](t) (22)
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(a) Input-output relationship of the generalized Prandtl-Ishlinskii
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(b) Input-output relationship of the Inverse generalized Prandtl-
Ishlinskii model.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Intput signal

C
om

pe
ns

at
io

n 
ou

tp
ut

(c) Desired Output.

Fig. 3. Compensation hysteresis using Generalized Prandtl-Ishlinskii model
and its inverse (Inverse feedforward compensator)

Consider the actual industrial system, it is reasonable to

assume that

w(t) = u(t) + d(t) (23)

where d(t) is a bounded perturbation term to describe the

disturbance, parametric uncertainties and measurement error

etc. We use D to denote its bound. Then, (19) can be re-

expressed as

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = u(t) + d(t) (24)

The goal of the controller design is to guarantee the stability

of the closed-loop system and optimize the tracking error

in the presence of the linear dynamics. Focus on the system
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(24), the control objective is to design a control law for u(t),
to force the plant state x(t) to follow a specified desired

trajectory, xd(t), i.e., x(t) → xd(t) as t → ∞.

In the following development, we shall propose a robust

adaptive controller for (24). Define

x1 = x, x2 = ẋ (25)

then system (19) can be re-expressed as

ẋ1 = x2 (26)

ẋ2 = u(t) − 2ξωnx2(t) − ω2
nx1(t) + d(t)

y = x1

Define the tracking error x̃ as

x̃ = x − xd (27)

and a filtered tracking error as

s(t) = [ λ 1 ]

[

x̃1

x̃2

]

, λ > 0 (28)

In order to improve the precision, the tuning error sε(t) is

used,

sε = s − εsat(
s

ε
) (29)

where ε > 0 is a constant and sat(·) is the saturation

function, and the tuning error sε disappears when |s| ≤ ε.

In order to present the developed adaptive control laws, the

following definitions are required:

θ =

[

2ξωn

ω2
n

]

(30)

then, we can define

θ̃ = θ̂ − θ (31)

D̃ = D̂ − D (32)

where θ̂ is the estimation of θ and D̂ is the estimation of D

which is the boundedness of the d(t). For the given plant,

we propose the following control laws:

u(t) = −kds−λ(x2−ẋd)+ẍd+

[

x1

x2

]T

θ̂−sat(
s

ε
)D̂ (33)

where kd and λ are positive constants. The estimated param-

eters θ̂ and D̂ will be updated by adaptive laws

˙̂
θ = −γx

T sε

˙̂
D = η |sε|

(34)

where γ and η are positive constants.

Theorem: For the system described by (26), with the

hysteresis (21), and the inverse of the hysteresis (22), the

control law given by (33) and the adaptive control law given

by (34) ensure that all the closed-loop signals are bounded

and the system vector x(t) converges to Ωε = {x(t)||x̃i| ≤
2i−1λi−2ε, i = 1, 2} for ∀t ≥ t0.

Proof: For system (26), the time derivative of the filtered

error (28) is:

ṡ(t) = λ(ẋ1 − ẋd) + (ẋ2 − ẍd) (35)

= λ(ẋ1 − ẋd) + (u(t) − 2ξωnx2 − ω2
nx1 + d(t))

−ẍd

Applying the control law (33), we have

sεṡ = sε[−kds +

[

x1

x2

]T

θ̂ − 2ξωnx2 − ω2
nx1 (36)

−sat(
s

ε
)D̂ + d(t)]

To establish global boundedness, the following positive def-

inite Lyapunov function candidate is adopted

V =
1

2
s2

ε +
1

γ
(θ̂ − θ)T (θ̂ − θ) +

1

2η
D̃2 (37)

Since the discontinuity at |s| = ε is of the first kind and

sε = 0 when |s| ≤ ε, it follows that the derivative V̇ exists

for all s, which is

V̇ (t) = 0, when |s| ≤ ε (38)

When |s| > ε and the fact that sεṡε = sεṡ, we have

V̇ =
1

2
sεṡ +

1

γ
(θ̂ − θ)T ˙̂

θ +
1

η
D̃

˙̃
D (39)

then, we can obtain

V̇ = sεṡ +
1

γ
(θ̂ − θ)T ˙̂

θ +
1

η
D̃

˙̃
D

= −kdsεs + sε

[

x1

x2

]T

θ̃ − sεsat(
s

ε
)D̂ + sεd(t)

+
1

γ
(θ̂ − θ)T ˙̂

θ +
1

η
D̃

˙̃
D

≤ −kds
2
ε + sε

[

x1

x2

]T

θ̃ − |sε| D̂ + |sε|D

+
1

γ
(θ̂ − θ)T ˙̂

θ +
1

η
D̃

˙̃
D (40)

Utilizing the adaptive law given in (34), we can obtain

V̇ ≤ −kds
2
ε (41)

It can easily be shown that (35) is bounded, and V̇ (t) ≤ 0
for all t, by Barbalat’s lemma, we can prove that V̇ (t) → 0,

therefore, from (41), is can be shown that sε(t) → 0 as

t → ∞, which indicates that x̃(t) will converge to Ωε.

B. Simulation Results

In this simulation, for the hysteresis existing in the

piezoceramic actuator, the same density function p(r) =
0.1e−0.1r, r ∈ [0, 5] and the envelope function defined in (18)

are chosen. The dynamics parameters ζ and ωn are identified

as 0.8 and 100 Hz. According to the compensation scheme

introduced in Section IV, we can obtain

ẋ1 = x2 (42)

ẋ2 = u(t) − 160x2(t) − 10000x1(t) + d(t)

y = x1
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Utilizing the control law in (33) and the adaptive law in

(34), the parameter values are chosen as γ = 10, kd = 2500,

λ = 200, ε = 0.001 and η = 0.001. The initial state values

are x1(0) = 2, x2(0) = 7, θ̂(0) = [10, 100]T and D̂(0) =
0.01, the desired trajectory xd is 3 sin(0.75πt)+2 cos(0.5πt).
The tracking error is shown in Fig. 4, and the displacement

response of the actuator system is shown in Fig. 5. We

can see that the proposed controller clearly demonstrates

excellent tracking performance and the control algorithm can

overcome the effects of linear dynamics in the piezoceramic

actuators.

VII. CONCLUSION

Compensation of hysteresis nonlinearities is carried out

using inverse generalized Prandtl-Ishlinskii model. Simula-

tion results show the capability of the inverse generalized

Prandtl-Ishlinskii model (inverse feedforward compensator)

to compensate hysteresis nonlinearities. Considering the sys-

tem dynamics and the system disturbance, a robust adaptive

control scheme is developed to improve the robustness and

ensure the stability of the closed-loop piezoceramic actuator

system. Simulation results have confirmed the effectiveness

of the proposed control approach.
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Fig. 4. Tracking error of the actuator system.
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Fig. 5. The displacement response of the actuator system.
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