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Abstract— In this paper, nonlinear model predictive control
is applied to an inverted pendulum apparatus. The sample
interval for control calculations is 25 milli-seconds and the
associated non-convex constrained optimisation problem in-
volves 61-variables with 241-constraints. Despite this being a
challenging problem, it was solved on-line using a standard
sequential quadratic programming approach on a modest
hardware platform. The efficacy of the control algorithm is
validated via experimental results.

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is an attrac-
tive strategy for controlling complex systems [1]. It has been
used for decades within process control industries [2], [3],
because it offers good dynamic performance while ensuring
operation within certain physical limits. This latter feature
enables plant operators to run the plant near constraint
boundaries, which can increase productivity and reduce
product quality variation [2], [3].

However, a fundamental difficulty of this NMPC approach
is that the implementation platform must be capable of
solving a constrained optimisation problem within a specified
time limit. This time decreases as the speed of the dynamics
to be controlled increases. As a result, the implementation
of NMPC has to date been generally limited to plants with
slow or otherwise very simple dynamics so that the time
constraints in computing a solution are relaxed.

Surmounting this difficulty of computational overhead
to achieve the benefits of Model Predictive Control for
linear systems has recently attracted significant research
attention [4], [5], [6], [7].

A similar trend is emerging for NMPC applications. For
example, [8] applies NMPC to prevent the flooding of of
a river system, where a sample time of 5 minutes is used.
In [9] NMPC is applied to the problem of normalising the
blood glucose levels in the critically ill. This application has
a sample time of 5 minutes which resolves some of the issue
of computation time.

NMPC is applied to maximising the production rate of
E. Coli in [10]. Here, online optimisation is eschewed in
favour of a less computationally intensive control vector
parametrisation method. NMPC is applied to Planar Vertical
Take-Off and Landing (PVTOL) aircraft in [11] by using the
structure of the model to convert a non-convex optimisation
problem into two convex problems of lesser dimension.
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These applications have either slow dynamics which
makes computation time less critical or use a simplified
model to lessen the computation load. However, NMPC has
also been applied to systems with fast dynamics.

In [12], NMPC is applied to a run-of-mine ore milling
circuit problem. A successful simulation concluded that
NMPC performed well at a sample time of 10 seconds. An
investigation of NMPC in [13] for terrain avoidance in an
unmanned rotorcraft found that NMPC performed well, in
simulation, at a sample time of 20 ms. The authors of that
paper note the difficulties in applying this simulation to a
real-time situation.

In [14], the possibilities of applying NMPC to a rotary
inverted pendulum are explored. However, the strategy for
this case is not to find the optimal input for the pendulum,
but to reduce the error at the end of the prediction horizon.
An application of NMPC to the control of a robotic hand-eye
system is described in [15] where a sample time of 1ms is
used.

In this paper we are also interested in applying NMPC
to systems with fast dynamics. In particular, we employ
standard numerical algorithms running on a modest hard-
ware platform to control an inverted pendulum apparatus
at a 25 milli-seconds sample interval. Both input and state
constraints are considered and the resulting non-convex
optimisation problem has 61-variables with 241-inequality
constraints.

The inverted pendulum problem was selected because it
displays nonlinear dynamic behaviour, it is unstable about
the desired operating point (pendulum standing up), and
it is non-minimum phase. As an aside, it is representative
of some practical applications. The Segway PT is a two
wheeled (in parallel), self-balancing vehicle that transports
a single person which uses the properties of the inverted
pendulum. A walking humanoid robot displays inverted
pendulum characteristics [16].

This provides a suitably challenging test case for NMPC
and the experimental results presented in this paper are
encouraging. A video of this application can be found at
http://sigpromu.org/mpc/pilot.html.

The paper is organised as follows. Section II provides
some background to the NMPC problem formulation. Sec-
tion III discusses sequential quadratic programming, which
is used to solve the NMPC optimisation problem. Section IV
details the application of NMPC to the inverted pendulum,
and Section V provides experimental results.
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II. NONLINEAR MODEL PREDICTIVE CONTROL

The literature on Nonlinear Model Predictive Control
(NMPC) is vast. Therefore, in this section we outline one
variant of NMPC that, while still quite general (see e.g.
[1]), caters for the types of applications presented in this
paper. Namely, systems whose dynamic behaviour can be
adequately described via a discrete-time nonlinear state-
space model

xk+1 = fk(xk, uk) (1)

where the state xk ∈ Rn, the input uk ∈ Rm and the function
fk(·, ·) ∈ Rn maps the current state and input to the next
state xk+1.

The utility of this model is that we can predict the state
trajectory over a prediction horizon N , so that suitable
control action can be taken in order to move the state to
the origin. More precisely, if we start at k = 1 with x1

known, then

x2 = f1(x1, u1)
...

xN+1 = fN (xN , uN )

The point is that the state at some point in the future, say
at sample k, depends only on the initial state x1 and all the
inputs from {u1, . . . , uk−1}.

Therefore, provided that the input has enough control
authority over the state from t = 1, . . . , N , it is possible
to choose an input sequence

u = {u1, . . . , uN} (2)

that moves the initial state x1 towards a desired region, e.g.
the origin. This latter goal is typically achieved by minimis-
ing a cost function that determines control performance. One
commonly occurring cost function is defined as

V (u) =
N∑

k=1

xT
k+1Qxk+1 + uT

k Ruk (3)

where Q ∈ Rn×n is assumed to be a positive semi-definite
matrix used to penalise state-movements about the origin.
Similarly, R is assumed to be a positive definite matrix that
penalises input movements from the origin.

With the above in mind, the NMPC control action is
determined by minimising VN over the future control moves
u. The first control action is applied to the system and the
procedure repeats at the next time sample based on new
measurements. Figure 1 shows a typical timing diagram for
NMPC.

A salient feature of this approach is that physical limits on
the system inputs and states can also be directly included into
the optimisation problem. More precisely, if the input must
lie in a set U and the state must lie in a set X for all time
samples, then the NMPC optimisation problem becomes

u? = arg min
u

VN (u) s.t. uk ∈ U, xk+1 ∈ X (4)

Fig. 1. Timing Diagram of NMPC

Solving this problem is non-trivial and usually forms the bulk
of the computational work required to obtain the next control
action in NMPC. Consequently, the sample times must be
sufficiently large to allow for a solution to be found. This has
resulted in applications of NMPC for systems with relatively
large sample times. In the next section we outline a standard
approach to solving these types of problems.

III. SOLVING THE NMPC OPTIMISATION PROBLEM

In order to implement the NMPC algorithm we must be
able to solve non-convex optimisation problems of the type
in (4), which is a difficult task in general. Compounding this
difficulty is the real-time aspects of NMPC, where a result
must be ready within the chosen sample interval. In general
we have to be satisfied in finding only a local minimum of
the cost function, and even this is non-trivial within the time
constraints.

Amongst the many approaches used to solve these types of
problems, Sequential Quadratic Programming methods have
emerged as a clear competitor [17].

Ignoring all previous definitions of x and f , for a moment,
the types of problems we are interested in solving are of the
following form

x? = arg min
x

f(x), s.t. c(x) ≤ 0 (5)

where the variables x ∈ Rn, the cost f : Rn → R and the
inequality constraint function c : Rn → Rm.

In essence, SQP replaces the cost and constraint functions
with a quadratic and linear approximation, respectively, to
obtain a quadratic subproblem

(p?, λ?) = arg min
p,λ

pT Lx(x, λ) +
1
2
pT Lxx(x, λ)p (6)

s.t. c(x) + pT cx(x) ≤ 0

where L is the Lagrangian function defined as

L(x, λ) = f(x) + λT c(x) (7)

and Lx and Lxx denote the gradient and Hessian of L with
respect to x.
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In line-search SQP methods, this quadratic subproblem
is solved to obtain the search direction p? and Lagrange
multipliers λ?, which is then used in a line search procedure
to obtain a new estimate for x that reduces a merit function.
We have used the `1 merit function

φ(x, µ) = f(x) +
1
µ
‖c(x)‖1 (8)

where we employ µ = 1/(‖λ?‖∞ + 0.1) as per (18.35) in
Chapter 18 of [18].

Returning now to the NMPC case in (4). Since xk+1 is
only a function of x1 (which is known and given) and the
inputs u1, . . . , uk then we can represent the constraints uk ∈
U and xk+1 ∈ X for k = 1, . . . , N as

c(u) ≤ 0 (9)

then the Lagrangian function becomes

L(u, λ) = V (u) + λT c(u) (10)

Computing the Hessian of the Lagrangian function, de-
noted as Luu, involves second order derivative terms and
is computationally expensive to calculate. Therefore, we
crudely approximate Luu by exploiting the sum-of-squares
formulation in (3). Indeed, we can rewrite (3) as

V (u) = eT (u)e(u) (11)

where e is defined as

e(u) =


Q1/2x2

· · ·
Q1/2xN+1

R1/2u1

· · ·
R1/2uN


A local model for e(u) is provided by the first order Taylor
expansion

e(u + p) ≈ e(u) + J(u)p (12)

where J is the Jacobian matrix defined by

J(u) =



Q1/2 ∂x2
∂uT

1
0 0 · · · 0

Q1/2 ∂x3
∂uT

1
Q1/2 ∂x3

∂uT
2

0 · · · 0
...

...
Q1/2 ∂xN+1

∂uT
1

Q1/2 ∂xN+1

∂uT
2

· · · · · · Q1/2 ∂xN+1

∂uT
N

R1/2 0 0 · · · 0
...

...
0 · · · · · · 0 R1/2


(13)

Therefore, to find the Jacobian, partial derivatives of the state
with respect to the inputs are needed. However, each partial
derivative is a function of a previous partial derivative so that
finding the Jacobian is not as difficult as it first seems. Using

Fig. 2. Photo of Inverted Pendulum apparatus used in experiments.

the chain rule
∂xk+1

∂uT
j

=
∂fk(xk, uk)

∂xT
k

∂xk

∂uT
j

+
∂fk(xk, uk)

∂uT
k

∂uk

∂uT
j

, (14)

j = 0, . . . , k

With this in mind the approximate Hessian of the Lagrangian
is given by

Luu(u, λ) ≈ JT (u)J(u) (15)

which is positive definite since R is assumed to be positive
definite.

IV. NMPC APPLIED TO AN INVERTED PENDULUM

In the remainder of this paper we consider the application
of NMPC to an inverted pendulum apparatus shown in
Figure 2. Controlling an inverted pendulum is challenging
task because it exhibits nonlinear dynamic behaviour, it is
unstable about the desired operating point (i.e. pendulum
standing up), and is non-minimum phase.

The inverted pendulum apparatus consists of a cart which
can freely move along a straight beam. A free body diagram
is shown in Figure 3. The rigid pendulum is attached to the
cart and able to rotate freely. A motor is used to drive the belt,
which in turn moves the cart along the rail. The objective is
to use the motor (a single input) to swing the pendulum into
the upright position and then stabilise the pendulum around
this upright position. The measured outputs of the system
are the pendulum angle and the cart position.

From the free body diagram of the pendulum in Figure 3
we can obtain equations of motion in state-space form as

ẋ(t) = g(x(t), u(t)) (16)

where the state vector xT (t) = [p(t), θ(t), v(t), ω(t)] and
p(t) represents cart position, θ(t) is pendulum angle, v(t)
is cart velocity and ω(t) is pendulum angular velocity. The
mapping g(·) is given by

g(x(t), u(t)) =


v(t)
ω(t)

a1w1(x(t),u(t))+w2(x(t)) cos θ(t)
d(x(t))

w1(x(t),u(t)) cos θ(t)+a2w2(x(t))
d(x(t))

 (17)
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Fig. 3. Inverted Pendulum Free Body Diagram

The remaining terms are given by

w1(x(t), u(t)) = k1u(t)− (ω(t))2 sin θ(t)− k2v(t)
w2(x(t)) = g sin θ(t)− k3ω(t)
d(x(t)) = b− cos2 θ(t)

and the constants

a1 =
Jp

ml
, a2 = 1

l , b =
Jp

ml2
,

k1 =
c1

ml
, k2 = fc−c2

ml , k3 =
fp

ml

Where Jp is the moment of inertia of the pendulum in
relation to the axis or rotation, m is the equivalent mass
of the cart and pendulum, l is the distance from the axis of
rotation to the centre of mass of the system, fc is the dynamic
friction of the cart, fp is the rotational friction coefficient,
c1 is the control force to PWM signal ratio and c2 is the
control force to cart velocity ratio. This set of differential
equations are derived by taking into account the centre of
mass of the system as a whole. It is not assumed that the
centre of gravity of the pendulum is the middle of the rod.

A. Discrete-Time Model

The above model describes the dynamic behaviour in
continuous-time. However, the required format for the
NMPC controller outlined in Section II is a discrete-time
model (1). To achieve the latter requirement we sample the
continuous-time system using Euler’s method; this is done at
a much faster rate than the control interval to provide better
accuracy.

More precisely, if the control interval is ∆ seconds, then
we update the input at t = k∆ for k = 1, . . ., so that

u(k∆) = uk, x(k∆) = xk (18)

Consider the case where k = 0, so that we start at u0 and
x0. According to (1) we want a mapping from u0 and x0 to
x1 = x(∆). This will be achieved by repeated application
of Euler’s method sampled at δ = ∆/M for some suitable

integer M ≥ 1. This corresponds to

x((i + 1)δ) = x(iδ) + δg(x(iδ), u(iδ))
= x(iδ) + δg(x(iδ), u0)

where the latter equality comes from the constant control
action over ∆ = Mδ seconds, i.e.

u(iδ) = u0 for i = 0, . . . ,M − 1

Therefore, in terms of (1), we have that the discrete-time
mapping f0(x0, u0) is given by the above equations where
x(0) = x0 and x1 = x(Mδ). Generalising this for all k ≥ 0
gives the required function fk.

B. State Estimation

In order to apply the NMPC strategy outlined in Section II
we must have access to the state at time k. While two
of the state values are measured directly, namely the cart
position p(t) and pendulum angle θ(t), we need to estimate
the cart velocity v(t) and angular velocity ω(t). Again
with a view to using the most straightforward approach,
we simply approximate the time derivatives via a finite
difference approximation

v̂k =
pk − pk−1

∆
ω̂k =

θk − θk−1

∆
(19)

In high noise situations this approximation is a very bad idea,
but for this application it suffices.

C. Control Cost Function

We would like the state x(t) to be at the origin, which
corresponds to the cart position at the centre of the beam,
the pendulum angle of 0 radians (i.e. upright), the cart not
moving and the pendulum not rotating. Furthermore, we
would like to be economical with control action and thus
penalise input movements. This objective can be described
in terms of the cost function in (3) via the choices

Q = diag{q1, q2, q3, q4}, R = r (20)

Since it is important that the pendulum angle is zero, q2

receives a high value. It is less important, but not insignifi-
cant, that the cart position is zero, so q1 has the next highest
value. Cart velocity and pendulum angular velocity are not
so important, so q3,4 receive a low value.

For the experimental results shown in Section V this
corresponds to

q1 = 1, q2 = 10, , q3 = q4 = 10−4, r = 0.1 (21)

D. Constraints

While the above model is good at describing the dynamics,
it does not capture the whole situation physically. Impor-
tantly, there are physical limits on the control input and
the cart position, which correspond to constraints on the
supply current to the motor and the length of the beam,
respectively. The input to the motor is constrained to lie
between −0.5 ≤ u(t) ≤ 0.5 and the cart position must lie
between −0.7 ≤ p(t) ≤ 0.7.
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E. Solving the Problem

For the online implementation we employed the SQP
method described in Section III, but we restricted the number
of iterations to be no more than four. This choice was
made based on the average time taken per iteration, and
the sample time of 25ms. It would be expected that this
rather arbitrary choice of the number of allowed iterations
results in poor control performance, yet this was not observed
in practise. We believe that this curious situation deserves
further attention.

The prediction horizon is set to N = 60 samples (1.5s
based on 25ms sample interval). With an additional slack
variable for soft state constraints, this relates to 61 variables
and 241 inequality constraints. The QP problems are solved
via an active-set strategy based on [19], [20].

The algorithm was implemented in C on a 2.33GHz
MacBook Pro and connected to the pendulum apparatus via
ethernet cable, as explained in the next section.

F. Communication with Pendulum

Figure 4 shows a schematic diagram of communication
between a Laptop (PC) and the pendulum apparatus. The
connection from the pendulum hardware to the power inter-
face box includes an analog signal to drive a 22.5V DC motor
and 4 digital signals, two for each of the optical encoders
used to measure cart position and pendulum angle.

The power interface box is connected to a custom made
Signal Conversion Device via a 20-pin connector. This device
connects the Laptop via ethernet cable to the Power Interface
Box and is based on Altera Stratix II Development Board.

Fig. 4. Pendulum to PC complete path.

V. RESULTS

In this section we provide some experimental results
from applying the NMPC controller described above to the
inverted pendulum shown in Figure 2. By way of summary,
there are 4-states, 1-input, the sample time is ∆ = 25ms,
the prediction horizon is N = 60 samples, the input is con-
strained via |u(t)| ≤ 0.5 and the cart position is constrained
via |p(t)| ≤ 0.7. The SQP solver is limited to 4-iterations
and is trying to solve a nonlinear optimisation problem with
61-variables and 241-inequality constraints. All plots in this
section show data recorded from the physical apparatus by
the Laptop.

In Figure 5 the initial position of the cart is in the centre
of the beam with the pendulum tip is down (in the stable

position). NMPC is switched on and the response can be
seen in the figure. Note that both the DC motor input and
the cart position hit their respective limits.

To gauge the utility of the NMPC controller, a large
disturbance was manually applied to the pendulum tip whilst
in the upright position. Figure 6 shows the response to this
disturbance. Note that the cart position and input obey their
respective limits while the pendulum is promptly returned to
the upright position.

Possibly of more interest, a histogram of the time taken
by the SQP algorithm for this latter disturbance experiment
is shown in the Figure 7(top). Four peak areas are visible
which correspond to the number of iterations. Clearly the
algorithm spent most of its time in the 3-4 iterations region.
Also note that none of the times exceed the limit of 25ms.
The variability comes from numerous sources, but not least
of all from the non-deterministic back-stepping algorithm
line search used within SQP. A histogram of the time taken
to compute the cost function is shown in Figure 7(bottom).
The variability seen here is now at the operating system level.

VI. CONCLUSIONS

This paper details the application of NMPC to an in-
verted pendulum apparatus. While the good performance
of NMPC for this application may be of independent
interest, the key point is that a reasonably challenging
control problem can be dealt with via NMPC in real-
time on a modest hardware platform at a 40Hz sam-
ple rate. A video of this application can be found at
http://sigpromu.org/mpc/pilot.html.

Fig. 5. NMPC Inverted Pendulum Swing Up Response

REFERENCES

[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, pp. 789–814, 2000.

[2] J. M. Maciejowski, Predictive Control with Constraints. Prentice
Hall, 2002.

2339



Fig. 6. NMPC controller with a larger manual disturbance introduced at
the tip of the pendulum and hitting state constraints.

Fig. 7. Timing histogram of both optimal input calculation and cost
calculation.

[3] S. Qin and T. Badgewell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, pp. 733–
764, 2003.

[4] A. G. Wills, D. Bates, A. J. Fleming, B. Ninness, and S. Moheimani,
“Model predictive control applied to constraint handling in active noise
and vibration control,” 2005.

[5] T. A. Johansen, W. Jackson, R. Schreiber, and P. Tondel, “Hardware
synthesis of explicit model predictive controllers,” IEEE Transactions
on Control System Technology, vol. 15, no. 1, pp. 191–197, January
2007.

[6] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MPC,” International Journal
of Robust and Nonlinear Control. In Press., 2008.

[7] Y. Wang and S. Boyd, “Fast model predictive control using online op-
timization,” Proceedings of the 17th World Congress The International
Federation of Automatic Control, 2008.

[8] T. B. Blanco, P. Willems, B. D. Moor, and J. Berlamont, “Flooding
prevention of the demer river using model predictive control,” Pro-
ceedings of the 17th World Congress The International Federation of

Automatic Control, 2008.
[9] N. Haverbeke, T. V. Herpe, M. Diehl, G. V. den Berghe, and B. D.

Moor, “Nonlinear model predictive control with moving horizon state
and disturbance estimation - application to the normalization of blood
glucose in the critically ill,” Proceedings of the 17th World Congress
The International Federation of Automatic Control, 2008.

[10] G. Hafidi, S. Tebbani, D. Dumur, and A. V. Wouwer, “Nonlinear model
predictive control applied to e. coli cultures,” Proceedings of the 17th
World Congress The International Federation of Automatic Control,
2008.

[11] A. Chemori and N. Marchand, “Global discrete-time stabilization of
the pvtol aircraft based on fast predictive control,” Proceedings of
the 17th World Congress The International Federation of Automatic
Control, 2008.

[12] L. Coetzee, I. Craig, and E. Kerrigan, “Nonlinear model predictive
control of a run-of-mine ore milling circuit,” Proceedings of the 17th
World Congress The International Federation of Automatic Control,
2008.

[13] B. Guerreiro, C. Silvestre, and R. Cunha, “Terrain avoidance model
predictive control for autonomous rotorcraft,” Proceedings of the 17th
World Congress The International Federation of Automatic Control,
2008.

[14] S. Jung and J. T. Wen, “Nonlinear model predictive control for the
swing-up of a rotary inverted pendulum,” Journal of Dynamic Systems,
Measurement, and Control, vol. 126, pp. 666–673, 2004.

[15] T. Murao, H. Kawai, and M. Fujita, “Predictive visual feedback control
with eye-in/to-hand configuration via stabilizing receding horizon
approach,” Proceedings of the 17th World Congress The International
Federation of Automatic Control, 2008.

[16] J. H. Park and K. D. Kim, “Biped robot walking using gravity-
compensated inverted pendulum mode and computed torque control,”
Proceedings of the 1998 IEEE International Conference on Robotics
and Automation, 1998.

[17] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol. 4, pp. 1–51, 1996.

[18] J. Nocedal and S. J. Wright, Numerical Optimisation. Springer-Verlag
New York, Inc., 1999.

[19] D. Goldfarb and A. Idnani, “A numerically stable dual method for
solving strictly convex quadratic programs,” MatheMatical Program-
ming, vol. 27, pp. 1–33, 1983.

[20] M. J. D. Powell, “On the Quadratic Programming Algorithm of
Goldfarb and Idnani,” Mathematical Programming Study, vol. 25, pp.
46–61, 1985.

2340


