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Abstract— In this paper, a Model Predictive Control (MPC)
strategy is developed for the first time to solve the optimal energy
management problem of power-split hybrid electric vehicles. A
power-split hybrid combines the advantages of series and parallel
hybrids by utilizing two electric machines and a combustion
engine. Because of its many modes of operation, modeling
a power-split configuration is complex and devising a near-
optimal power management strategy is quite challenging. To
systematically improve the fuel economy of a power-split hybrid,
we formulate the power management problem as a nonlinear
optimization problem. The nonlinear powertrain model and the
constraints are linearized at each sample time and a receding
horizon linear MPC strategy is employed to determine the
power split ratio based on the updated model. Simulation
results over multiple driving cycles indicate better fuel economy
over conventional strategies can be achieved. In addition the
proposed algorithm is causal and has the potential for real-time
implementation.

I. INTRODUCTION

In Hybrid Electric Vehicles (HEVs) there are additional

components, such as electric motors and batteries, which

provide more flexibility to operate the powertrain system to

meet the driver demand and minimize the fuel consumption.

In other words, with respect to a conventional vehicle,

there are more degrees of freedom for controls to satisfy

driver demand. In general, the main components of HEVs

may be classified into an energy source (fuel), energy

convertors (engine, generators, and motors) and an energy

accumulator (battery or ultracapacitor). Torque couplers

or/and speed couplers may be employed as a link between

these components [1]. Different hybrid configurations such

as series, parallel, and power-split have been developed

depending on the arrangement of these components. Power-

Split or Parallel-Series types which provide both series and

parallel functionality have been the preferred configuration

by many auto-makers. The Ford Escape hybrid and Toyota

Prius both use a power-split configuration.
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Fig. 1. Power flow of a power-split HEV

Figure 1 schematically shows the power flow in the

mechanical and electrical paths in a power split hybrid.

The electrical and mechanical nodes represent the compo-

nents which combine power flows. In this configuration,

the engine and the generator are connected to the planet

carrier and sun gear of a planetary gear set (speed coupler

at mechanical Node 1) respectively. The output of the

planetary gear set is coupled with another motor/generator

electric machine through a torque coupler (mechanical Node

2) and powers the vehicle driveline. In this configuration,

because the generator can also work in a motoring mode

and deliver energy to the speed coupler, circulation of power

around the triangular loop of the diagram can be utilized to

shift the engine’s operating point to a more efficient region.

Also the battery provides another degree of freedom by its

energy buffering capability. Thus, there are two degrees of

freedom for energy management of these HEVs . These two

degrees of freedom and the many modes of operation of

a power-split hybrid increase the flexibility for running the

vehicle more efficiently, while at the same time the complex

configuration renders design of the energy management

strategy quite challenging.

The need for systematic design of a near-optimal energy

management strategy is addressed in this paper by a Model

Predictive Control (MPC) approach [2]. The energy man-

agement problem is formulated as an optimization problem

over a future time window during which the objective

is to i) minimize fuel use, ii) reduce service brake use,

and iii) prevent over-charge and -discharge of the battery

while respecting kinematic equality constraints and several

time-varying inequality constraints of the engine, motor,

generator, and the battery. The solution of this nonlinear

optimization determines the “optimal” distribution of power

demand between the engine, motor, generator, and service

brakes.

An analytical solution to such a nonlinear constrained
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optimization problem does not exist in general. Therefore

in the past researchers have proposed numerical solutions,

e.g. by using dynamic programming (DP) or have simplified

the dynamic optimization problem to an equivalent instanta-

neous optimization in a family of ECMS (Equivalent Con-

sumption Minimization Strategy) schemes. A more detailed

review of these optimal control methods along with heuristic

rule-based methods can be found in [3] and [4]. Most of

the existing literature has focused on the less complicated

parallel and series configurations and only a few papers

address the case for power-split hybrids. One of those is

[5] where both DP and ECMS were applied and compared

for the Toyota Prius power-split HEV.

Obtaining the optimal solution using DP requires knowl-

edge of future driving cycle and therefore is non-causal.

Together with high computational demand of DP, this pre-

vents its real-time implementation. The ECMS methods, on

the other hand, are less intensive in computations and causal

but may be short-sighted and are sensitive to their tuning

parameters. The MPC design proposed in this paper over-

comes some of these shortcomings. In the MPC approach,

the optimization is solved over a future prediction horizon

(therefore less-likely to make short-sighted decisions). At

the same time knowledge of the future drive cycle is not as-

sumed. Instead a model is used to project the torque demand

and the resulting velocity over a future prediction horizon

(therefore causal). To prevent the computational cost of a

nonlinear optimization problem, the nonlinear plant model

and the constraints are linearized at each sample time; this

reduces the nonlinear optimization problem to a quadratic

program for which efficient real-time solutions exist [6].

Moreover, the relation between MPC tuning parameters and

the results may be more transparent and systematic than that

of ECMS methods.

Because MPC is a model-based control method, the ve-

hicle model is first derived and the constraints are specified

in Section II. The optimization problem and the linear MPC

design are laid out in Section III. Simulation results in

three different driving scenarios are presented in Section

IV followed by the Conclusions.

II. THE PLANT MODEL

A schematic of a power-split HEV configuration is shown

in Figure 2. What makes this configuration different from

the series and parallel configurations is the split of engine

power by a speed coupler (planetary gear set) which allows

both series and parallel power flow modes. Because the

focus of the paper is a model-based optimization method,

a model of the system is derived in this section. For more

details, the reader is referred to the literature [7], [5].

In general, the system dynamics can be divided into

powertrain dynamics and battery dynamics. The following

assumptions are made:

• Dynamics of engine, motor and generator are fast with

respect to the dynamics of powertrain and vehicle.

Fig. 2. A Power-Split HEV Configuration

• The motor is directly connected to the ring gear of the

speed coupler.

• The power loss in the final transmission can be ignored

with respect to other sources of power losses.

• All components connecting motor to wheel are rigid

Consequently, the powertrain dynamics are summarized

as:

Jgen

dωgen

dt
= τgen +F ×NS

Jeng

dωeng

dt
= τeng −F × (NS +NR)

Jmot

dωmot

dt
= τmot −

τdrive + τbrake

g f

+F ×NR

m
dV

dt
=

τdrive

rw

−
1

2
ρA fCdV 2 −mgsin(θ)−µmgcos(θ)

(1)

Where Jeng, Jgen, Jmot are the inertia of the engine, gen-

erator and motor, NS, NR are the radius of the sun and

ring gears, τeng, τgen, τmot are the engine, generator and

motor torques, ωeng, ωgen, ωmot are the engine, generator

and motor speeds, τdrive is the drive shaft torque , τbrake

is the friction or service brake torque, V, m, A f are the

speed, mass and frontal area of the vehicle, rw is the wheel

radius, µ is the friction coefficient, CD and ρ are the drag

coefficient and air density, g f is the final gear ratio, θ is the

road grade and g is gravitational acceleration. Also F is the

interaction force between different parts of the power-train.

For example, F ×NS is the reaction torque on the sun gear.

Also there are two kinematic equality constraints between

velocities:

Nsωgen +NRωmot = (Ns +NR)ωeng (2)

and

ωmot =
g f

rw

V (3)

Substituting equations (2)-(3) into the dynamics of the

powertrain and eliminating the interaction force F , between

them, the powertrain dynamics are reduced to,
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Jeng +
(

NS+NR

NS

)2

Jgen −
(

NR(NS+NR)

N2
S

)

Jgen

−
(

NR(NS+NR)

N2
S

)

Jgen Jmot +
(

NR
NS

)2

Jgen +
mr2

w

g2
f






[
dωeng

dt
dωmot

dt

]

=




1 0

(
NS+NR

NS

)

0

0 1 −
(

NR
NS

)

− 1
g f











τeng

τmot

τgen

τbrake







+

[

0

− 1
g f

]

τresist

(4)

where the resistance torque is defined by,

τresist = rwmg(µcosθ+ sinθ)+
1

2
ρCdA f r3

w

(
ωmot

g f

)2

(5)

The battery state of charge (SOC) is an important variable

in energy management of HEVs. Its dynamics are described

by [1],

dSOC

dt
= −

Voc −
√

V 2
oc −4(Pbatt)Rbatt

2CbattRbatt

(6)

where Voc, Rbatt , Cbatt are the battery’s open-circuit voltage,

internal resistance and capacity respectively and Pbatt =
Pmot + Pgen + Ploss

motor + Ploss
gen represents the charging and

discharging power of the battery and includes motor and

generator losses. In our model, positive power indicates

battery discharging and negative power indicates charging.

To model the motor/generator power losses, a surface is

fitted to experimental data. An experimental map of the

engine relates the fuel consumption rate to engine speed

and engine torque. The Willan’s line method is used to

approximate this map resulting in a closed-form formula,

ṁ f =
aTengωeng +bωeng + cω3

eng

ā+ b̄ωeng + c̄ω2
eng

(7)

where ṁ f is the fuel consumption rate and a, b, c, ā, b̄,

and c̄ are constant parameters.

Finally, several physical constraints of the model are sum-

marized as:
SOCmin ≤ SOC ≤ SOCmax

0 ≤ ωeng ≤ ωmax
eng

ωmin
mot ≤ ωmot ≤ ωmax

mot

ωmin
gen ≤ ωgen ≤ ωmax

gen

0 ≤ τeng ≤ τmax
eng

τmin
mot ≤ τmot ≤ τmax

mot

τmin
gen ≤ τgen ≤ τmax

gen

0 ≤ τbrake

Pbatt ≤V 2
oc
/

4Rbatt

where ∗min and ∗max represent the minimum and maximum

bounds on the parameters. These bounds on τeng, τgen, and

τmot are variables and are functions of engine, generator and

motor speeds respectively.

III. CONTROL SYSTEM STRUCTURE

The power management module of a power-split HEV

determines the engine, generator, motor, and service brake

torques based on the driver’s demanded torque and loads

from the road and auxiliary subsystems. Because of the

dynamic nature of the power demand, this is a dynamic

decision making problem. Its objective is to minimize fuel

consumption while ensuring all the constraints are enforced

pointwise-in-time. In this work, we manage the complexity

of this problem by breaking it into two levels. The first

or supervisory level finds the optimum values for the

two independent degrees of freedom of the system (here

engine speed and engine torque) at each sample time. These

optimum values are issued as references to the second or

low-level controller. The low-level controller determines

the engine, motor, generator, and brake torques required

to follow the references set by the supervisory layer. A

block-diagram schematic is shown in Figure 2. The low-

level controller can use standard control loops for reference

tracking. In what follows, the focus is on the supervisory

control design.

Fig. 3. Structure of the Control System

At the supervisory level, the power management problem

can be viewed as a constrained nonlinear dynamic opti-

mization problem. The need for real-time implementable

optimization-based approach has motivated us to use a

Model Predictive Control (MPC) formulation. In short,

MPC contains three steps: First, based on an internal

(usually reduced-order) model of the plant, it predicts the

plant outputs along a future time horizon. Then it calculates

a future control sequence that minimizes a performance

index which reflects the optimization goals subject to the

constraints. Finally it applies just the first of this control

sequence to the plant. The process is repeated at the

next time step by moving the prediction horizon one step

forward.

A. Nonlinear Internal Model

In the MPC’s internal prediction model, we ignore the

powertrain inertial losses in comparison to other slower

dynamics. This reduces the model complexity and increases

computational efficiency. Also because the speed of the ve-

hicle is controlled by the driver, the vehicle speed dynamics
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are moved outside of the internal model. The remaining

dynamic state of this internal model is the battery’s state of

charge. As briefly noted earlier, the model is driven by 3

independent inputs. The service brake torque is always an

independent input and therefore a fixed degree of freedom.

There are several other choices for the other degrees of

freedom. In this work, we have chosen the engine speed and

engine torque as the other two degrees of freedom. These

are the free optimization variables in the supervisory control

formulation and are chosen to minimize the following finite-

horizon cost function at each sample time:

min
~u(t)

J =
∫ ∥

∥
∥~L(x;~u,~v)

∥
∥
∥

2

dt (8)

subject to







ẋ = f (x;~u,~v)

~yr =~g(x;~u,~v)

~yc =~g(x;~u,~v)

xmin ≤ x ≤ xmax

~ymin
c ≤~yc ≤~ymax

c

~umin ≤~u ≤~umax

(9)

where

x = [SOC] , ~u =





τeng

ωeng

τbrake



 , ~v =

[
τdrive

V

]

~yr =

[
SOC

ṁ f

]

, ~yc =







Pbatt

ωgen

τmot

τgen







are the vectors of state, control inputs, measured inputs,

tracking outputs and constrained outputs respectively. Due

to practical limits, the SOC should be kept around a desired

value (SOCr). Therefore the performance index penalizes

deviations in state of charge in addition to fuel rate and

brake use. The integrand in equation (8) is defined as,

~L(x;~u,~v) =
[

wSOC(SOC−SOCr), w f ṁ f , wbτbrake

]T

where wSOC, w f and wb are penalty weights.

B. Standard Linear MPC

Because the MPC control strategy at the supervisory level

is based on the standard MPC for linear systems, it is briefly

explained in this section. More details can be found in

[2], [8]. A finite-horizon quadratic cost function penalizes

deviation of the system outputs y from the corresponding

references r. In its more general form, it can be formulated

as:

min
∆U

J =
P−1

∑
i=0

‖u(k + i|k)−utarget (k)‖
2
wu

i
+

‖∆u(k + i|k)‖2
w∆u

i
+‖y(k + i+1|k)− r (k + i+1)‖2

w
y
i+1

+ρεε2

(10)

subject to

{

x(k +1) = Ax(k)+Buu(k)+Bvv(k)

y(k) = Cx(k)+Dvv(k)

umin
i ≤ u(k + i|k) ≤ umax

i

∆umin
i ≤ ∆u(k + i|k) ≤ ∆umax

i

−ε+ ymin
i ≤ y(k + i+1|k) ≤ ymax

i + ε

∆u(k + i|k) = 0; j = M, ...,P

ε ≥ 0

where P is the prediction horizon, M is the control horizon,

∆U = [∆u(k|k) , ...,∆u(k +M−1|k)]T is the sequence of

input increments to be optimized, wu
i , w∆u

i , w
y
i+1 are the

weighting factors at the ith sample time, x(k) ∈ Rn is

the state vector, u(k) ∈ Rm is the vector of manipulated

variables, y(k) is the vector of outputs and ε is the softening

variable. Using the discrete model of the system, the outputs

over a future prediction horizon are predicted by:

y(k + i+1|k) = C[Ai+1x(k)+

i

∑
l=0

AiBu

(

u(k−1)+
l

∑
j=0

∆u(k + j|k)

)

+

Bvv(k + l|k)]+Dvv(k)

(11)

Substituting predicted trajectories of outputs into the perfor-

mance index J, the optimization problem can be formulated

as a Quadratic Program (QP),

[
∆Uopt ,ε

]
= argmin

∆U,ε

1

2
∆UT H∆U +FT ∆U (12)

subject to

Gu∆U +Gεε ≤W +Sx(k)

where H,F,Gu,Gε,W , and S are constant matrices and

functions of references, measured inputs, input targets, the

last control input, and the measured or estimated states at

the current sample time [2], [8]. After solving this standard

QP problem and obtaining the optimal input sequences

∆Uopt , the control input to the plant is obtained by

u(k) = u(k−1)+∆uopt (k|k) (13)

C. The MPC-Based Control Strategy

The nonlinear model is linearized at each sample time

around its current operating point and the control input is

generated by applying MPC on this updated linear model

of the system. The MPC problem is formulated as a QP

problem with a linear model and linear constraints to be

solved at each sample time. The stability and disturbance

rejection properties for this approach are addressed in the

literature [9], [10]. At each step k the following steps are

taken:

1- Measurment/estimation of system state (SOC(k))

2- Prediction of the torque demand and vehicle speed

(measured inputs) over the next prediction horizon:
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The future driver torque demand, which is unknown, is

assumed to be exponentially decreasing over the prediction

horizon, i.e.

τdrive((k + i)T ) = τdrive(kT )e

(
−iT
Td

)

i = 1, 2, · · · , P

(14)

where τdrive(kT ) is the known value of the torque demand

at the beginning of the prediction horizon and Td deter-

mines the decay rate. Due to frequent variation of torque

demand in a driving cycle, assumption of a decaying torque

demand was found to be more reasonable than a constant-

torque assumption (which is the MPC default for measured

disturbances). This was later confirmed by the simulation

results.

By using the above torque model and by numerical

integration of the vehicle longitudinal dynamics over the

future horizon, the future velocity profile is predicted,

V ((k + i)T ) = V (kT )+
1

m

∫ (k+i)T

kT
τdrive(t)e

(
−t
Td

)

−
1

2
ρCDA fV (t)2 −mgcos(θ(t))+µmgsin(θ(t))dt

(15)

where V (kT ) is the actual value of the velocity at the

beginning of the prediction horizon. Here we assign θ = 0

in the prediction model if grade information is not available.

3- Linearization of the nonlinear internal model around

an operating point and update of linear system matrices:

{

ẋ = Ãx+ B̃uu+ B̃vv+ F̃

y = C̃x+ D̃uu+ D̃vv+ G̃
(16)

where

Ã =

(
∂ f

∂x

)

(x0,u0,v0)

; B̃u =

(
∂ f

∂u

)

(x0,u0,v0)

B̃v =

(
∂ f

∂v

)

(x0,u0,v0)

;C̃ =

(
∂[gr,gc]

∂x

)

(x0,u0,v0)

D̃u =

(
∂[gr,gc]

∂u

)

(x0,u0,v0)

; D̃v =

(
∂[gr,gc]

∂v

)

(x0,u0,v0)

F̃ = f (x0,u0,v0)− Ãx0 − B̃uu0 − B̃vv0

G̃ = g(x0,u0,v0)−C̃x0 − D̃uu0 − D̃vv0

(17)

To remove direct injection of the inputs in the output equa-

tions in accordance to standard MPC formulation (section

2), the linearized system is augmented with fast filters with

time constant of Tf ,

[
ẋ

ẋa

]

=

[
[0]1×1 B̃u

[0]3×1 −1
/

Tf [I]3×3

]

︸ ︷︷ ︸

Ac

[
x

xa

]

+

[
[0]1×3

1
/

Tf [I]3×3

]

︸ ︷︷ ︸

Bc
u

~u+

[
B̃v [1]1×1 [0]1×6

[0]3×2 [0]3×1 [0]3×6

]

︸ ︷︷ ︸

Bc
v





~v

F̃

G̃





[y] =
[

C̃ D̃u

]

︸ ︷︷ ︸

Cc

[
x

xa

]

+
[

D̃v [0]6×1 [I]6×6

]

︸ ︷︷ ︸

Dc
v





~v

F̃

G̃





(18)

4- Discretization of the augmented linear system matrices

(AC, BC
u , BC

v , CC, DC
v ) in order to evaluate discretized

linear system matrices A, Bu, Bv, C, Dv.

5- Application of standard linear MPC explained in

the previous section to the updated model to find control

inputs for next sample time.

6- Repetition of the previous steps at the next sample

time.

IV. SIMULATION RESULTS AND DISCUSSION

A. MPC Controller Tuning

In standard MPC, the adjustable parameters are penalty

weights and prediction and control horizons. In addition

in this work, the time constant Td in the torque model

(14) is another tuning parameter. In all simulations, the

sample interval of MPC is fixed to 1 second. Also, the

prediction and control horizons are fixed to 5. Via various

simulations and observations we found that the results can

be improved if the penalty weights and the time constant Td

are varied with the level of torque demand. The following

rules for selecting the weights and the time constant were

established:

if τdrive(kT ) ≥ 1000

WSOC = 1,Wṁ f
= 1 and Td = 0.1

elseif 450 ≤ τdrive(kT ) < 1000

WSOC = 1,Wṁ f
= 1 and Td = 1

elseif 100 ≤ τdrive(kT ) < 450

WSOC = 1,Wṁ f
= 10 and Td = 1

elseif 0 ≤ τdrive(kT ) < 100

WSOC = 1,Wṁ f
= 50 and Td = 10

elseif τdrive(kT ) < 0

WSOC = 0,Wṁ f
= 1e6 and Td = 0.1

Here a smaller Td (faster decay) is chosen for larger driver

torque demands. This is motivated by the observation that

periods of large torque demand are very short in a typical

driving cycle. In other words, a large torque demand is

not expected to prolong much. A number of trial and

error revealed that choice of a larger penalty on fuel rate

during periods of low torque demand improved the MPC
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performance. One possible explanation is that the engine

is less efficient at low torque levels and its use should

be further penalized. Finally when the torque demand is

negative, the weight on SOC is set to zero to encourage

regeneration into the battery even if that requires deviation

from the desired state of charge. At the same time the

fuel consumption is penalized with a very large weight to

discourage use of the engine. Except for the braking mode,

the brake torque is penalized by a large weight of 1000.

The reference values are taken to be constant and equal to

0.65 and 0 for state of the charge and fuel rate respectively.

B. Acceleration-Cruise-Braking Scenario

In order to analyze the performance of the developed con-

trol system for energy management of a power-split HEV,

we used different driving scenarios. The first simulated

driving scenario includes a 0 to 70 (km/hr) acceleration,

then a constant 70 (km/h) cruise, and finally decelerating to

a stop. This scenario covers acceleration, deceleration, and

cruise. The simulation results are presented in figures 4-6.
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We observe from these results that during acceleration

(15 to 35 seconds), the motor assists the engine to deliver

the required power and the SOC decreases. The generator

provides negative or reaction torque that increases trans-

mission of engine torque to the wheels. This operation is

called positive-split. Later during the cruise mode (35 to

60 seconds), the controller decreases the generator speed

to negative values and the generator works in the motoring

mode. During this mode, the vehicle speed is relatively high

and the power demand is low which causes the generator

speed to decrease to negative values and reduces the engine

speed according to equations (2)-(3). In other words, a

part of the engine power is re-circulated through the motor

and generator to decrease engine rotational speed while it

delivers the demanded power. This mode is called negative-

split. Eventually during deceleration, the motor works in

the generating mode and energy is recuperated into the

battery and the battery state of the charge is increased. This

mode is the regenerative braking mode. As shown, MPC

can perform well in all operating modes. In addition as

shown in figure 6, the controller enforces all the variable

constraints on the engine, motor, and generator torques.

C. Simulation results with standard driving cycles

In order to analyze the performance of the developed

control system with respect to fuel economy, two different

standard driving cycles were tested. Figures 7-8 show sim-

ulation results over UDDS (Urban Dynamometer Driving

Schedule also called FTP 72) cycle. The controller satisfies

all the constraints and maintains the SOC near the desired

value of 0.65. For the given driving cycle, the simulation

yields an equivalent fuel economy equal to 74.93 mile per

gallon (mpg). The PSAT 6.2 simulation program developed

by Argonne National Laboratory (ANL) [11] which uses a

rule-based power management strategy calculates a compa-

rable equivalent fuel economy of 71.56 (mpg) for the same

cycle.

The MPC performance is also tested in a highway driving

scenario, the HWFET (Highway Fuel Economy Driving
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Schedule also called FHDS) cycle. For this driving cycle,

MPC yields equivalent fuel economy equal to 67.76 (mpg)

with final SOC=0.69. With the same driving cycle, the

PSAT software calculates a comparable equivalent fuel

economy equal of 66.42 (mpg). These simulation results

are promising and encourage stepping toward experimental

validation which is the plan for future work.

V. CONCLUSIONS

In the existing literature, optimal power management of

HEVs has relied mostly on dynamic programming (DP)

or minimization of an instantaneous cost function in a

family of ECMS approaches. The drawbacks to DP are its

cycle-dependence and computational intensity. The ECMS

may be short-sighted and also very sensitive to its tuning

parameters. The MPC formulation presented in this paper

has the advantages of being i) predictive in nature ii)

adaptive to changes in the plant operating point and external

disturbances, and iii) systematic to tune with less parameter-

sensitivity. It achieves very good fuel economy via on-

line optimization, while, at the same time, it is causal and

therefore potentially real-time implementable. The power-

split hybrid which was the subject of this work, is one

of the most complex types of HEVs having strong non-

linearities, kinematic equality constraints, and time-varying

inequality constraints. This complexity was reflected in

the high-fidelity model that was used. We demonstrated

that by constantly linearizing and updating the prediction

model and the constraints, a linear MPC makes decisions

that qualitatively match those of a well-tuned conventional

power management strategy. Also quantitatively, the fuel

economies achieved with MPC are better than those re-

ported by the rule-based PSAT simulation software. Further

simulation and experimental investigation are required to

validate these quantitative results.
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