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Abstract— Traditional sensors for obstacle detection on air-
craft, such as radar, are too heavy for fixed wing micro air
vehicles and make obstacle detection and avoidance a difficult
problem. EO/IR cameras are small and lightweight enough
to offer an alternative to heavy sensors. Vision processing
available on a ground station provides range and bearing
to nearby obstacles. We propose a nonlinear guidance law
based on movement of obstacles in the camera field-of-view to
“push” the obstacles to the edge of the camera field-of-view and
thus avoid collision. As the MAV passes obstacles, the original
course is resumed. The guidance strategy is demonstrated in
simulation and flight test. This reactive method intended for
use in conjunction with high level path planners.

I. INTRODUCTION

Automated obstacle detection and avoidance in micro air
vehicles (MAV) is a difficult problem because of the need
to reliably detect obstacles, compute trajectories quickly, and
arrive at a goal in a timely manner while remaining within
the flight constraints of the MAV. Undetected obstacles make
flying in unknown environments dangerous. Reliable obstacle
avoidance requires sensors that guarantee obstacle detection
in the trajectory of the MAV to prevent collision and requires
trajectory generators that create new paths around the obsta-
cles. The new paths must arrive at the goal while satisfying
nonholonomic constraints. While these objectives are diffi-
cult to achieve, the applications of obstacles avoidance are
valuable as MAVs become commonplace in many different
fields such as mapping terrains, surveillance, and search and
rescue in all types of environments.

A common approach to obstacle avoidance is potential
fields [2], [6], [25] which create artificial “forces” in response
to nearby obstacles and goals. Obstacles generate a repulsive
force, and goals generate an attractive force, which are a
function of the current state and easily calculated in real time.
Potential fields often create local minima and cannot guaran-
tee obstacle avoidance. Another class of potential fields that
remove local minima are called navigation functions, but are
often difficult to compute [24]. A hybrid approach combining
potential fields with other methods can remove the problem
of local minima [18].
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Probability Road Map (PRM) techniques can produce fast
paths to goal with computation measured in seconds [1], [8],
[9]. PRM methods randomly generate waypoints to span a
configuration space. A sequence of waypoints are connected
to the goal to avoid obstacles. The general PRM technique
is designed for holonomic vehicles. A probabilistic planner
with extensions to nonholonomic vehicles was developed
in [4] called Rapidly-Expanding Random Trees (RRT). The
RRT method is well suited to most nonholonomic constraints
including a fixed-wing aircraft. The RRT generates random
points in the configurations space and connects each config-
uration to a tree if the kinematic constraints of the vehicle
and obstacle constraints do not prevent the movement from
the first configuration to the second. As the tree grows
through the configurations space, it eventually extends to
the goal, connecting the initial configuration to the final
configuration. The RRT has had many successful variants
including narrow passageways, and smoothing techniques,
and growing the tree from the initial condition and final
configuration simultaneously [11]–[15], [22], [23]. The com-
putation time in complex environments is usually in seconds,
making randomized path planners excellent for replanning
paths, but insufficient for reactive obstacle avoidance.

Cell decomposition is another popular path planning
method in which a configuration space is decomposed into
cells. A path is easily found in each cell. A sequence
of cells is found to connect the initial conditions to the
goal [16], [26]. Additional methods include visibility graphs
[17], Voronoi diagrams [19], and Mixed integer linear pro-
gramming (MILP) [21]. Each have varying success, though
all have computation times too high for reactive obstacle
avoidance.

Regardless of the method, there are four objectives to
trajectory generation: 1) guarantee obstacle avoidance, 2)
stay within the complex constraints of flight dynamics, 3)
compute a new trajectory immediately upon detection of an
obstacle in the current trajectory, an increase in computation
time adds constraints to an already complex problem, and
4) arrive at the goal in close to minimal time or distance.
In previous work, these objectives have been summarized as
computation requirements and completeness [5].

Our contribution is a reactive guidance strategy within a
tiered system of path planning to achieve the objectives of
trajectory generation. Obstacles avoidance is best approached
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in a multi-tiered system to better address each of the objec-
tives. The trajectory generation system used in this paper
will have three tiers. The first tier reacts instantaneously to
detected obstacles using a reactive guidance strategy based
on a feedback control law. The control law maneuvers the
MAV to “push” the obstacles to the edges of the camera
field-of-view essentially avoiding immediate collision with
obstacles. The reactive method is the focus of this paper. The
second tier plans a waypoint path around obstacles locally in
the body frame of the MAV. The third tier creates a global
path from the current configuration to the goal. Each tier
acts at a different time scale and has increasing computation
time. The reactive guidance responds to obstacles where the
predicted time-to-collision is 0-5 seconds and requires very
little computation. The tier two planner reacts to obstacles
where the predicted time-to-collision is 5-30 seconds and
plans a local path, it overrides the reactive planner. The tier
three reacts to obstacles where the predicted time-to-collision
is greater than 30 seconds and plans a global path to the goal.
The global planner overrides the local planner. The tiered
system achieves objectives 1 with constraints on the obsta-
cles. Objectives 2 is met by each layer separately. Reactive
avoidance satisfies objective 3 by reacting to obstacles by
“pushing” them to the edge of the camera- field-of-view and
objective 4 is achieved by path smoothing in the global path
planner.

We use a camera to detect obstacles. Cameras are small
and light-weight enough to mount on small MAVs. Airframe
mounted cameras have the potential to provide range estima-
tion, object segmentation, and object identification. Vision
based obstacle detection is a topic of research and while it
has not reached reliability for commercial aircraft systems, it
continues to show potential [3], [10], [20]. In this paper, we
assume a range map is available from vision processing on
the ground station. A range and bearing estimation scheme
will be presented in section IV.

The organization of this paper is as follows. Section II
provides a description of the system and the obstacle avoid-
ance problem. Section III introduces the guidance strategy
followed by state estimation techniques in section IV. Simu-
lation results are presented in V and flight results in VI with
a conclusion in VII.

II. PROBLEM OVERVIEW

The target airframe is a fixed wing MAV with wingspan
less than 48 inches. The MAV is equipped with an onboard
autopilot with inner loops on roll, pitch, and yaw angles.
The autopilot maintains a constant airspeed and a constant
altitude. Assuming zero wind, the kinematic model is given
by

żn = V cosψ, (1)
że = V sinψ, (2)

ψ̇ =
g

V
tanφ, (3)

Fig. 1. A conceptual view of the MAV approaching 2 obstacles is shown.
The objective of the control is to fly between the obstacles to avoid collision.

where (zn, ze)T is the North-East position of the MAV. The
airspeed, yaw, and roll angles are defined as V , ψ, and φ
respectively. The gravitational acceleration is represented by
g. The camera is mounted parallel to the longitudinal axis
of the body frame to allow it to capture obstacle data in the
reachable region of the MAV in the 0−5 second time frame.

Maps of terrain and potential obstacles within the terrains
are often available before launch and are used to plan a
trajectory to avoid collision. However, those maps may not
be accurate, requiring a sensor to detect pop-up obstacles.
We assume a range map is available by vision processing. A
range estimation scheme is given in section IV.

III. DYNAMICS AND GUIDANCE STRATEGY

We will simplify multiple obstacle avoidance into the case
of avoiding two obstacles at a time, a left obstacle and a right
obstacle. Any set of obstacles with number greater than two
can be subdivided into groups of two. Obstacles within a
threshold distance τ of each other are too dangerous to fly
between and are considered a single obstacle. In the case of
a single obstacle, the method described in reference [7] can
be used.

Let ρr and ρl denote the range to the right and left
obstacles in the camera field-of-view. Let ηr and ηl be the
bearing to the right and left obstacles. An illustration of the
obstacles in relation to the MAV body frame and camera
field-of-view is shown in Figure 1.

Let ρm and ηm be the range and bearing to the midpoint
between the two obstacles where

ρm =
ρr + ρl

2
,

ηm =
ηr + ηl

2
.

The midpoint is a static point and therefore moves as a
static obstacles in the body frame. The dynamics of the obsta-
cle in the MAV body frame are derived from equations (1)-
(3) as

5254



Fig. 2. If the MAV avoids the obstacles by only moving the obstacles to
the edges of the image plane, the MAV may come in close proximity to the
obstacle. To avoid this problem, force ρr − ρl to zero as well.

ρ̇∗ =− Va cos η∗, (4)

η̇∗ =
V

ρ∗
sin η∗ − ψ̇. (5)

where ∗ may denote right obstacle r, left obstacle l, or
midpoint m.

Equation (3) relates the yaw rate ψ̇ to the roll angle φ.
Substituting (3) into (5) yields

η̇∗ =
Va

ρ∗
sin η∗ −

g

Va
tanφ. (6)

The objective is to avoid both obstacles simultaneously.
We will do this by balancing the obstacles on the sides of the
image plane. In the absence of wind, the course angle of the
MAV is the angle of the optical axis. Moving the obstacles
to the edges of the camera field-of-view effectively moves
the MAV off of a collision with an obstacle. Since the case
is limited to two obstacles, the guidance strategy can “push”
the obstacles to either side of the image plane.

Moving the obstacles to the edges of the image plane will
not balance distance between them. If the MAV approaches
the obstacles at a steep angle, as shown in Figure 2, it will
come in close proximity to one of them, and possibly collide.
To avoid this problem, we also need to drive the difference
in range-to-obstacles ρd = ρr − ρl to zero. If the control
algorithm maintains ρr = ρl, then in the scenario in Figure 2
the MAV will roll away from the obstacles to force the ρd

to zero while simultaneously driving ηm to zero.
The control needs to push the obstacles to opposite sides

of the image plane. This can be done by driving ηm and ρd

to zero simultaneously. We use backstepping to derive the
guidance strategy. Consider the Lyapunov function candidate

W1 =
k1

2
ρ2

d,

and differentiate it to obtain

Ẇ1 =k1ρd (−V cos ηr + V cos ηl)

Ẇ1 =k1ρd (−V cos (2ηm − ηl) + V cos ηl) .
(7)

Assume for the moment that ηm is a controllable input
and let β = ηm be the input, then

Ẇ1 =k1ρd (−V cos (2β − ηl) + V cos ηl) .

Letting

β =
1
2

(
ηl + cos−1

(
cos ηl +

k1

V
ρd

))
, (8)

the Lyapunov function candidate simplifies to

Ẇ1 =− k2
1ρ

2
d.

Let ζ = ηm − β and introduce ζ as a change of variable.
Differentiating ζ we obtain

ζ̇ = ˙ηm − β̇,

=
V

ρm
sin ηm −

g

V
tanφ− β̇, (9)

where

β̇ =
1
2

V
ρl

sin ηl − ψ̇ −
1√

1− cosηl − k1
V ρd(

− sin ηl

(
V

ρl
sin ηl − ψ̇

)
+ k1 (−cosηr + cosηl)

)]
Let W2 be the new Lyapunov candidate

W2 =
k1

2
ρ2

d +
1
2
ζ2.

Differentiating W2 yields

Ẇ2 =k1ρdρ̇d + ζζ̇,

=k1ρd [−V cos (2ηm − 2β − ηl + 2β) + V cos ηl] + ζζ̇,

=k1ρd [−V cos (2ζ) cos (2β − ηl)

+V sin (2ζ) sin (2β − ηl) + V cos ηl] + ζζ̇,

=k1ρd

[
−V cos (2ζ)

(
cos ηl +

k1

V
ρd

)
+V sin (2ζ)

√
1−

(
cos ηl +

k1

V
ρd

)2

+V cos ηl] + ζζ̇.

Substitute infinite series for cos(2ζ) and sin(2ζ)

Ẇ2 =k1ρd

[
−V

(
1− (2ζ)2

2!
+ ...

)(
cos ηl +

k1

V
ρd

)
+V

(
2ζ − (2ζ)3

3!
+ ...

)√
1−

(
cos ηl +

k1

V
ρd

)2

+V cos ηl] + ζζ̇.

By factoring out ζ and simplifying, the Lyapunov function
becomes
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Ẇ2 =k1ρd

[
−V

(
cos ηl +

k1

V
ρd

)
+ V cos ηl

]
+ ζ

[
k1ρd

(
−V

(
−2(2ζ)

2!
+

2(2ζ)3

4!
+ ...

)
(

cos ηl +
k1

V
ρd

)
+ V

(
2− 2(2ζ)2

3!
+ ...

)
√

1−
(

cos ηl +
k1

V
ρd

)2
+ ζ̇

 ,
Ẇ2 =− k2

1ρ
2
d + ζ

[
2k1ρdV

( ∞∑
i=0

(2ζ)2i+1(−1)i

(2i+ 2)!(
cos ηl +

k1

V
ρd

)
+
∞∑

i=0

(2ζ)2i(−1)i

(2i+ 1)!√
1−

(
cos ηl +

k1

V
ρd

)2
+ ζ̇

 . (10)

Substituteing (9) for ζ̇ into (10) gives

Ẇ2 =− k2
1ρ

2
d + ζ

[
2k1ρdV

( ∞∑
i=0

(2ζ)2i+1(−1)i

(2i+ 2)!(
cos ηl +

k1

V
ρd

)
+
∞∑

i=0

(2ζ)2i(−1)i

(2i+ 1)!√
1−

(
cos ηl +

k1

V
ρd

)2


+
V

ρm
sin ηm −

g

V
tanφ− β̇

]
. (11)

The control input in equation (11) is the roll angle φ. To
stabilize the system, let

φ = tan−1

[
V

g

(
V

ρm
sin ηm − β̇ + k2ζ

+ 2k1ρdV

( ∞∑
i=0

(2ζ)2i+1(−1)i

(2i+ 2)!

(
cos ηl +

k1

V
ρd

)

+
∞∑

i=0

(2ζ)2i(−1)i

(2i+ 1)!

√
1−

(
cos ηl +

k1

V
ρd

)2
 ,

(12)

which results in the negative definite Lyapunov function

Ẇ2 = −k2
1ρ

2
d − k2ζ

2. (13)

Notice that cos−1 limits the range of the system to −1 <
cos ηr + k1

V ρd < 1.
The guidance strategy must guide the MAV to a path

that avoids obstacles. The following theorem proves that
the control law in equation (12) guides the MAV to the
perpendicular bisector of the two obstacles.

Theorem 3.1: If two obstacles are avoided using the guid-
ance strategy in equation (12), then the MAV approaches the
perpendicular bisector of the two obstacles described by the
line ρr = ρl.

Proof: The Lyapunov function (13) proves that ρd →
0 and ηm → 0 simultaneously. If ρd = 0, then ρr = ρl

implying the MAV is on the perpendicular bisector. If ηm =
0 as well, then φ = 0. The kinematic equations show that
η̇m = 0 and ρ̇d = ρ̇r−ρ̇l = 0 implying that the perpendicular
bisector is an invariant set. Equation (13) is negative definite,
implying that the system approaches the invariant set.

IV. STATE ESTIMATION

The bearing-to-obstacle will be measured in the vehicle
frame. However, the obstacle location is in the camera frame
must be rotated to the vehicle frame. If we assume pitch is
close to zero, then only the roll angle of the MAV needs
to be considered. The rotation to remove the roll angle and
rotate the obstacle location to the vehicle frame is

(
Lnewx

Lnewy

)
=
(

cosφ − sinφ
sinφ cosφ

)(
Lx

Ly

)
, (14)

where L is location of the obstacle in the image plane. The
bearing-to-obstacle η is

η = tan−1

(
Lnewx

f

)
, (15)

where f is the focal length of the camera.
A range-to-obstacle estimate is extracted from the equa-

tions of motion. Solve equation (5) for ρ,

ρr =
Va sin ηr

ψ̇ + η̇r

, (16)

ρl =
Va sin ηl

ψ̇ + η̇l

. (17)

Equations (16) and (17) have three problems. 1) The
range-to-obstacle estimate was derived using the dynamics
equations, hence the dynamics equations cannot be used to
estimate η̇m and ψ̇ for these equations. Estimates for η̇∗ and
ψ̇ must be calculated numerically from available sensors. 2)
The denominator may be zero, or numerically close to zero,
and create an undefined estimate for ρ∗.

The first problem is solved by numerical differentiation
and an alpha filter. The second problem is resolved by the
following theorem.

Theorem 4.1: If the bearings-to-obstacle of two obstacles
are balanced using the guidance strategy in equation (12),
then the denominators ψ̇ + η̇r and ψ̇ + η̇l in the range-to-
obstacle estimates will not remain zero.

Proof: Assume the denominator of equation (16) is
zero, then η̇r + ψ̇ = 0 and

η̇r = −ψ̇. (18)
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Substituting equation (5) into (18) yields

V

ρr
sin ηr − ψ̇ = −ψ̇

V

ρr
sin ηr = 0

ηr = 0.

The only set for which the denominator is zero is when ηr =
0, or the right obstacle is on the vertical axis of the camera
field of view. While this is possible, the obstacle will not
be maintained at ηr = 0 because the Lyapunov function in
equation (13) proves that

ηm → 0,
ηr + ηl

2
→ 0,

ηr → ηl. (19)

If ηr = 0, then ηl 6= 0, hence the control will move ηr away
from zero. If ηr 6= 0, then η̇r 6= −ψ̇ and the denominator
cannot be zero. A similar argument is made for equation (17).

V. SIMULATION

Simulations were conducted in Simulink with a six degree-
of-freedom model and full flight dynamics. The camera
was simulated parallel to the longitudinal axis of the MAV
body frame with a prospective projection. The locations
of obstacles in the camera field-of-view were calculated
along with the ranges-to-obstacles. The guidance strategy
calculates bearings-to-obstacles from their locations in the
image plane as discussed in section IV.

The control law in the guidance strategy uses two gains,
k2 to push the obstacles to the edges of the image plane, and
k1 to drive ρd → 0. The former is a simple matter of tuning
to prevent overshoot while still converging in a reasonable
time. The latter balances driving ηm → 0 and ρd → 0. If
the gain is too high, obstacles will go out of the camera
field-of-view as the MAV moves to the angle bisector of the
two obstacles, and the result will be an oscillation as the
obstacles move in and out of the camera field of view. The
gain must also allow the control law to maneuver away from
the obstacles if |ρd| � 0.

Simulation results for k1 = 0.001, k1 = 0.01, and k1 =
0.02 and shown in figures 3(a), 3(b), and 4(a) respectively.
The waypoint path is shown by a dotted line while the
trajectory flown is shown by a solid line. In figure 3(a) the
trajectory only slightly approaches the perpendicular bisector
of the obstacles meaning ρd is not driven to zero. Figure 3(b)
shows a tendency toward the perpendicular bisector of the
obstacles. Figure 4(a) shows a strong tendency toward the
perpendicular bisector. The gain from figure 3(b), k2 = 0.01,
was chosen for tests.

The purpose of driving ρd → 0 is to maneuver the MAV
away from obstacles when the approach to the obstacles is
at a small angle. This was tested in simulation and shown in

(a) (b)

Fig. 3. a) The guidance strategy is flown in simulation with k1 = .001.
The MAV does not approach the perpendicular bisector strongly enough.
b) The guidance strategy is flown in simulation with k1 = .01. The MAV
approaches the perpendicular bisector slightly.

(a) (b)

Fig. 4. a) The guidance strategy is flown in simulation with k1 = .02.
The MAV strongly approaches the perpendicular bisector. b) The guidance
strategy is flown in simulation with k1 = .01 with an approach to obstacles
that must drive ρr − ρl → 0. The MAV approaches the perpendicular
bisector and returns to the waypoint path after passing the obstacles.

figure 4(b). If the guidance strategy were to only drive ηm →
0, the MAV would collide with the edges of the obstacle. If
ηm → 0 and ρd → 0, then the MAV will maneuver toward
the angle bisector of the obstacles rather than fly between
them. The simulation demonstrates the effectiveness of this
approach.

VI. FLIGHT RESULTS

Flight tests were conducted using a MAV with a wing span
of 48 inches and two eleveon control surfaces as shown in
figure 5. The Kestrel autopilot from Procerus Technologies
navigated the MAV in flight with control loops for roll, pitch,
and yaw. The guidance strategy was processed in MATLAB
on the ground station and roll commands transmitted to the
autopilot. Obstacles were simulated in Matlab on the ground
station.

The trajectory of the MAV in flight test is shown in
figure 6. The waypoint path of the MAV is represented by the
dashed line and intersects one of the obstacles. The squares
are obstacles. To prevent collision, the MAV must maneuver

Fig. 5. The MAV flown in flight tests is shown. The wing span is 48
inches with elevons for control surfaces.
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Fig. 6. The flight path of the MAV avoiding two obstacles is shown. The
dotted line is the waypoint path and the solid line is the trajectory of the
MAV.

away from the waypoint path. The flown trajectory of the
MAV is represented by a solid line. The trajectory deviates
from the waypoint path and does not intersect either obstacle.
The MAV successfully avoids the obstacles in the two passes
shown in figure 6.

VII. CONCLUSION

We have presented a method for reactive obstacle avoid-
ance for multiple obstacles with a guidance strategy based
on observations made in the image plane. The obstacles are
“pushed” to the edge of the camera field-of-view to avoid
collision. Obstacle movement in the image plane provides
a means of state estimation. The guidance strategy was
successfully demonstrated in simulation and flight.

This paper explores only one tier of the path planning
system discussed in the introduction. Future work requires
developing and integrating the other tiers of the system into
a fully functional obstacle avoidance system. This includes
the local path planner and global path planner. Such a system
will accomplish all five goals of a trajectory generator.
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