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Abstract— The performance of Combined Support Vector
Machines, C-SVM, is examined by comparing it’s classification
results with k-nearest neighbor and simple SVM classifier. For
our experiments we use training and testing data obtained from
two benchmark industrial processes. The first set is simulated
data generated from Tennessee Eastman process simulator and
the second set is the data obtained by running experiment on a
Three Tank system. Our results show that the C-SVM classifier
gives the lowest classification error compared to other methods.
However, the complexity and computation time become issues,
which depend on the number of faults in the data and the data
dimension. We also examined Principal Component Analysis,
using PC scores as input features for the classifiers but the
performance was not comparable to other classifiers’ results.
By selecting appropriate number of variables using contribution
charts for classification, the performance of the classifiers on
Tennessee Eastman data enhances significantly. Therefore, using
contribution charts for selecting the most important variables
is necessary when the number of variables is large.

I. INTRODUCTION

Support vector machine is a well known technique in the

field of machine learning which is used for classification.

Implementing nonlinear kernels in the SVM structure enables

classification of nonlinear data which can not be classified

by simple linear classifiers. In SVM classification method,

an optimum hyperplane is defined which maximizes the

separation between data point classes [3].

In many works on fault detection and diagnosis, the SVM

classifier is combined with another method such as Prin-

cipal Component Analysis (PCA), Independent Component

Analysis (ICA), Fisher Discriminant Analysis (FDA), etc, to

reduce the data dimension and to accomplish the detection

part of the Fault Detection and Identification (FDI) process.

Therefore, the diagnosis part is carried out by SVM classifier.

Mostly, the SVM classifier operates on the processed data

or features, resulting from other methods (PCA scores for

example) [1]. In [4], ICA projection coefficients were used as

feature data for training the SVM classifiers. In [5], authors

compared the performance of FDA, SVM, and PSVM (prox-

imal support vector machines). They showed that support

vector machines perform better than FDA in classifying TE

data. In general, SVM is a two-class classifier. A Two-

class classification means that data points are assigned to

only one of the two class labels in the data set while in

multiclass classifiers, there are multiple class labels and the

classifier assigns each point to one of the classes. Multiple

classification problems can be turned to multiple two-class

classification problem. The number of required classifiers

The authors are both with the School of Engineering Science, Simon
Fraser University, 8888 University Drive, Vancouver, BC, V5A 1S6, Canada.
Corresponding Email: saif@ensc.sfu.ca

depends on the number of faults to be classified. As a result,

most SVM classifiers are multiple-SVM classifiers. The term

Committee is referred to the combination of classifiers in

machine learning area. A committee is built by combining

several models (classifiers). Usually the outcome of the

committee is better than individual models [8]. Averaging,

boosting, and adaptive boosting are some of the methods of

combining the models [3].

K-Nearest Neighbor (KNN) is one of the simplest classi-

fication algorithms in machine learning. K-Nearest neighbor

classification method was first introduced by Cover and Hart

[2], in which the class of each sample point is determined

by its K neighboring points in the training set. The point

is assigned to the class with the majority of votes amongst

the K-neighbor points. Several types of KNN algorithm have

been suggested and applied to different data sets in the fields

of data mining and machine learning. Many papers can be

found on KNN or combination of KNN with other methods

for improving data classification. For more information on

KNN algorithm and its application the following references

would be helpful [9]-[17]. In this paper we use averaging

method for the combined classifiers. Considering the idea

of committee classifier, we develop a combined- SVM,C-

SVM, classifier and investigate its performance compared to

individual classifiers on the data generated from Tennessee-

Eastman (TE) simulator and the Three Tank System which

are well known benchmark experimental processes used

for control , monitoring, and fault diagnosis experiments.

We also examine the performance of a K-nearest neighbor

classifier in comparison with C-SVM when applied to this

set of data.

II. TWO CLASSIFICATION METHODS

A. Support Vector Machines

SVM algorithm is usually used for two-class separation

problems [3]. The algorithm finds the maximum margin for

a separating boundary between two classes of data. Suppose

we have a set of data that can be separated into two classes.

The data is separated by training a linear model

y(x) = wT ϕ(x) + b (1)

Equation (1) is the mathematical representation of the linear

model. In this model the training data matrix is an n × m
matrix where each row of the matrix represents an observed

data point, xi, which is a vector of length m. So, n is the

number of data points and m is the number of variables.

Each data point’s class is determined by its target value.

The corresponding target values are stacked in a vector t
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with ti ∈ {−1, 1} as it’s elements. ϕ(x) is called feature

space transformation function and b is bias. w’s are weights

which affect the separating plane direction. Function y(x)
has the property that y(xi) > 0when ti = 1 and y(xi) < 0
when ti = −1. Therefore, tiy(xi) > 0 for all i . In SVM

algorithm, the distance between the closest data points to the

decision boundary which is called the boundary margin, is

maximized (see Fig.1). Therefore, in SVM the hyperplane

which maximizes the margin is chosen as the decision

boundary. The maximization criterion is:

arg max
w,b

{
1

‖w‖
min

i=1,...,n
[ti(w

T ϕ(xi) + b)]}

and the points with minimum distance are known as Support

Vectors. Fig (1) illustrates the location of support vectors and

the decision boundary.

The model parameters, w and b, are found by solving a

constrained optimization problem as

arg min
w

1

2
‖w‖2

s.t.,∀i, ti(w
T (ϕ(xi) + b) ≥ 1

This problem is solved by using Lagrange multipliers. The

lagrangian is

L(w, b, a) =
1

2
‖w‖2 −

n∑

i=1

ai{ti(w
T ϕ(xi) + b) − 1}

where ai are Lagrange multipliers. As a result, the weights

and bias are found and the decision function, becomes

y(x) = wT ϕ(x) + b =

n∑

i=1

aitik(x,xi) + b

The data classification task is carried out by computing

the sign(y(x)) for each test point. Using nonlinear kernels

allows linear classification of nonlinearly separable data in

higher dimension of the kernel space. The two well known

kernels are RBF kernel and polynomial kernel which are

defined as

RBF : k(xi,xj) = exp(
−‖xi − xj‖

δ
)

Polynomial : k(xi,xj) = (xixj + 1)d

In many problems data points in different classes have over-

lap which causes problem for classification. This happens

when data is not linearly separable in the feature space. In

this case, support vectors can not classify the points’ class

properly and give poor result. To overcome this problem,

SVM constraint is relaxed from

tiy(xi) ≥ 1

to

tiy(xi) ≥ 1 − ζi (2)

where ζi i = 1, ..., n is called the slack variable. Fig (2)

shows the concept of slack variables.

By using slack variables, some points can be misclassified

which gives flexibility to classifier. In this way some data

Fig. 1. support vectors illustration

Fig. 2. Illustration of slack variables used for non-separable data

points are misclassified but there will be a penalty which

increases the error function. Therefore, the algorithm maxi-

mizes the margin while minimizes the penalty for the points

in the wrong side of the boundary. So the criterion becomes

min{C

n∑

i=1

ζi +
‖w‖2

2
} (3)

where C is the controlling parameter, which controls the

trade off between the model complexity and minimizing

classification error. High value of C results in over-fitting

the data and in the limit, the SVM model is the same as the

SVM for separable data.

The optimization problem now turns to minimizing (3)

with constrains in (2). The Lagrangian is given by

L(w, b, a) =
‖w‖2

2
+ C

n∑

i=1

ζi (4)

−

n∑

i=1

ai{tiy(xi) − 1 + ζi} −

n∑

i=1

µiζi

where ai > 0 and µi > 0 are Lagrangian multipliers [3].

B. K-Nearest Neighbor Classification

In K-nearest neighbor classification, the class of each

sample point is determined by its K neighboring points in the

training set. The point is assigned to the class with the ma-

jority of votes for class label amongst the K-neighbor points.

The classifier is defined by its parameters. Setting parameter

K depends on the data and effects the performance of the

classifier. K must be large enough to reduce missclassification
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Fig. 3. Tennessee Eastman process simulator diagram[5]

of an example point and must be small enough so that the

sample point is close to the neighboring points which results

in better estimation of the point’s class [2].

III. EXPERIMENT DATA

A. Tennessee Eastman process

The Tennessee Eastman process (TE) which is a chemical

plant involving four exothermic gas reactions was proposed

and modeled by Downs and Vogel as a plant-wide control

challenge problem [6]. The process has been used for many

research experiments in fault detection and control. It has

fifty two variables including measured and manipulated

variables and twenty one faults that have been defined for the

process. In this work, faults 4, 9, and 11 are chosen as the

training and testing data which have overlap between each

other [7]. Fault 4 is defined as a step change in the reactor

cooling water temperature. Fault 9 is a random variation in

one of the reactants (reactant D) feed temperature and fault

11 is a random variation in the reactor cooling water tem-

perature. The data is taken from http://brahms.scs.uiuc.edu.

Each set of training and testing data contain 480 × 52 and

960 × 52 points respectively, observed every three min of

simulation and faults occur after 1 hour and 8 hour of

simulation respectively. Figure (3) illustrates the TE plant

simulation diagram. Figure (4) shows the plot of faulty data

in first and second variable space and figure (5) shows the

plot of faulty data in the two dimensions where the data has

the most separability.

B. Three Tank System

As a benchmark control problem, the Three Tanks System

(3TS) is used in many different research projects. The

basic structure of the system contains three tanks which are

connected to each other by pipes. Two tanks are filled with

2 pumps while the third one is filled only through the pipes

connected to the other two. Our experimental setup is an

AMIRA DTS200 in which the water level is measured with

three piezo-resistive difference pressure sensor [19]. DTS200

contains 6 valves which are used to emulate clogging and

leakage in the system. Figure (6) shows the system flow

sheet. The system has the following specifications:

Tank cross section area, A = .0154m2

Fig. 4. Test data plot of variables 1 and 2 for fault 4, 9, and 11

Fig. 5. Test data plot of variables 9 and 51 for fault 4, 9, and 11

Connecting pipes cross section area, az = 5 × 10−5m2

Highest liquid level, Hmax = 62cm
Maximum pump flow rate, Qmax = 100mltr/sec.

The system is equipped with a disturbance module which

allows simulating 11 types of faults for fault detection

research purposes including three sensor faults, two actuator

faults, leakage for each of the three tanks ,clogging between

the tanks, and clogging in the outflow. The training and

testing data size are 500 × 5 for each case of fault with

water levels and flow rates as variables. Faults are instigated

at sample 55 in each case. We assume that only one fault

occurs at a time and there are no simultaneous faults. Figures

(7) and (8) show two example plots of data when leak and

sensor fault occur in the system.

Fig. 6. Three Tank system structure[19]
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Fig. 7. Example plot of level sensor in three tank system
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Fig. 8. Example plot of flow rate for three tank system

IV. CLASSIFICATION PROCEDURE AND RESULTS

In every fault detection and diagnosis system, the FDI

process includes detecting the fault in the process and then

identifying the type of the fault. Here, we focus on the

diagnosis part of the FDI process and assume that fault

detection has been accomplished. After fault detection stage

in FDI, we use SVM for fault classification. It should be

noted that using this method for fault diagnosis requires

prior knowledge about different faults because classifiers are

trained and structured based on this knowledge. Here, we

examine the performance of the C-SVM compared to simple

SVM with different kernels and also to K-nearest neighbor

classifier. Hence, a training and a testing data set is collected

from the processes.

The choices of different SVM depend on their parameters.

Type of the kernel, value of C, width of the RBF kernel,

polynomial kernel degree, and number of SVM to be used

in the committee are such example parameters.

Since there are many different combinations to choose,

we only restrict our experiment to a simple case with three

different kernels to be used in the SVM-classifier.

However, we selected the parameter C, by testing the

SVM performance on different values of C ranging in

[.1, 105]. The parameter values used in the experiment are:

C = 100, δ = 1 (RBF kernel parameter as suggested in [5]),

and Poly − degree = 3

In [5], it is pointed out that for TE data in this case

Fig. 9. SVM training procedure

TABLE I

CLASSIFICATION ERROR FOR DIFFERENT CLASSIFIERS APPLIED TO TE

PROCESS DATA

Classifier Classification error %

SVM(linear kernel) 26.7
SVM(RBF kernel) 8.3

SVM(Polynomial kernel) 7.3
C-SVM 6.7

KNN classifier 8.4

(fault 4,9, 11) only two variables are important and the other

fifty variables do not show significant changes caused by

the faults. They used contribution charts to find the most

important variables for this case. These variables are var−51
(reactor cooling water valve position) and var − 9 (reactor

temperature). We use these two variables to train and test

our classifier in fault classification on TE data set.

The algorithms was implemented in MATLAB using SVM

toolbox from [18]. The procedure for building the classifier is

as follows: For every two faults we train a C-SVM classifier.

Each classifier is a combination of three SVM with different

kernels (linear, RBF, polynomial), trained with data that are

a mixture of the two fault class data set. The output is simply

the average of the three. Fig (9) depicts the training procedure

for C-SVM. In this figure, data pre-processing includes

scaling and selecting appropriate variables for classification

which has to be done before training SVM’s. When SVM is

trained the final classifier is tested with test data to determine

the classification error and to evaluate the performance of

the classification system. The error is simply defined as the

percentage of misclassified points in the whole data set. Here,

misclassification indicates a point whose class is determined

incorrectly. Fig (10) shows the block diagram of the test

data classification process. The data class is determined by

selecting the maximum vote for data from the classifiers. If

there is a tie between classifiers’ vote then the fault class

is chosen randomly. The TE test data for class 4, 9, and

11 were applied to the classifier. Classification is based on

one-against-one classifier which means for every two faults

a classifier is trained. So we have three SVM classifier for

fault 4 − 9, 9 − 11 and 4 − 11 shown as C-SVM 1, 2, and

3 in Fig (10).

When all variables were included in the data for train-

ing and testing, the classification error was 43.1%. Using

selected data variables (variables 9 and 51) in the training

and testing data sets resulted in 6.7% error which shows

about 36.3% decrease. Classification error for applying SVM

on the first two PCA scores gave very poor performance

with 64% error which is not an acceptable result. Table(I)
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Fig. 10. Classification procedure for TE data

TABLE II

CLASSIFICATION ERROR FOR DIFFERENT CLASSIFIERS APPLIED TO

THREE TANK SYSTEM DATA

Classifier Classification error %

SVM(linear kernel) 14.03
SVM(RBF kernel) 13.74

SVM(Polynomial kernel) 30.53
C-SVM 12.17

KNN classifier 14.57

presents the results for different classifiers applied to TE

data. In the second experiment with real data from the Three

Tank System(3TS), the procedure is modified to enhance

the computation time and complexity of classification. We

first train a classifier to separate faults based on their type

into four classes, i.e., leakage, clogging, sensor fault, and

pump fault. When the type of the fault is determined then

the location is determined by using another classifier which

is trained for that specific category, e.g., leak in tank 1.

The classification results are shown in table (II). The C-

SVM gives the best result for classification with 12.17%

classification error. SVM classifiers with linear and RBF

kernel also give slightly better results than KNN and SVM

with polynomial kernel.

V. DISCUSSION AND CONCLUSION

As presented in table(I), by comparing classification er-

rors, the C-SVM outperforms all other classifiers. However,

considering the computation time, the KNN classifier per-

forms much faster than SVM based classifiers which is

caused by using several SVM’s, each of which containing

kernel calculation that takes the computation time. This can

be problematic when the data dimension is high. Therefore,

data reduction techniques are highly recommended prior to

using SVM. The number of SVM used in the combined clas-

sifier is also an important parameter in forming the classifier

which has to be considered. The training time increases by

the number of SVM. As presented above, the performance

of the method is based on the results of the experiments

performed on two benchmark systems. However, for further

confirmation, the method should be tested on other different

processes in order to achieve a comprehensive understanding

of the proposed method.

REFERENCES

[1] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
Singapore; 2006.

[2] X. Zhao, S. Huihe, “A Novel Combination Method for On-line
Process Monitoring and Fault Diagnosis”, IEEE Tran. Industrial

Electronics ISIE , 4,2005, pp.1715- 1720.
[3] Y. Song et al., IKNN: Informative K-Nearest Neighbor Pattern Clas-

sification,PKDD 2007, Springer-Verlag, Berlin Heidelberg; 2007.
[4] M. Guo, L. Xie, S. Wang, J. Zhang, “Research on an Integrated ICA-

SVM Based Framework for Fault Diagnosis”, IEEE Proc. Syst., Man,

and Cybern., 3, 2003, pp. 2710-2715.
[5] Chiang L.H., M.E. Kotanchek, A.K. Kordon, “Fault diagnosis based

on Fisher discriminant analysis and support vector machines”, Com-

puter and Chemical Eng., 28, 2004, pp. 1389-1401.
[6] J.J. Downs, E.F. Vogel, “A Plant-Wide Industrial Process Con-

trol Problem”, Computers and Chemical Engineering, 17(3),
1993,pp.245-255.

[7] L.H. Chiang, E.L. Russell, R.D. Braatz, “Fault diagnosis in chemical
processes using Fisher discriminant analysis, discriminant partial
least squares, and principal component analysis”, Chemometrics and
Intelligent Laboratory Systems 50, 2000, pp. 243-252.

[8] G. Mori, “Introduction to machine learning”, lecture
notes,[Online],available:http://www.cs.sfu.ca/ mori/courses/cmpt726,
accessed Aug. 2008.

[9] C. Domeniconi, J. Peng, D. Gunopulos, “Locally adaptive metric
nearest-neighbor classification”,IEEE Trans. Pattern Anal. Mach.

Intell., 24(9), 2002, pp. 1281-1285.
[10] T. Cover, P.Hart,“Nearest neighbor pattern classification”,IEEE

Trans. on Information Theory, 13(1), 1967, pp. 21-27.
[11] V. Athitsos, S. Sclaroff,“Boosting nearest neighbor classifiers for

multiclass recognition”,IEEE Compt. Society Conf. on Computer

Vision and Pattern Recognition, 3, 2005, pp. 45-45.
[12] T. Hastie, R. Tibshirani,“Discriminant adaptive nearest neighbor

classification”,IEEE Trans. Pattern Anal. Mach. Intell., 18(6), 1996,
pp. 607-616.

[13] H. Zhang, A.C. Berg, M. Maire, M. Malik,“Discriminative nearest
neighbor classification for visual category recognition”,IEEE Compt.

Society Conf. on Computer Vision and Pattern Recognition, 2, 2006,
pp. 2126- 2136.

[14] Y. Pingpeng, Y. Chen, H. Jin, L. Huang,“MSVM-kNN: combining
SVM and k-NN for multi-class text classification”,IEEE Int. Work-

shop on Semantic Computing and Systems, 2008, 133-140.
[15] W. Shu-Bin et al.,“Classification algorithm based on weighted SVMs

and locally tuning kNN”,International Conference on Biomedical

Engineering and Informatics, 2008, pp. 240-244.
[16] L. Ping, L. Nan, W. Jian-yu, Z.Chun-Guang,“Combining weighted

SVMs and spectrum-based kNN for multi-classification”,Proc. 4th

Int. Symp. Neural Networks, 2007, pp. 448-53.
[17] Q. He, J. Wang,“Principal component based k-nearest-neighbor rule

for semiconductor process fault detection”, IEEE Trans. Semiconduc-

tor Manufacturing, 20(4), 2008, pp. 345-354.
[18] S.R. Gunn,“Support Vector Machines for Classification

and Regression”, Technical Report, 1998, available:
http://www.isis.ecs.soton.ac.uk/resources/svminfo/, accessed on
July 2008.

[19] DTS200 labratory setup Three Tank System , AMIRA2002.

3433


