
  

  

Abstract—The plug-in hybrid electric vehicles (PHEV), 
utilizing more battery power, has become a next-generation 
HEV with great promise of higher fuel economy. Global 
optimization charge-depletion power management would be 
desirable. This has so far been hampered due to the a priori 
nature of the trip information and the almost prohibitive 
computational cost of global optimization techniques such as 
dynamic programming (DP). Combined with the Intelligent 
Transportation Systems (ITS), our previous work developed a 
two-scale dynamic programming approach as a nearly globally 
optimized charge-depletion strategy for PHEV power 
management. Trip model is obtained via GPS, GIS, real-time 
and historical traffic flow data and advanced traffic flow 
modeling. The Gas-kinetic based model was used for the trip 
modeling in our previous study. The complicated partial 
deferential equation based model with several parameters needs 
to be calibrated had for implementation. In this paper, a neural 
network based trip model was developed for the highway 
portion, using the given data from WisTransPortal. The real 
test data was used for the training and validation of the network. 
The simulation results show that the obtained trip model using 
neural network can greatly improve the trip modeling accuracy, 
and thus improve the fuel economy. The potential of the 
advantages were indicated by the fuel economy comparison.  

I. INTRODUCTION 
HE hybrid electric vehicle (HEV) has provided a 
promising alternative means for sustainable mobility 

[1-4]. The benefits of HEV include the improvement of fuel 
economy and the reduction of emissions. The propulsion 
power of HEV comes from two or more kinds of energy 
sources, e.g., the gasoline internal combustion engine (ICE) 
and battery, diesel engine and battery, battery and fuel cell 
(FC), battery and ultra-capacitor, and battery and flywheel 
[4-6].  

The plug-in hybrid electric vehicle (PHEV) is a new 
generation of HEV with higher battery capacity and the 
ability to be recharged from an external electrical outlet. 
Unlike the conventional HEV which can sustain little purely 
electric range, the PHEV can sustain a longer all-electric 
range (AER). More fuel can be replaced by the four times 
cheaper grid electricity in the US [7]. The great potential of 
PHEV in fuel economy enhancement indicates a tremendous 
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saving of fuel consumption for the nation and a possibly 
shorter payback time for the customer with regard to the 
modified powertrain and battery pack. Such encouraging 
promise has attracted significant attention to PHEV 
technology from both government and private sectors, e.g. 
the President’s Advanced Energy Initiatives announced in 
early 2006 [8] and the Department of Energy (DOE)’s 
FreedomCar program [9]. 

Similar to conventional HEV, power management is an 
important operational factor for PHEV to enhance fuel 
economy and reduce emissions. Limited by the current 
battery technology, the PHEV with 10 ~ 20 miles AER is 
considered, according to the DOE authority [9], to be more 
commercially feasible within the near future, although much 
higher AER can be obtained from showroom vehicles by 
using more battery packs. For PHEV-10 or PHEV-20, the 
electric vehicle (EV) mode cannot sustain the whole trip for 
most commuters. Therefore, it is necessary to optimize the 
power management strategies for PHEV. While most 
conventional HEV’s are operated to maintain the battery 
state-of-charge (SOC) at a constant level (known as 
“charge-sustaining” mode), PHEV presents a somewhat 
different scenario: it is desirable to use as much battery power 
as possible when the vehicle reaches the destination, i.e., the 
SOC is expected to drop to the lowest possible level. Such an 
operation is known as the “charge-depleting” mode. A key 
issue is how to achieve the optimal charge-depleting mode or 
what kind of depleting profile is the best. A simple strategy is 
to run the PHEV in the charge-depleting mode (i.e., the EV 
mode) first until a low threshold of SOC, e.g., 0.3, is reached. 
Then the vehicle is operated in the charge-sustaining mode, 
maintaining the SOC constant until the end of the trip. But 
this naive approach is far from optimal in terms of fuel 
efficiency. 

In the past decade, HEV power management has been 
studied from control and optimization perspectives. The 
rule-based control strategies, such as fuzzy logic control 
techniques, divided the actual driving conditions into 
different scenarios [5] [11]. Rule-based controllers are easier 
to implement, while the resultant operation may be quite far 
from optimal due to the omission of the detailed dynamic 
models. Driving mode classification was studied in pattern 
recognition methods [12] based on the current and previous 
driving condition. A blend of pattern learning and fuzzy 
classification was presented in [13] [14]. Dynamic feedback 
control approaches solve for the control strategies based on 
the current and previous operation, which are easier for the 
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real-time implementation purpose. An optimal control design 
approach was studied [15] [16]. For the power management 
problem, a major drawback of rule-based, driving-mode 
based, and the dynamic feedback control based approaches is 
the absence of global optimality, i.e. the power distribution is 
not optimized for the whole trip. In order to obtain the 
globally optimal solutions, dynamic programming (DP) 
techniques have been investigated [18-22] for the power 
management of various types of HEV. The application of a 
DP algorithm have relied on certain driving cycles, e.g., the 
standard driving cycles provided by the U. S. Department of 
Transportation (DOT). The DP based work has all been 
considered not applicable for real-time implementation 
because the trip model (driving cycle) is future information 
for vehicle operation. Therefore, it was claimed that global 
optimization result can only used as reference for power 
management design. More research has been done to seek 
other alternative methods to optimize the power control. In 
addition to DP, quadratic programming and model predictive 
control frameworks were also explored [22]. An adaptive 
algorithm based on the equivalent consumption minimization 
strategy (ECMS) was developed based on the on-line 
adaptive estimation of an equivalence factor based on the 
current driving conditions [23]. Good parameter tuning was 
required in order to achieve similar performance as the DP 
methods. Dependency on the current driving conditions 
makes this method more suitable for charge-sustaining 
strategy, but quite difficult for PHEV where charge-depleting 
control is desired.  

For conventional HEV, the battery energy is very limited. 
The charge and recharge of the battery occurs within short 
time periods. Thus the overall fuel economy is more affected 
by the transient behavior. In comparison, PHEV has much 
larger on-board battery energy; i.e., it takes much longer time 
to use up this energy. The fuel economy of PHEV is more 
dependent on the optimal balance for different segments of 
the trip. A global optimization method, e.g., DP, is more 
desirable. Recent work on global optimization based PHEV 
power management obtained by Argonne National 
Laboratory [10] shows the significant improvement in fuel 
economy when the global optimization is applied compared 
to the depleting-sustaining strategy.  

In order to achieve the global optimality for a trip, the trip 
model for an individual trip is required in advance. Another 
difficulty is the computational load for global optimization 
algorithms in the microprocessor inside the vehicle. A 
two-scale dynamic programming algorithm has been 
developed for improving the computation efficiency while 
maintaining the optimality of the power management [24]. 
This approach was based on trip prediction and modeling 
facilitated by the Intelligent Transportation Systems (ITS), 
Geographical Information Systems (GIS) and Global 
Positioning Systems (GPS) [25-27]. Our simulation study 
showed that the computation time can be dramatically 
shortened, indicating its great potential for practical 

implementation. Later on, the trip modeling was improved by 
applying the advanced traffic flow theory. The gas-kinetic 
model, a representative mesoscopic model, was applied to the 
highway segments with on/off ramp traffic [28]. The Gipps 
car following model, a microscopic model, is applied to local 
road trip modeling with assumption of the availability of 
vehicle position/speed on a road segment via GPS 
transmitting devices [28]. Also, the traffic signal sequence is 
used to synchronize the local road trip modeling.  

Gas-kinetic based traffic model has quite a few parameters 
to be calibrated for the implementation. A simplified way to 
find the driving pattern for the highway portion is using 
neural network. Neural network is an effective approach for 
pattern recognition and function fitting. The driving pattern 
on highways near on/off ramps usually has the typical shape 
of uneven triangle. It is caused by the ramp flow traffic 
merging into the main road traffic, so braking and 
acceleration patterns occur. The function fitting tool of neural 
network was used for the study. Simulation results will show 
the improvement of the trip modeling using the approach.  

II. PHEV POWER MANAGEMENT WITH TWO-SCALE DYNAMIC 
PROGRAMMING 

A. Dynamic Optimization of HEV Power Management 
The control strategy of the HEV power management can be 

computed through the dynamic optimization approach used 
on the dynamic models of the vehicle. Given the driving 
cycle, the strategy which minimizes the fuel consumption, or 
combined fuel consumption and emissions can be obtained.  
A numerical dynamic programming approach is adopted to 
solve this finite horizon dynamic optimization problem in 
[20].  

In our study, fuel economy is the only term to be 
optimized. During the optimization process, it is necessary to 
satisfy the inequality and equality constraints to satisfy the 
speed and torque demands and meanwhile to ensure 
safe/smooth operation of the engine/battery/motor [20].A 
simplified but sufficiently complex vehicle model has been 
adopted in our previous study. In this study, we have kept the 
adoption of this model [20] [30]. 

B. Dynamic Programming  
Dynamic programming is a general dynamic optimization 

approach which can provide globally optimal solution to the 
constrained nonlinear programming problems [31]. Based on 
Bellman’s Principle of Optimality, the optimal policy can be 
obtained by solving the sub-problems of optimization 
backward from the terminal condition. The subproblem for 
the (N−1)-th step is to minimize 

*
1 ( 1)
[ ( 1)] min{ [ ( 1), ( 1)] [ ( )]}N u N

J x N L x N u N G x N− −
− = − − +

        (1) 
For step k (0 < k < N−1), the sub-problem is to minimize:  

* *
1( )

[ ( )] min{ [ ( ), ( )] [ ( 1)]}k ku k
J x k L x k u k J x k+= + +

                      (2) 
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where 
*[ ( )]kJ x k  is the optimal cost-to-go function at state 

x(k) starting from time stage k. The above recursive equation 
is solved backward to find the control policy. The 
minimizations are performed subject to the inequality 
constraints and the equality constraints imposed by the 
driving cycle. 

An effective way to solve the above cost function 
numerically is to do the quantization and interpolation [32] 
[33]. For continuous state space and control space, the state 
and control values are first discredited into finite grids. At 
each step of the optimization search, the function Jk[x(k)] is 
evaluated only at the grid points of the state variables. If the 
next state x(k+1) does not fall exactly on a quantized value, 
then the value of Jk*[x(k+1)] as well as G[x(N)] are 
determined through linear interpolation. At each step, the 
backward DP with interpolation method was used [31] 
[34].  For most cases, the vehicle can be assumed fully 
charged to the highest healthy level, typically SOC of 0.8, 
while the healthy low level of SOC is 0.3. Therefore, for the 
DP problem to be solved, the initial and terminal values of 
SOC are 0.8 and 0.3, respectively. 

C. Two-Scale Dynamic Programming Based 
Charge-Depletion Power Management  

After the driving cycles are obtained by trip models for 
individual trip, the DP technique can be used to find the trip 
based optimal power management strategy. The major issue 
remained is that the computation of global optimization is too 
complex to be implemented on board and also the actual 
driving cycle may be different from that produced by the trip 
model because of the variation of actual traffic situation. A 
two-scale DP procedure was proposed in [24]  

III. TRIP MODELING ENHANCEMENT 
The purpose of the trip modeling is to find the driving cycle 

(e.g., travel speed, time, acceleration and deceleration) for 
each trip with specified origin and destination. For each trip, 
we can use path-finding algorithms inside the geographic 
information system (GIS) to search for the driving path and 
the relevant road information such as segment length, slope, 
speed limit and intersection/traffic light distribution. For 
arterial and express roads, historical and real-time traffic data 
can be obtained from roadside sensors. Traffic speed and 
flow information can be modeled based on such data [25-27].  

Trip modeling includes two scenarios: local road and 
freeway. For the local road, traffic flow sensing is currently 
not common yet. So the traffic flow measurement is assumed 
not available for this stage of work. A simplified trip 
modeling approach with using of the traffic lights signals 
which can be obtained from the traffic management center 
was discussed [30] [35]. The case for study that was taken 
from Mapquest [36] was also discussed in detail in those two 
papers. On most freeways in the metropolitan areas, traffic 
flow sensors have been widely deployed and thus both 
historical and real-time traffic data are available for trip 

modeling. There are large databases of the archived ITS data. 
For example, the Wisconsin Department of Transportation 
has archived the traffic flow data in its WisTransPortal that is 
maintained by the Wisconsin Traffic Operations and Safety 
(TOPS) Laboratory[37]. This WisTransPortal allows the 
users to access the traffic data on the web. The procedures for 
traffic data based model were discussed [30]. Gas-kinetic 
based traffic model was used for the trip modeling of freeway 
portion considering the on/off ramp traffic flows, and Gipps 
car-following model used for the trip modeling of local road 
[28]. 

The case of our research is the trip model on the freeway 
considering the effect of the on- or off-ramp. The diagram is 
shown in Figure 1. The blue dots are the detectors fixed along 
the main road and ramps, which can obtain the traffic flow, 
speed information. At current step, we consider only the one 
lane situation, which means lane changing is not considered 
right now. 

 

Fig. 1. Traffic Flow of Highway with On/Off Ramps 

IV. NEURAL NETWORK USED IN ON/OFF RAMP 

A. Flow Affected Driving Pattern on Highway 
Gas-kinetic based traffic model has quite a few parameters 

to be calibrated for the implementation, such as 0A , AΔ , 
τ , γ , T  etc [28]. which requires study on field recorded 
traffic data. Such calibration would be tedious and 
inconvenient from the vehicle development perspective. In 
this section, a data-driven approach is proposed to model the 
trip model around on/off ramps based on field recorded traffic 
data using Multi-layer Perceptron (MLP) type of neural 
networks. Such method is easier for practical implementation 
because the vehicle can acquire the on/off ramp traffic data 
for the target route from transportation agencies 
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Fig. 2. A Case of Real Test Data Showing the Ramp Flow Effect 

The driving pattern on highways near on/off ramps usually 
has the typical shape of uneven triangle shown in Figure 2 
which is a case of real test data from the GPS receiver. A 
typical ramp flow affected driving pattern is pointed out as 
the red lines in the figure. The traffic flow is first slowed 
down as approaching to the on/ramp due to the mixing of 
inflow. After passing the mixing segment, the vehicle can 
accelerate gradually  

Given a set of the training data, the back propagation based 
neural network can train the weights of the neurons. Least 
mean square (LMS) is used for the neural network. The 
function fitting tool of neural network was used for the study. 
The neural network model can be set as 3 inputs, 2 outputs 
model. The schematic diagram of the neural network is 
shown in Figure 3. V1 is the upstream speed, V2 is the 
downstream speed, V3 is the valley speed, Q1 is the ramp 
flow, D is the distance between two main road detectors, and 
D1 is the distance between the valley speed location and the 
downstream main road detector. V1, V2 and Q1 are inputs, 
while D1 and V3 are outputs. The detailed procedures for the 
neural network based highway trip modeling are as follows.  

1) Obtain the driving pattern data sets x =[V1, V2, Q1], y =[ 
D1, V3], from the real test data of the highway portion. These 
data sets will be used for the training data sets for the neural 
network.  

2) One case of the data sets obtained from WisTransportal 
will be used as the validation data sets.  

3) The output data set results of the validation case will be 
picked out and combined with the data of the main road 
detectors of highway. A newly developed speed profile of 
highway portion using neural network fitting will be 
obtained. 

 
Fig. 3. Schematic Diagram of The Neural Network 

B. Study Case 
Ten days real driving tests were carried out in May 2008. 

The real driving data were obtained from the GPS receiver 
(Garmin Forerunner 301) and stored to PC using the software 
nRoute. The speed, location and grade data can be obtained 
from GPS receiver. Since 2 of the 10 days don`t have data 
available in WisTransPortal, so the rest 8 days` data were 
used for the study, and test day #1`s data will be used as the 
validation case. The data sets of V1, V2, V3, D1 can be obtained 
from the cases picked out from the real test data. Q1 can be 
obtained from WisTransPortal database, i.e. the first days` 
ramp flow data were collected as shown in TABLE 1. NA 
means data not available for that detector at that time. 

TABLE I 
RAMP FLOW OF  DAY #1 FROM WISTRANSPORTAL 

Ramp Locations. Q1 (vehicles/h) 

STH 167/Mequon Rd. 700 
County Line Rd. 480 
Brown Deer Rd.1 250 
Brown Deer Rd.2 450 

Good Hope 530 
Silver Spring Rd. 580 

Hampton 530 
Capitol Dr. 220 

9th and Abert PI 410 
Keefe NA 

For the neural network model, one hidden layer with 20 
nodes is used, and 12 epochs were taken to converge. Totally 
43 cases of from the real test data sets (10 real test data were 
collected from the GPS receiver) were chosen as the trained 
data, and 9 out of them were chosen as the validation cases.. 
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Fig. 4. Comparison of Output From Neural Network and Real Test Data  

The outputs of the neural network of validation case are 
compared with the real test driving data in Figure 4. The test 
points are defined as the valley points between two traffic 
detector points. Most of the points were well fitted except 
very few. Combing the outputs from neural network (NN) 
and the main road detector data, the interpolation model with 
NN can be obtained. The speed profiles of interpolation 
model using WisTransPortal data, interpolation model using 
WisTransPortal data with NN, and the real test data of 

V1 V2 

V3 

D1 

Distance 

V
el

oc
ity

 

D-D1 

(a)

(b)

W 

b 

W 

b 

Neural Network 

Hidden Layer Output Layer 

V1 

V2 

Q1 

D1 

V3 

4604



  

highway portion are compared in Figure 5. The portion is 
only the highway portion starting from zero just for 
simplicity. The three SOC profiles are DP results SOC 
profiles for the three cases correspondingly. Detailed fuel 
economy results will be studied in next section.  
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Fig. 5. Comparison of the Three Trips and the Corresponding SOC from DP 

The solid line is the trip model using interpolation method 
using the data of day #1 from WisTransPortal. Compared to 
the real test data of the same day, this approach obviously 
missed some dynamics of the traffic on the highway portion. 
By adding the neural network results to the available data, the 
new approach WisTransportal with NN can be used to predict 
some ramp flow affected traffic dynamics on highway, which 
is more close to the real test data. 

V. SIMULATION RESULTS 
The study used the same SUV model from the ADVISOR 

program as in our previous studies [29][30]. Its parameter and 
characteristic data were obtained by averaging the data of 
1998 models of Ford Explorer, Jeep Grand Cherokee, and 
Chevy Blazer with the conventional powertrains. The 
resultant SUV has the ICE power of 102 kW. The vehicle was 
hybridized by downsizing the engine and adding an electric 
motor. The ICE was downsized to 75 kW, and a 50 kW AC 
electric motor was selected from the database in ADVISOR. 
The energy storage unit is a 10 A-h lithium battery. The ICE 
and motor are connected through a typical parallel 
configuration. 

To see the potential and advantages of using the neural 
network based trip model for highway, the following 
simulations were carried out for comparison.  

1) DP was applied to the three trips data (2 trip models and 
1 real test data). 

2) Obtain the power splitting ratio (PSR) of the two trip 
model of DP. PSR is defined as the Pem/Preq, where Pem is the 
power request from electric motor, and Preq is the total power 
request. 

3) Directly apply the PSR obtained from the above step to 
the real test data. The fuel economy results and SOC 
trajectories can be obtained and compared. 

The fuel economy results of DP for the three cases are 3.72, 

3.94, 4.49 L/100km respectively. Apply the PSR obtained 
from the DP results of the interpolation model of 
WisTransPortal without NN to the real test data, the fuel 
economy is 4.34 L/100 km, which is about 16.7% 
degradation compared to the DP result of the real test data. 
When applying the PSR obtained from the DP results of the 
interpolation model of WisTransPortal with NN to the real 
test data, the fuel economy is 3.58 L/100 km, which is about 
17.5% improvement compared to the case without NN (4.34), 
However, the little even better result of direct apply of the 
PSR of the interpolation model of WisTransPortal with NN 
compared to the DP result of real test data may be caused by 
numerical error of the DP algorithm.  

0 5 10 15 20
0

50

100

150

200

Distance(km)

IC
E

 T
or

qu
e(

N
.m

)

 

 

DP of Highway of Real Test Day1
Apply PSR of WisTransPortal with NN

 
Fig. 6. Comparison of the ICE Torques of DP and Direct Apply of  PSR 
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Fig. 7. Comparison of the Obtained SOC Profiles 

The ICE torque comparison of the DP result of real test 
data and the direct use of PSR of interpolation model with NN 
are shown in Figure 6.  

Applying the PSR from the two models to the feed forward 
battery model, the obtained real SOC trajectories for the cases 
are compared with the DP based results in the Figure 7. The 
final SOC value for the direct application of PSR from 
interpolation model with NN is 0.28, and the final SOC value 
for the direct application of PSR from interpolation model 
without NN is 0.37. The final SOC values difference 
demonstrate the difference in fuel economy results. 
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The interpolation model with NN has very close results 
both in final SOC values and fuel economy with the DP case. 
However, a little even worse result in fuel economy of DP 
may caused by the numerical error of DP algorithm.  

VI. CONCLUSION 
In this paper, a neural network based trip model for 

highway portion was studied. A 3 inputs, 2 outputs network 
was developed for the fitting of the driving pattern on 
highway near on/off ramps. The trained neural network can 
obtain a good fitting of the driving pattern. The simplified 
approach makes the trip model on highway much easier.  

Potential of using the approach are illustrated by the fuel 
economy results comparison. The interpolation model 
without using NN has big degradation of fuel economy when 
applying the PSR obtained from the model to the real driving 
data. By using the interpolation model with NN, the fuel 
economy is greatly improved. The NN model presents a 
simplified and effective way for this detailed model of trip 
model considering the on/off ramp flows.  
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