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Abstract— This paper studies the problem of stability analysis
for discrete-time delay systems. By using a delay decomposition
approach and the discrete Jensen inequality, a new stability
criterion is presented in terms of linear matrix inequalities
(LMIs) and proved to be less conservative than the existing
ones. A numerical example is given to illustrate the effectiveness
and advantages of the proposed method.

I. INTRODUCTION

During the last two decades, the stability problem of
linear continuous-time systems with time-delay has received
considerable attention [6]-[9]. The practical examples of time
delay systems include engineering, communications and bio-
logical systems. The existence of delay in a practical system
may induce instability, oscillation and poor performance.

Compared with continuous-time systems with time-delay,
discrete-time systems with time-varying delay have strong
background in engineering applications, among which net-
work based control has been well recognized to be a typical
example (see [3]-[5], [12]). One should notice that little effort
has been made towards investigating the stability of discrete
time-delay systems. The reason is that for linear discrete-
time systems with constant time-delay, one can transform
them into the delay-free systems via state augmentation
approach. However, the augmentation approach cannot be
applied to linear discrete-time systems with time-varying
delay. Recently, there have been some works investigating
the stability of discrete systems with time-varying delay via
Lyapunov approaches [13], [14].

By employing the Moon’s inequality [10] to estimate
the cross products between two vectors, [14] proposed a
stability condition which was dependent on the minimum
and maximum delay bounds. By defining a new Lyapunov
functional and circumventing the utilization of some bound-
ing inequalities for cross products between two vectors, [13]
improved the result in [14], and the free-weighting matrix
method (see [6]) was adopted to reduce the conservatism of
the results. However, the introduction of the free-weighting
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matrices may increase the number of decision variables, then
it may lead to the increase of the computational complexity
inevitably.

By defining a new Lyapunov functional and using the
discrete Jensen inequality, [17] presented stability criteria
for discrete-time delay systems. Since the discrete Jensen
inequality was adopted and no any free-weighting matrices
were introduced, the computational complexity of the sta-
bility criteria in [17] was reduced greatly compared with
the existing results. Furthermore, it was shown that the
stability conditions in [17] were also less conservative than
the corresponding ones in [13] and [14].

In this paper, the range of delay dk is divided into
dM − dm + 1 cases: dk = dm, dk = dm + 1, · · · , dk = dM .
For each case, we estimate the upper bounds of the term

−
k−dm−1

∑
i=k−dM

ηT (i)U2η(i), respectively. Thus, the upper bound

of the term −
k−dm−1

∑
i=k−dM

ηT (i)U2η(i) is estimated more exactly,

and the presented stability condition is less conservative than
the corresponding one in [17].

This paper is organized as follows. Section II gives the
problem statement. The stability criterion of discrete-time
delay systems is presented in Section III. Section IV gives
an example to illustrate the effectiveness of the presented
stability criteria. Section V concludes this paper.

II. PROBLEM STATEMENT

Consider the following discrete-time system with a time-
varying state delay [13]:

{
x(k +1) = Ax(k)+Adx(k−dk)
x(k) = φ(k) k =−dM, −dM +1, · · · , 0,

(1)

where x(k) ∈ Rn is the state vector, A and Ad are constant
matrices with appropriate dimensions, dk is a time-varying
delay in the state, and it satisfies

dm ≤ dk ≤ dM, (2)

where dm and dM are constant positive integers representing
the lower and upper delays, respectively.

The purpose of this paper is to find new stability crite-
ria which are of less conservatism and less computational
complexity than the existing results.

For the system (1)-(2), the Moon’s inequality was used in
[14] to bound the inner product between two vectors, and
the obtained stability condition is listed as follows:
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Lemma 1. [14] The system (1)-(2) is asymptotically stable
if there exist matrices P = PT > 0, Q = QT > 0, X = XT >
0, Z = ZT > 0, and Y satisfying

ϒ =




−P 0 PA PAd
∗ −d−1

M Z Z(A− I) ZAd
∗ ∗ ϒ1 −Y
∗ ∗ ∗ −Q


 < 0, (3)

[
X Y
∗ Z

]
≥ 0, (4)

where

ϒ1 =−P+dMX +Y +Y T +(dM−dm +1)Q.

By using the free-weighting method, [13] presented an
improved result on Lemma 1 as follows:
Lemma 2. [13] The system (1)-(2) is asymptotically stable
if there exist matrices P = PT > 0, Q = QT ≥ 0, R = RT ≥
0, Zi = ZT

i > 0 (i = 1, 2), M, S, N satisfying

Ξ =
[

Ξ1 +Ξ2 +ΞT
2 +Ξ3 Ξ4

∗ Ξ5

]
< 0 (5)

where

Ξ1 =




Ξ11 AT PAd 0
∗ AT

d PAd −Q 0
∗ ∗ −R


 ,

Ξ11 = AT PA−P+(dM−dm +1)Q+R,
Ξ2 =

[
M +N S−M −S−N

]
,

Ξ3 = dM
[

A− I Ad 0
]T (Z1 +Z2)

[
A− I Ad 0

]
,

Ξ4 =
[ √

dMM
√

dM−dmS
√

dMN
]
,

Ξ5 = diag{−Z1, −Z1, −Z2}.

By using the Jensen inequality method, [17] presented an
improved result on Lemma 2 as follows:
Lemma 3. [17] The system (1)-(2) is asymptotically stable
if there exist matrices P = PT > 0, Qi = QT

i ≥ 0, Ui = UT
i >

0 (i = 1, 2, 3) satisfying

Λ =




Λ11 Λ12 U3 U1
∗ Λ22 U2 U2
∗ ∗ −Q3−U2−U3 0
∗ ∗ ∗ −Q2−U1−U2


 < 0,

(6)
where

Λ11 = AT PA−P+(dM−dm +1)Q1 +Q2 +Q3− (U1 +U3)
+(A− I)TU(A− I),

Λ12 = AT PAd +(A− I)TUAd ,
Λ22 = AT

d PAd −Q1−2U2 +AT
d UAd ,

U = d2
MU1 +(dM−dm)2U2 +d2

mU3.

Corresponding to the Jensen integral inequality [2], we
can get the following discrete Jensen inequality which will
be exploited for the stability analysis of the system (1)-(2):
Lemma 4. [17] For any constant matrix M ∈ Rn×n, M =
MT > 0, integers γ2 ≥ γ1, vector function ω : {γ1, γ1 +

1, · · · , γ2} → Rn such that the sums in the following are
well defined, then

−(γ2− γ1 +1)
γ2
∑

i=γ1

ωT (i)Mω(i)

≤−
( γ2

∑
i=γ1

ω(i)
)T

M
( γ2

∑
i=γ1

ω(i)
)
.

(7)

III. MAIN RESULT

In this section, a new stability criterion for system (1)-(2)
will be presented by suing a delay decomposition method.

For convenience, we denote d̄ = dM−dm.
For the system (1)-(2), we give the following stability

condition using the discrete Jenson inequality.
Theorem 1. System (1)-(2) is asymptotically stable if there
exist matrices P = PT > 0, Q j = QT

j ≥ 0, U j = UT
j > 0 ( j =

1, 2, 3) satisfying

Ωi < 0 (i = 0, 1, · · · , d̄) (8)

where

Ω0 =




Ω11 U3 U1 AT P (A− I)TU
∗ Ω(0)

22 U2 AT
d P AT

d U
∗ ∗ −Q2−U1−U2 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −U




,

Ω j =




Ω11 0 U3 U1 AT P (A− I)TU
∗ Ω( j)

22 Ω( j)
23 Ω( j)

24 AT
d P AT

d U
∗ ∗ Ω( j)

33 0 0 0
∗ ∗ ∗ Ω( j)

44 0 0
∗ ∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ ∗ −U




,

Ωd̄ =




Ω11 U3 U1 AT P (A− I)TU

∗ Ω(d̄)
22 U2 0 0

∗ ∗ Ω(d̄)
33 AT

d P AT
d U

∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −U




,

Ω11 =−P+(d̄ +1)Q1 +Q2 +Q3−U1−U3,

Ω(0)
22 =−Q1−Q3−U3−U2,

Ω( j)
22 =−Q1− d̄

j
U2− d̄

d̄− j
U2,

Ω( j)
23 =− d̄

j
U2,

Ω( j)
24 =− d̄

d̄− j
U2,

Ω( j)
33 =−Q3− d̄

j
U2−U3,

Ω( j)
44 =−Q2−U1− d̄

d̄− j
U2,

Ω(d̄)
22 =−Q3−U3−U2,

Ω(d̄)
33 =−Q1−Q2−U1−U2,

U = d2
MU1 + d̄2U2 +d2

mU3.
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Proof: Choose a Lyapunov functional candidate as:

V (k) = V1(k)+V2(k)+V3(k)+V4(k)+V5(k)
+V6(k)+V7(k)+V8(k),

(9)

where

V1(k) = xT (k)Px(k),

V2(k) =
k−1

∑
i=k−dk

xT (i)Q1x(i),

V3(k) =
k−1

∑
i=k−dM

xT (i)Q2x(i),

V4(k) =
k−1

∑
i=k−dm

xT (i)Q3x(i),

V5(k) =
−dm

∑
j=−dM+1

k−1

∑
i=k+ j

xT (i)Q1x(i),

V6(k) = dM

−1

∑
i=−dM

k−1

∑
m=k+i

ηT (m)U1η(m),

V7(k) = (dM−dm)
−dm−1

∑
i=−dM

k−1

∑
m=k+i

ηT (m)U2η(m),

V8(k) = dm

−1

∑
i=−dm

k−1

∑
m=k+i

ηT (m)U3η(m),

η(k) = x(k +1)− x(k),

and P = PT > 0, Qi = QT
i ≥ 0, Ui = UT

i > 0 (i = 1, 2, 3)
are matrices to be determined. From Lemma 3, it yields that

−dM

k−1

∑
l=k−dM

ηT (l)U1η(l)

≤−
( k−1

∑
l=k−dM

η(l)
)T

U1

( k−1

∑
l=k−dM

η(l)
)

=−[x(k)− x(k−dM)]TU1[x(k)− x(k−dM)], (10)

and

−dm

k−1

∑
l=k−dm

ηT (l)U3η(l)

≤−
( k−1

∑
l=k−dm

η(l)
)T

U3

( k−1

∑
l=k−dm

η(l)
)

=−[x(k)− x(k−dm)]TU3[x(k)− x(k−dm)]. (11)

Define ∆V (k) = V (k +1)−V (k), then along the solution of
(1) we have

∆V1(k) =xT (k +1)Px(k +1)− xT (k)Px(k)

=[Ax(k)+Ad(k−dk)]T P[Ax(k)+Ad(k−dk)]

− xT (k)Px(k), (12)

∆V2(k)≤xT (k)Q1x(k)− xT (k−dk)Q1x(k−dk)

+
k−dm

∑
i=k−dM+1

xT (i)Q1x(i), (13)

∆V3(k) =xT (k)Q2x(k)− xT (k−dM)Q2x(k−dM), (14)

∆V4(k) =xT (k)Q3x(k)− xT (k−dm)Q3x(k−dm), (15)

∆V5(k) =(dM−dm)xT (k)Q1x(k)−
k−dm

∑
i=k−dM+1

xT (i)Q1x(i),

(16)

∆V6(k) =dM

−1

∑
i=−dM

[ηT (k)U1η(k)−ηT (k + i)U1η(k + i)]

=d2
MηT (k)U1η(k)−dM

k−1

∑
m=k−dM

ηT (m)U1η(m)

≤d2
M[(A− I)x(k)+Ad(k−dk)]TU1

× [(A− I)x(k)+Ad(k−dk)]

− [x(k)− x(k−dM)]TU1[x(k)− x(k−dM)], (17)

∆V7(k) =(dM−dm)
−dm−1

∑
i=−dM

[ηT (k)U2η(k)

−ηT (k + i)U2η(k + i)]

=(dM−dm)2ηT (k)U2η(k)

− (dM−dm)
k−dm−1

∑
m=k−dM

ηT (m)U2η(m), (18)

∆V8(k) =dm

−1

∑
i=−dm

[ηT (k)U3η(k)−ηT (k + i)U3η(k + i)]

=d2
mηT (k)U3η(k)−dm

k−1

∑
m=k−dm

ηT (m)U3η(m)

≤d2
m[(A− I)x(k)+Ad(k−dk)]TU3

× [(A− I)x(k)+Ad(k−dk)]

− [x(k)− x(k−dm)]TU3[x(k)− x(k−dm)]. (19)

Now, we estimate the upper bound of −d̄
k−dm−1

∑
i=k−dM

ηT (i)U2η(i)

in ∆V7(k) as follows:
case 1: if dk = dm, then it yields that:

− d̄
k−dm−1

∑
i=k−dM

ηT (i)U2η(i)

≤−[x(k−dm)− x(k−dM)]TU2[x(k−dm)− x(k−dM)].
(20)

Combining (12)-(19) with (20), and from the Schur comple-
ment, it gets that ∆V (k) < 0 if Ω0 < 0.

case 2: if dm < dk < dM , denote i = dk− dm, then it gets
that:

− d̄
k−dm−1

∑
i=k−dM

ηT (i)U2η(i)

=−d̄
k−dm−1

∑
i=k−dk

ηT (i)U2η(i)− d̄
k−dk−1

∑
i=k−dM

ηT (i)U2η(i)

≤− d̄
i
[x(k−dm)− x(k−dk)]TU2[x(k−dm)− x(k−dk)]

− d̄
d̄− i

[x(k−dk)− x(k−dM)]TU2[x(k−dk)− x(k−dM)].

(21)

Combining (12)-(19) with (21), and from the Schur comple-
ment, it gets that ∆V (k) < 0 if Ωi < 0 for 1≤ i≤ d̄−1.
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TABLE I
ALLOWABLE UPPER BOUND OF dM FOR GIVEN dm

Methods dm = 2 dm = 4 dm = 6 dm = 10 dm = 12
Lemma 1 7 8 9 12 13
Lemma 2 13 13 14 15 16
Lemma 3 13 13 14 17 18

Theorem 1 17 17 18 20 21

case 3: if dk = dM , then similar to case 1, one can get that
∆V (k) < 0 if Ωd̄ < 0.

The proof is completed.
Remark 1. By combining a delay decomposition method
with the discrete Jensen inequality, Theorem 1 presents a
new LMI-based stability criterion for the discrete system
(1)-(2). Different from [17], d̄ + 1 cases dk = dm, dk =
dm +1, · · · , dk = dM are discussed in the proof of Theorem
1, respectively, such that the upper bound of the term

−d̄
k−dm−1

∑
i=k−dM

ηT (i)U2η(i) is estimated more exactly, so the

stability condition in Theorem 1 is less conservative than
Lemma 3.
Remark 2. Similar to [17], Theorem 1 can be extended to
the case of uncertain systems, and it is omitted here.

IV. ILLUSTRATIVE EXAMPLES

In this section, an example is provided to illustrate the
advantage of the proposed stability result.
Example 1. [13] Consider the following system

x(k +1) =
[

0.8 0
0.05 0.9

]
x(k)+

[ −0.1 0
−0.2 −0.1

]
x(k−dk),

(22)
where dk represents a time-varying state delay. The upper
bounds on the time delay, dM , which guarantee the stability
of the system (1) for given lower bounds, dm, are shown in
Table 1. It is clear that the results obtained by Theorem 1
are less conservative than the ones obtained in [13], [14] and
in [17].

V. CONCLUSION

This paper studies the problem of stability for discrete-
time delay systems. By combining a delay decomposition
method with the discrete Jensen inequality, an LMI-based
stability condition is derived. The presented stability condi-
tion is less conservative than the existing ones. A numeri-
cal example has illustrated the merits and effectiveness of
the proposed method. As a future work, we will consider
the problem about how to extend the delay decomposition
method to the continuous-time case.
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