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Abstract— This paper proposes a method for controlling an
object with arbitrarily smooth surfaces in a horizontal plane by
a dual-fingered robots. The proposed control method achieves
both (a) the stable grasping with the optimal force angles, in
order to lower the probability of the object slipping out of
the finger-tips, and (b) the position regulation without visual
sensing. The shape of an object is not limited as long as
the contact point is positioned in the vicinity of the smooth
curvatures since the controller is allowed to use the tactile
sensor. We analyze the dynamic stability of the proposed control
method via Lyapunov stability theory. Finally, simulation results
are presented to validate the proposed control method.

I. INTRODUCTION

Dexterous manipulation by multi-fingered robot hands is

one of the challenging problems in robotics. In order to

mimic a human hand, various research has been conducted.

In the early research on hand robots, the multi-joint-fingered

models which are similar to the human hand in appearance

were primarily presented [1]-[3]. By increasing the interest

in the dexterous manipulation, the researches on the various

sensors and control methods have been required. Further-

more, the control strategies have been subdivided depending

on the grasp taxonomies such as power grasp [4], pinch [5],

pen spinning [6], and rope knotting [7], etc.

Among them, pinching motion is one of the challenging

areas because it requires tiny contact points between the

finger-tips and an object with the rolling contact constraints.

There have been many research efforts in multi-fingered

robot hands based on rolling contact constraints. Maekawa

et al. [8]-[10] proposed a grasping-force compensation al-

gorithm based on rolling manipulation using tactile sensing.

However this control method did not guarantee the dynamic

stability of the system. Doulgeri et al. [11] designed a force

position controller using force/tactile sensors. This control

method is adapted to cope with the kinematic uncertainties in

a dynamic sense. Ozawa et al. [12], [13] proposed a control

method that can realize stable grasp without force/tactile

sensors. However, it requires a priori information about the

object shape.

This paper deals with a problem of the blind grasp

and the optimal force angle control with dynamic stability
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converging to the form of force/torque balance for an arbi-

trarily shape object with smooth surfaces. It is assumed that

dual-fingered robot hands pinch an object with hemispher-

ical finger-tips in a horizontal plane. The proposed control

method improves the grasping stability by optimizing the

force angle and provides the position regulation in x- and y-

coordinates, concurrently. It is assumed that all the kinematic

parameters of the fingers and the measured data of joint

angles, joint angular velocities, and contact angles are known

but any kinematic and dynamic data such as a shape and a

center of mass, are not given. In Section II, we present the

kinematic constraints and dynamics of dual fingers with an

arbitrarily shaped object. Then, we define the stable grasping

conditions and the optimal force angle. In Section III, a

control method for the optimal force angle and regulation

is proposed and its stability is proved via Lyapunov direct

method. In Section IV, computer simulation results are shown

to verify the effectiveness of the proposed control method.

Finally, Section V gives some conclusions.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Kinematics of a Dual Fingered Robot

For the sake of generality of a grasped object, we only

assume that the object is surrounded with smooth curvatures

in the vicinity of the contact points without any knowledge

of an object. It is the marginal assumption for applying the

rolling contact constraints between the finger-tips and the

object surface. A model of a dual-fingered robot grasping an

arbitrarily shaped object with smooth curvatures is shown

in Fig. 1. There exists a cross point Q1 of two lines which

are extended from the tangential components of the grasping

points if those are not parallel. Then, it is possible to find a

line Q1Q2 which divides an angle ∠P1Q1P2 into two equal

angles φ0, where P1 and P2 are the contact points. Since it

is supposed that the finger-tips are not deformable and the

object is rigid, we obtain φ0 from the geometrical relation

as follows:

φ0 = π − ψ1 + ψ2

2
, (1)

where

ψ1 =

n1
∑

j=1

q1j + φt1, ψ2 =

n2
∑

j=1

q2j + φt2.

In these expressions, n1 and n2 are the degrees of the fingers,

q1i and q2j are the finger joint angles and φt1 and φt2 are the

contact angles of each finger. If the tangential components of
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Fig. 1. Dual-fingered robot grasping an arbitrarily shaped object.

the grasping points are parallel, φ0 must be π
2 . From the non-

slip condition, it is easy to derive the following geometrical

relations:

(Y1 + Y2) sin φ0 = (x02 − x01) cos φ + (y01 − y02) sin φ

− (r1 + r2) cos φ0, (2)

(Y1 − Y2) cos φ0 = − (x02 − x01) sin φ + (y01 − y02) cos φ

+ (r1 − r2) sin φ0, (3)

(Y1 + Y2) sin φ0 =l cos α, (4)

(Y2 − Y1) cos φ0 =l sinα, (5)

where

Y1 = c10 + r1

(

−φ + φ0 +

n1
∑

i=1

q1i

)

, (6)

Y2 = c20 + r2

(

φ + φ0 +

n2
∑

i=1

q2i

)

, (7)

φ =
ψ1 − ψ2

2
. (8)

In these expressions, x0i and y0i, for i = 1, 2, are the finger-

tip positions, r1 and r2 are the radii of finger-tips, and c10

and c20 are some constants. α denotes the angle between

P1P2 and a perpendicular line from P1( or P2) to Q1Q2

and l denotes the length of P1P2. When φ0 6= π
2 , Y1 and Y2

are lengths of Q1P1 and Q2P2, respectively.

Based on the constraints, the kinematic constraint between

the angular velocities of the finger joints and the velocities

of the center of mass of an object is derived as follows[15]:

Jożo = Jf q̇ (9)

where Jo ∈ R
4×3 and Jf ∈ R

4×(n1+n2) denote the

Jacobian matrices of an object and fingers, respectively.

q = [q11, .., q1n1
, q21, .., q2n2

]T ∈ R
n1+n2 and zo =

[xo, yo, ψo]
T ∈ R

3 indicate the joint angles of fingers and

the center of mass of an object, respectively.

Remark 1: Jo is not observable because the center of mass

of an object is unknown. That is, we cannot use Jo to design

the controller.

Remark 2: Jf can be obtained from the rolling contact

constraints [16]. Using the finger kinematics, the joint angles

q and the contact angles ψ1 and ψ2, Jf is only expressed as

follows:

Jf =

[

JT
11 0n1×1 JT

13 0n1×1

0n2×1 JT
22 0n2×1 JT

24

]T

, (10)

where

JT
11 = JT

01

[

cos ψ1

− sin ψ1

]

, JT
13 = −JT

01

[

sinψ1

cos ψ1

]

− r1e1,

JT
22 = JT

02

[

− cos ψ2

sinψ2

]

, JT
24 = −JT

02

[

sinψ2

cos ψ2

]

− r2e2,

JT
0i =

(

(∂x0i

∂qi

)T

,
(∂y0i

∂qi

)T

)

∈ R
ni×2,

ψi =

ni
∑

j=1

qij + φti,

x0i = −
ni
∑

j=1

lij cos

(

j
∑

k=1

qik

)

,

y0i =

ni
∑

j=1

lij sin

(

j
∑

k=1

qik

)

for i = 1, 2.

In these expressions, 0n1×1 and 0n2×1 are n1 × 1 and n2 × 1
zero matrices, respectively, L is the length between O and

O′, e1 = (1, 1, ...1)T ∈ R
n1 , e2 = (1, 1, ...1)T ∈ R

n2 , l1j

and l2j are the lengths of the jth link of the fingers 1 and

2, respectively.

B. Dynamics of a Dual Fingered Robot

The dynamics of the dual fingers and an object can be

expressed as [14]:

Hf (q)q̈ + Cf (q, q̇)q̇ + JT
f (q)Ff = u, (11)

Hoz̈o = JT
o Ff , (12)

where Hf (q) = diag [Hf1(q1),Hf2(q2)]; Hf1(q1) ∈
R

n1×n1 and Hf2(q2) ∈ R
n2×n2 are symmetric positive

definite inertia matrices of the left and right fingers. Ho =
diag[Mo,Mo, Io]; M0 and I0 denote the mass and the inertia

of an object, respectively. Cf (q, q̇) = diag[Cf1(q1, q̇1),
Cf2(q2, q̇2)]; Cf1(q1, q̇1) ∈ R

n1×n1 and Cf2(q2, q̇2) ∈
R

n2×n2 are the Coriolis-centripetal matrices of the left and

right fingers, and Ff = [f1, f2, λ1, λ2]
T ∈ R

4×1 is the vector

of grasping force with the normal forces f1 and f2 and the
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tangential forces λ1 and λ2. The grasping force Ff can be

expressed as [17]:

Ff =
(

JT
o

)+
Ff +

(

I −
(

JT
o

)+
JT

o

)

Ff , (13)

where
(

JT
o

)+
is the generalized inverse of JT

o , which is

identical to (J0J
T
0 )−1J0. The first term denotes the ma-

nipulation force that causes the motion of an object which

is equivalent to Hoz̈o, and the second term represents the

internal force which does not affect on the movement of an

object. Substituting (13) into (11) and (12) yields

H(q)q̈ + C(q, q̇)q̇ +
{(

I − JoJ
+
o

)

Jf

}

Ff = u, (14)

where

H(q) = Hf (q) +
(

J+
o Jf

)T
Ho

(

J+
o Jf

)

,

C(q, q̇) = Cf (q, q̇) + JT
f

(

J+
o

)T
Ho

(

J+
o J̇f − J+

o J̇oJ
+
o Jf

)

.

Note that H(q) and C(q, q̇) are the symmetric and positive

definite inertia matrix and the Coriolis-centripetal matrix of

the overall system, respectively. From (9), Jacobian matrix

in the third term of (14) is constrained by the following

equation:
(

I − JoJ
+
o

)

Jf q̇ =
(

I − JoJ
+
o

)

Jożo = 0, (15)

which means that the internal force term

{(I − JoJ
+
o ) Jf}T Ff does not affect on the energy

variation of the overall system. That is, even if the internal

force term is omitted in (14), the state q in the overall

system is not affected as long as it can be derived via

Lagrangian without constraints. Hence, we will use the

following overall dynamic equation to prove the stability of

the control method:

H(q)q̈ + C(q, q̇)q̇ = u. (16)

Property 1: The matrix C(q, q̇) and the time derivative

Ḣ(q) of the inertia matrix satisfy [18]:

1) q̇T
[

1
2Ḣ(q) − C(q, q̇)

]

q̇ = 0 ∀q, q̇ ∈ R
n1+n2 .

2) Ḣ(q) = C(q, q̇) + C(q, q̇)T ∀q, q̇ ∈ R
n1+n2 .

C. Stable Grasp with an Optimal Angle

The finger-tip force vector Ff can be decomposed into

the manipulation force vector and the internal force vector

as (13). The internal force vector must satisfy the following

definition:

Definition 1: Ff = [f1, f2, λ1, λ2]
T is called the

stable internal grasping force for a dual-fingered robot if the

following two conditions are satisfied [17]:

Condition 1: The grasping force must be equilibrium with

the positive normal forces.

JT
o Ff = 0 with f1, f2 > 0.

Condition 2: The angles of the grasping forces must exist

in the friction cone.
fi√

f2

i
+λ2

i

> 1√
1+µ2

i

for i = 1, 2.

where µi is the maximum static friction coefficient at the

contact point.

the above conditions are necessary to satisfy the force/torque

balance and prevent the slippage of an object between the

finger-tips and the object surfaces, respectively. Unless slip-

page happens, Condition 2 is ignorable. However, to reduce

the grasping force angle as much as possible is effective

in decreasing the probability of the object slipping out. We

present the additional definition of the stable grasp with the

optimal force angle.

Definition 2: For an arbitrarily shaped object, a dual-

fingered robot can realize the stable grasp with the optimal

force angle as φ0 when Q1Q2 is orthogonal to P1P2 or α = 0
under Definition 1.

Unless satisfying Definition 2, the force angles are not

equivalent and the probability of the slippage at the contact

point with a higher force angle is higher than another points.

The greater the difference between the grasping force angle,

the greater the probability of slippage is increased. When

the stable grasp with the optimal force angles is realized, the

force angles at the left and right contact points are equivalent

to each other and it has the lowest slippage probability.

III. CONTROLLING OPTIMAL FORCE ANGLES AND

REGULATING POSITION OF THE OBJECT IN A BLIND

MANNER

A. Definition of Target Point in a Blind Manner

Humans can manipulate an object using tactile information

in a blind manner, which is less precise than a method using

visual feedback. For the sake of the position regulation of an

object in a blind manner, it is necessary to define a specific

point which can be defined without visual feedback. Hence,

we choose the target point zt := (xt, yt)
T as the center of

finger-tips as follows:

xt =
x01 + x02

2
and yt =

y01 + y02

2
. (17)

Accordingly, the error et := (ex, ey)T is defined as follows:

ex = xt − xd =
x01 + x02

2
− xd,

ey = yt − yd =
y01 + y02

2
− yd,

where xd and yd are the desired x- and y- coordinates,

respectively.

B. Controller Design

We propose a control law for the realization of stable grasp

with optimal force angles and the regulation of the object

position in x- and y-coordinates, simultaneously as follows:

u = − Kv q̇ − JpKpet

− fdJ
T
f (q) [cos φ0 cos φ0 sin φ0 sin φ0]

T
, (18)

where Kv ∈ R
(n1+n2)×(n1+n2) and Kp ∈ R

2×2 are positive

definite diagonal matrices and fd is a positive constant. The

first term in the right hand side of (18) is introduced for

damping, the second term is done for regulating the position

in a blind manner, and the third term is done for establishing

the desired grasping force fd and cancelling the rotational
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moment of an object. The Jacobian matrix Jp is defined as

follows:

JT
p = 2

∂eT
t

∂q
=

[

J01, J02

]

∈ R
2×(n1+n2).

Remark 3: This control law only requires the measured

data of joint angles, joint angular velocities, contact angles,

and kinematic parameters of fingers, but no object informa-

tion, no preplanning, and no force sensors.

Property 2: The third term in (18) has the equivalent

equation as follows:

JT
f (q) [cos φ0 cos φ0 sin φ0 sin φ0]

T
= Jαfdl sin α, (19)

where Jα denotes the Jacobian matrix of α with respect to

q.

Proof: See Appendix I.

C. Stability Analysis

In this subsection, we analyze the stability of the stable

grasp control method with the position regulation for dual

fingered robot. Let us define a Lyapunov function candidate

as

V (q̇, α, et) =
1

2
q̇T H(q)q̇ +

∫ α

0

fdl sin αdα +
1

2
eT
t Kpet

+ ǫq̇T H(q) {Jα sinα + ρJpet} , (20)

where ǫ and ρ are some positive constant values. To show

that (20) is positive definite function, we can rewrite (20) as

follows:

V ≥ 1

2
q̇T H(q)q̇ + 2fdlmin sin2

(α

2

)

+
1

2
eT
t Kpet

+ ǫq̇T H(q) {Jα sinα + ρJpet} , (21)

where lmin is the minimum length of P1P2. Since sin2
(

α
2

)

<

sin2 α in −π
2 < α < π

2 , (21) becomes

V ≥3

8
q̇T H(q)q̇ +

(

1

4
q̇ + 2ǫρJα sin α

)T

H(q)

×
(

1

4
q̇ + 2ǫρJα sinα

)

+

(

1

4
q̇ + 2ǫJpet

)T

H(q)

(

1

4
q̇ + 2ǫJpet

)

+ 2
(

fdlmin − 2ǫ2JT
α H(q)Jα

)

sin2
(α

2

)

+
1

2
eT
t

(

Kp − 8ǫ2ρ2JT
p H(q)Jp

)

et. (22)

As seen from (22), V is a positive definite in (q̇, α, et) when

ǫ is chosen so that

ǫ < min

[
√

fdlmin

2(JT
α H(q)Jα)M

,

√

(Kp)m

8ρ2(JT
p H(q)Jp)M

]

,

(23)

where (·)M and (·)m indicate the largest and smallest

eigenvalues of the matrix, respectively. From (23), we can

determine any positive constant of fd and any positive

diagonal matrix of Kp by setting ǫ to a sufficiently small

�X

� Y

jUtU

� Y

� X

m�����T���Y

m�����T���X
v�����

Fig. 2. Arbitrarily shaped object.

constant. We use the following lemma to prove the stability

of the proposed controller:

Lemma 1: a‖x‖2 − b‖x‖‖y‖ + c‖y‖2 > (
√

a‖x‖ −√
c‖y‖)2 is provided that b2 < 4ac.

Theorem 1: Consider the dual-fingered robot system (11)

and (12) that is grasping an arbitrarily shaped object in

a horizontal plane illustrated in Fig. 1. If the control law

(18) is applied to the system with positive constants kv

and fd, the desired grasping force fd can be guaranteed

with the dynamic force/torque balance and the asymptotic

convergence of α and et to zeros. That is, (18) realizes

the stable grasp and the position regulation in x- and y-

coordinates with the optimal force angles.

Proof: See Appendix II.

IV. SIMULATION RESULTS

In this section, simulation results are presented to illustrate

the effectiveness of the proposed controller for dual-fingered

robots. We consider two planar fingers with three degrees of

freedom grasping an object moving in a horizontal plane. The

object has two curvatures with difference radii and centers

as shown in Fig. 2. The centers from the center of mass

are d1 = 2 [cm] and d2 = 100 [cm], and the radii of

curvatures are l1 = 2 [cm] and l2 = 1.03 [m], respectively.

The initial position vector and the desired position of the x-

and y- coordinates are (xi, yi) = (4, 8)[cm] and (xd, yd) =
(6, 4)[cm], respectively. The mass and the moment of inertia

of all links are set to 0.03 [kg] and 3 × 10−5 [kg · m2]
and the lengths of the links l1i, l2i, and l3i for i =1, 2 are

set to 4 [cm], 3 [cm], and 3 [cm], respectively. The radii

of the finger-tips are set to 1 [cm]. The damping gain and

the desired grasping force are chosen as kv = 0.008 and

fd = 0.8 [N], respectively. The initial joint and the force

angles are set to q = (1, 0.96, 1.02, 0.9, 1.4, 0.39)T [rad]
and (φf1, φf2) = (−0.014, − 0.089)[rad], respectively.

We applied the Constraint Stabilization Method(CSM) [19]

because this simulation should be conducted under the geo-

metric constraints and the rolling constraints (2)-(7).

Figs. 3 and 4 display the initial and final postures of

the dual-fingered robot grasping an arbitrarily shaped object

having the different surface curvatures. Since the magnitude

of the grasping forces are equal and the directions are toward

each other as shown in Fig. 5, it is observed that the dynamic
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Fig. 3. The initial posture of dual-fingered robot.
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final posture

Fig. 4. The final posture of dual-fingered robot.

force/torque closure is realized with the positive internal

forces. Fig. 5 also shows that the force angles converge

asymptotically to the equivalent value as 0.97[rad]. The

simulation results of the object position errors are plotted

in Fig. 6. Accordingly, we can draw a conclusion that the

proposed control method can realize the stable grasp with

the optimal force angle and the position regulation in a blind

manner for an arbitrarily shaped object.

V. CONCLUSION

In this paper, a control method for both the stable grasping

of an object with optimal force angles and the position

regulation of the object in a blind manner has been proposed.

First, we have introduced the kinematics and dynamics of

the dual-fingered robot grasping an arbitrarily shaped object.

Second, the controller has been designed for the force/torque

balance with the optimal force angle which can be applied in

an object with smooth surfaces. Third, the dynamic stability

has been proved via Lyapunov stability analysis. Finally, the

numerical simulations for the two three-link fingered robot

0 0.5 1 1.5 2
−0.5

0

0.5

1

Time(s)

F
o

rc
e

 a
n

g
le

(r
a

d
))

 

 

left finger right finger

0 0.5 1 1.5 2
0.5

1

1.5

2

Time(s)

M
a

g
n

it
u

d
e

 o
f 

fo
rc

e
(N

))

 

 

left finger right finger

Fig. 5. The magnitude and the angle of grasping forces.
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grasping an object with two different curvatures have been

performed to demonstrate the effectiveness of the proposed

controller using CSM.

APPENDIX I

PROOF THE PROPERTY 2

Proof: Substituting (10) into JT
f in (18), we obtain

JT
f (q)

[

cos φ0 cos φ0 sinφ0 sin φ0

]T

=
[

J01, −J02

]T

[

− cos φ

sin φ

]

−
[

r1 sin φ0e1

r2 sin φ0e2

]

. (24)

The above equation can be rewritten as

JT
f (q)

[

cos φ0, cos φ0, sinφ0, sin φ0

]T

= − d(x01 − x02)

dq
cos φ +

d(y01 − dy02)

dq
sin φ

−
[

r1 sin φ0e1

r2 sin φ0e2

]

. (25)
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Then, substituting the derivative of (2) in q into (25) yields

JT
f (q)

[

cos φ0, cos φ0, sinφ0, sin φ0

]T

=
d(Y1 + Y2)

dq
sinφ0 + (Y1 + Y2) cos φ0

dφ0

dq

− {−(x02 − x01) sin φ + (y01 − y02) cos φ} dφ

dq

−
[

r1 sin φ0e1

r2 sin φ0e2

]

− (r1 + r2) sin φ0
dφ0

dq
. (26)

Substituting (3), (6) and (7) into (26), we obtain

JT
f (q)

[

cos φ0, cos φ0, sin φ0, sinφ0

]T

= (Y1 + Y2) cos φ0
dφ0

dq
+ (Y2 − Y1) cos φ0

dφ

dq
. (27)

Using (4) and (5), we obtain

JT
f (q) [cos φ0, cos φ0, sin φ0, sin φ0]

T
= Jαl sin α. (28)

This completes the proof of Property 2.

APPENDIX II

PROOF OF THEOREM 1

Proof: The time derivation of (20) yields

V̇ = {q̇ + ǫ (Jα sin α + ρJpet)}T

{

H(q)q̈ +
1

2
Ḣ(q)q̇

}

+ q̇T (Jαfdl sinα + JpKpet)

+
1

2
ǫ (Jα sinα + ρJpet)

T
Ḣ(q)q̇

+ ǫq̇T G1(q, α, et)q̇ + ǫq̇T G2(q, α, et)q̇, (29)

where

G1(q, α, et) =
∂Jα

∂q
sinα + ρ

∂Jp1

∂q
ex + ρ

∂Jp2

∂q
ey,

G2(q, α, et) = JαJT
α cos α +

ρ

2
JpJ

T
p .

Substituting (18) into (29) and using Properties 1 and 2,

it is obtained that

V̇ = − q̇ {Kv − ǫG1(q, α, et) − G2(q, α, et)} q̇

− 1

2
ǫJT

α Jαfdl sin
2 α − 1

2
ǫρeT

t JT
p JpKpet

+ ǫ (Jα sin α + Jpet)
T (

CT − Kv

)

q̇

− ǫG3(q, α, et), (30)

where

G3(q, α, et) =
1

2
JT

α Jαfdl sin
2 α +

1

2
ρeT

t JT
p JpKpet

+JT
α JpKpet sin α + ρJT

α Jpet sinαfdl. (31)

From the existence of lower and upper bounds of the

Jacobian matrices, (31) is lower bounded as follows:

G3(q,α, et) ≥
1

2

(

JT
α Jα

)2

m
fdlmin sin2 α +

ρ

2
(JT

p Jp)m(Kp)m ‖et‖2

−
{

(JT
α Jp)M (Kp)M + ρ(JT

α Jp)Mfdlmax

}

× ‖et‖ ‖sinα‖ . (32)

Using Lemma 1, G3(q, α, et) is a positive definite function

when there exists a positive constant ρ satisfying the follow-

ing inequality:

(fdlmax)2ρ2 + (Kp)
2
M

+ fd

{

2(Kp)M lmax − (JT
α Jp)

2
m

(JT
α Jp)2M

(Kp)mlmin

}

ρ < 0.

(33)

(33) has a real constant ρ provided that

4 {(Kp)M lmax}2
>

{

2(Kp)M lmax − (JT
α Jp)

2
m

(JT
α Jp)2M

(Kp)mlmin

}2

.

Since G3(q, α, et) is positive definite and all Jacobian ma-

trices are lower and upper bounded, we can obtain the upper

bound of (30) as follows:

V̇ ≤ −
{

(Kv)m − ǫ(g1 + g2 + h2
2 + h2

4)
}

‖q̇‖2

− ǫ (h1| sin α| − h2 ‖q̇‖)2 − ǫ (h3 ‖et‖ − h4 ‖q̇‖)2 (34)

where

g1 = (G1(q, α, et))M ,

g2 = (G2(q, α, et))M ,

h1 =

√

1

2
(JT

α Jα)mfdlmin,

h2 =
1

2h1
{C(q, q̇)M + (Kv)M} (Jα)M ,

h3 =

√

ρ

2
(JT

p Jp)m(Kp)m,

h4 =
1

2h3
{C(q, q̇)M + (Kv)M} (Jp)M .

(34) is a negative definite function in q̇, (h1| sin α| − h2 ‖q̇‖),
and (h3 ‖et‖ − h4 ‖q̇‖), when ǫ provides the following in-

equality:

ǫ ≤ (Kv)m − η

g1 + g2 + h2
2 + h2

4

, (35)

where 0 < η < (Kv)m.

Corollary 1: From (23) and (35), the condition of ǫ is

given as

ǫ < min





√

fdlmin

2(JT
α H(q)Jα)M

,
√

(Kp)m

8ρ2(JT
p H(q)Jp)M

,

(Kv)m−η

g1+g2+h2

2
+h2

4



 .

(34) becomes zero when q̇ = 0, h1| sin α| = h2 ‖q̇‖,

and h3 ‖et‖ = h4 ‖q̇‖. It denotes that (34) becomes

zero when (q̇, sin α, et) = (0, 0, [0, 0]T ) and always has

a negative value when (q̇, sinα, et) 6= (0, 0, [0, 0]T ).
Hence, we can obtain that V̇ is a negative definite function

in (q̇, α, et). By invoking the Lyapunov’s direct method,

we have proven the uniformly asymptotic stability of the

equilibrium point (q̇, α, et) = 0. In order to verify that

the grasping forces are positive as fd, we substitute (18)

and (q̇, α, et) = 0 into (11). Then, we have Ff =

fd

[

cos φ0, cos φ0, sinφ0, sinφ0

]T
, which indicates

568



the direction of the grasping force toward each other and

the magnitude equivalent to fd. This completes the proof of

Theorem 1.

REFERENCES

[1] K. B. Shimoga, “Robot grasp synthesis algorithms: a survey,” Int. J.

of Robot. Syst., vol. 15, no. 3, pp. 230-266, 1996.
[2] A. M. Okamura, N. Smaby and M. R. Cutkosky, “An overview of

dexterous manipulation,” in Proc. IEEE Int. Conf. Robot. Autom.,
2000, pp. 255-262.

[3] A. Bicchi, “Hand for dexterous manipulation and robust grasping: a
difficult road toward simplicity,” IEEE Trans. Robot. Autom., vol. 16,
no. 6, pp. 652-662, 2000.

[4] K. Mirza, D. E. Orin, “Control of force distribution for power grasp
in the DIGITS system,” in Proc. 29th IEEE Conf. CDC, Dec., 1990,
pp. 1960-1965.

[5] S. Arimoto, P.T.A. Nguyen, H.Y. Han, Z. Doulgeri, “Dynamics and
control of a set of dual fingers with soft tips,” Robotica, vol. 18, pp.
71-80, 2000.

[6] T. Ishihara, A. Namiki, M. Ishikawa, M. Shimojo, “Dynamic pen
spinning using a high-speed multifingered hand with high-speed tactile
sensor,” in Proc. IEEE RAS Int. Conf. Human. Robot., 2006, pp. 258-
263.

[7] Y. Yamakawa, A. Namiki, M. Ishikawa, M. Shimojo, “One-handed
knotting of a flexible rope with a high-speed multifingered hand having
tactile sensors,” in Proc. of IEEE/RSJ Int. Conf. Intel. Robot. Syst.,
2007, pp. 703-708.

[8] H. Maekawa, K. Tanie, K. Komoriya, M. Kaneko, C. Horiguchi and
T. Sugawara, “Development of a finger-shaped tactile sensor and its
evaluation by active touch,” in Proc. IEEE Int. Conf. Robot. Autom.,
1992, pp.1327-1334.

[9] H. Maekawa, K. Tanie, and K. Komoriya, “Dynamic grasping force
control using tactile feedback for grasp of multifingered hand,” in
Proc. IEEE Int. Conf. Robot. Autom., 1996, pp. 2462-2469.

[10] H. Maekawa, K. Tanie, and K. Komoriya, “Tactile sensor based
manipulation of an unknown object multifingered hand with rolling
contact,” in Proc. IEEE Int. Conf. Robot. Autom., 1995, pp. 743-750.

[11] Z. Doulgeri, Y. Karayiannidis, “Force position control for a robot
finger with a soft tip and kinematic uncertainties,” Robot. Autom. Syst.,
vol. 55, no. 4, pp. 328-336, 2007.

[12] R. Ozawa, S. Arimoto, M. Yoshida, and S. Nakamura, “Stable grasping
and relative angle control of an object by dual finger robots without
object sensing,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp.
1694-1699.

[13] R. Ozawa, J. H. Bae, S. Arimoto, “Multi-fingered dynamic blind
grasping with tactile feedback in a horizontal plane,” in Proc. IEEE

Int. Conf. Robot. Autom., 2006, pp. 1006-1011.
[14] S. Arimoto, K. Tahara, J. H. Bae, M. Yoshida, “A stability theory on

a manifold: concurrent realization of grasp and orientation control of
an object by a pair of robot fingers,” Robotica, vol. 21, no. 2, 2003,
pp. 163-178.

[15] C. C. Cheah, H. Y. Han, S. Kawamura, S. Arimoto, “Grasping and
position control for multi-fingered robot hands with uncertain Jacobian
matrices,” in Proc. IEEE Int. Conf. Robot. Autom., 1998, pp. 2403-
2408.

[16] S. K. Song, J. B. Park, Y. H. Choi, “Grasping control of 3-joint dual
finger robot: Lyapunov stability approach,” in Proc. Amer. Cont. Conf.,
2009, pp. 2879-2884.

[17] T. Yoshikawa,K. Nagai, “Manipulating and grasping forces in manipu-
lation by multifingered robot hands,” IEEE Trans. Robot. Autom., vol.
7, no. 1, pp.67-77, 1991.

[18] D. Koditschek, “Natural motion for robot arms,” in it Proc. IEEE int
Conf. Deci. Cont., 1984, pp. 733-735.

[19] J.Baumgarte, “Stabilization of constraint and integrals of motion in
dynamical systems,” Comput. Methods in Appl. Mech. Eng., Vol. 1,
No. 1, pp. 1-16, 1972.

569


