
  

 

Abstract—Approximate dynamic programming formulation 
(ADP) implemented with an Adaptive Critic (AC) based neural 
network (NN) structure has evolved as a powerful technique for 
solving the Hamilton-Jacobi-Bellman (HJB) equations. As 
interest in the ADP and the AC solutions are escalating, there is 
a dire need to consider enabling factors for their possible 
implementations. A typical AC structure consists of two 
interacting NNs which is computationally expensive. In this 
paper, a new architecture, called the “Cost Function Based 
Single Network Adaptive Critic (J-SNAC)” is presented that 
eliminates one of the networks in a typical AC structure. This 
approach is applicable to a wide class of nonlinear systems in 
engineering. Many real-life problems have controller limits. In 
this paper, a non-quadratic cost function is used that 
incorporates the control constraints. Necessary equations for 
optimal control are derived and an algorithm to solve the 
constrained-control problem with J-SNAC is developed. A 
benchmark nonlinear system is used to illustrate the working of 
the proposed technique. Extensions to optimal control-
constrained problems in the presence of uncertainties are also 
considered. 

Keywords: Approximate Dynamic Programming (ADP), 
Constrained Control, Optimal Control, Nonlinear Control, 
Cost Function Based Single Network Adaptive Critic, J-SNAC 

I. INTRODUCTION 

EEDBACK control is the preferred solution for many 
systems because of its beneficial properties like 

robustness with respect to noise and modeling uncertainties. 
It is well-known that a dynamic programming formulation 
offers the most comprehensive solution approach to 
nonlinear optimal control in a state feedback form (Lewis, 
1992; Bryson et al., 1975). However, solving the associated 
HJB equation demands a large (rather infeasible) number of 
computations and storage space dedicated to this purpose. 
An innovative idea was proposed in (Werbos, 1992) to get 
around this numerical complexity by using an ADP 
formulation. The solution to the ADP formulation is 
obtained through a dual NN approach called the Adaptive 
Critic (AC). In one version of the AC approach, called the 
Heuristic Dynamic Programming (HDP), one network 
(called the action network) represents the mapping between 
the state and control variables while a second network 
(called the critic network) represents the mapping between 
the state and the cost function to be minimized. Adaptive 
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critic formulations can be found in many papers; some 
researchers have used ADP formulations to solve problems 
with finite state spaces in applications to behavioral and 
computer sciences and operations research and robotics 
(Barto, 1991, 2004; Powell, 2004; Bertsekas, 1996). 
Adaptive critics can also be considered reinforcement 
learning designs (Barto, 1991, 2004). These formulations 
employ primarily cost function based adaptive critics that we 
consider in this paper. There are also many papers in the 
literature that use system science principles and neural 
networks to formulate the problems with applications to 
real-time feedback control of dynamic systems. A 
compendium of such applications can be found in Si et al. 
(2004). In recent years, many researchers have paid more 
attention on ADP in order to obtain approximate solutions of 
the HJB equation (Al-Tamimi. et al., 2008; Balakrishnan et 
al., 2008; Li and Si, 2007; Werbos, 2007). Model based 
synthesis of adaptive critic based controllers presented by 
Balakrishnan (1996), Prokhorov et al. (1997), 
Venayagamoorthy (2003) for systems driven by ordinary 
differential equations and Padhi et al. (2006) for distributed 
parameter systems show that the ADP based controllers 
stabilize the plants quite successfully. Ferrai et al. (2002) 
have implemented a global adaptive critic controller for a 
business jet. Yang et al. (2006) apply an adaptive critic 
based controller in an atomic force microscope based force 
controller to push nano particles on the substrates. Lendaris 
et al. (2000) have successfully shown in simulations that the 
HDP method can prevent cars from skidding when driving 
over unexpected patches of ice. In fact, there are many 
variants of the AC designs (Prokhorov et al., 1997). 
Typically, the AC designs are formulated in a discrete 
framework. Hanselman et al. consider the use of continuous 
time adaptive critics in (Hanselmann et al., 2007). 

While there has been a multitude of papers involving 
ACs, there is virtually no paper in the published literature 
that deals with the computational load (or alleviating it) 
associated with the AC designs. If the ADP formulation 
should to find their way to engineering implementations, 
computationally efficient AC designs that show convergence 
are badly needed. Balakrishnan’s group (Padhi et al., 2004; 
Yadav et al., 2006) has proposed a Single Network Adaptive 
Critic (SNAC) earlier. However, that structure was based on 
a critic network that outputs the costates as in the DHP. The 
problem in dealing with costates is that they have no 
physical meaning in an engineering problem like the 
physical states of a system. Therefore, it is very difficult to 
get an idea of the magnitude of costates; in a multivariable 
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problem, different costates can have values which could vary 
by several orders of magnitudes and thereby, making 
convergence of the critic network very difficult. In contrast, 
use of cost in a critic network as in this paper has much more 
relevance and meaning. As opposed to the costates which 
have the same dimension as states in a multivariable 
problem and therefore, demand a more diverse network 
structure and its training, the cost function is a scalar and 
therefore, the critic network dimension is minimal. The 
contribution of this paper is a cost based single network 
adaptive critic architecture. It captures the mapping between 
the states (at time ) and the optimal cost (from  to the 
end). Note that while costates have no physical meaning, the 
output of the cost network provides valuable information to 
the designer an idea of the remaining cost involved at any 
stage of the process as a function of the states of the system. 
In fact, the J-SNAC proposed in this paper is applicable to 
the type of control-affine nonlinear problems presented in 
some recent papers (Yang et al., 2009; Wang et al., 2009) 
while saving about 50% computation time as compared to 
the typical HDP structure used in those papers due to the 
elimination of one network. 

Almost all real-life problems have controller limits. 
Bernstein (1995) developed the optimal saturating feedback 
control laws involving bang-bang action, which is a 
modification of the control laws given by Frankena and 
Sivan (1979), and Ryan (1982).  In (Adhyaru et al., 2008), 
an HJB equation based constrained optimal control 
algorithm is proposed for a bilinear system. In (Cheng et al., 
2006), fixed-final time constrained input optimal control 
laws using neural networks to solve Hamilton-Jacobi-
Bellman equations for general affine in the input nonlinear 
systems are proposed. Although many methods have been 
proposed to deal with the constrained optimal problem, 
solving the associated HJB equation demands a large 
number of computations and storage space and this 
important fact should be addressed. The major contributions 
of this paper are that the J-SNAC technique developed in 
this paper 1) solves the control problem without the storage 
and numerical load typically associated with HJB solutions 
2) presents a unifies solution for the constrained control 
problem through neural networks even with model 
uncertainties. A non-quadratic cost function (Lyshevski, 
1996) is used to handle the control constraints.  

Rest of the paper is organized as follows: In Section II, 
the ADP equations are presented and in Section III, J-SNAC 
technique with a non-quadratic cost function is presented. 
An online updated neural network is discussed in Section 
IV. Numerical results are presented in section V.   

II. APPROXIMATE DYNAMIC PROGRAMMING 

In this section, the principles of approximate (discrete) 
dynamic programming, which both the AC and the J-SNAC 
approaches rely upon, are described. An interested reader 
can find more details about the derivations in (Balakrishnan 
et al., 1996; Werbos, 1992). Note that a prime requirement 

to apply the AC or the J-SNAC is to formulate the problem 
in discrete-time. The control designer has the freedom to use 
any appropriate discretization scheme. For example, one can 
use the Euler approximation for the state equation and 
Trapezoidal approximation for the cost function (Gupta, 
1995). In a discrete-time formulation, one wants to find an 
admissible control   , which causes the system given by 

    ,                                    (1) 
to follow an admissible trajectory from an initial point    to 
a final desired point    while minimizing a desired cost 
function  given by 

  ∑ ,                               (2) 
where ∈  and ∈  are the state and control vectors at 
time step . The functions  and  are assumed to be 
differentiable with respect to both    and . Moreover,  is 
assumed to be convex. One can notice that when → ∞, this 
cost function leads to a regulator (infinite time) problem. 
The steps in obtaining optimal control are now described.  

Remark 1: It is important to note that the control    must 
both stabilize the system on a compact set, Ω ⊂  and 
make the cost functional value (2) finite so that the control is 
admissible (Beard 1995).  

The cost function in (2) is rewritten to start from step  as 
∑ ,                             (3) 

The cost, , can be split into  
                                 (4) 

where  and ∑  represent the ‘utility function’ 
at time step  and the cost-to-go from time step 1 to , 
respectively. The 1 costate vector at step  is  

⁄                                   (5) 
The necessary condition for optimality is given by 

     ⁄ 0                                  (6) 
Equation (6) can be further expanded as 

          (7) 

The optimal control equation can, therefore, be written as 

  0                       (8) 

The costate equation is derived in the following way 

(9) 

Equations (1), (8) and (9) have to be solved 
simultaneously, along with appropriate boundary conditions 
for the synthesis of optimal control. For the regulator 
problems, the boundary conditions usually take the form:    
is fixed and → 0 as → ∞. For problems where the state 
equation and cost function are such that one can obtain an 
explicit solution for the control variable in terms of the state 
and the cost variables from equation (8), the J-SNAC 
technique is applicable.  

III. J-SNAC SYNTHESIS WITH NON-QUADRATIC COST 

In this section, the cost function based single network 
adaptive critic (J-SNAC) technique is discussed in detail. In 
the J-SNAC design, the critic network captures the 
functional relationship between the state 

 
and the cost .  

3.1 HJB Equation with Constraints on the Control Input 
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For the nonlinear system given by  
,                         (10) 

where ∈  and ∈  are the state and control vectors, 
∙ ∈  is the smooth mapping and ∈ . The 

following cost function is commonly used in the design of 
constrained controllers (Lyshevski, 2001): 

→               (11) 
where ∈  and ∈  are the diagonal weighting 
matrices and ∙  is the bounded, integrable, one-to-one, 
real-analytic globally Lipschitz continuous function ∈ .  

The Hamilton-Jacobi functional equation for (10) is  
min   (12) 

where ∙  is the positive-definite, continuously 
differentiable (minimum-cost) return function, 
inf , 0. By applying the cost (11), control law can be 
designed as 

⁄                        (13) 
In discrete-time form, the system and cost function are  

                                  (14) 
∑ →                                   (15) 

where the utility function  is given by 
1 2⁄ ∆                   (16) 

where . By applying (8), we obtain 

∆ 0              (17) 

The constrained control is obtained as 

∆  

∆ ∆          (18) 

where it is assumed that ⁄  exists.  
The costate equation can be obtained by applying (9) as 

Δ /                   (19) 
3.2 Neural Network Training 

In the J-SNAC, the steps for the training the critic 
network, are as follows (Fig. 1): 

 
Fig. 1.  J-SNAC Network Training Scheme 

a. Input
 

 to the critic network to obtain
 

. 
b. Calculate

 
/ , and  by equation (19) 

c. Calculate
 

, form the optimal control equation (18). 
d. Use  and   to get  from equation (1). 
e. Input 

 
to the critic network to get . 

f. Use ,  and , to calculate  with equation (4).  
g. Train the critic network by solving equation (A.7) 

for network weights ( See Appendix). 
h. Check the convergence of the critic network (by 

defining the relative error ≡ ‖ ‖/‖ ‖ , the 
training process is stopped when ‖ ‖ , 

otherwise, repeat steps a-g). 
A numerical method for J-SNAC training is presented in 

the Appendix.  

IV. DYNAMIC RE-OPTIMIZATION OF J-SNAC 

In this section, we consider the plant dynamics with 
parametric uncertainties or unmodeled nonlinearities. We 
discuss the dynamic re-optimization of the J-SNAC 
controller in response to the model changed due to the 
uncertainties. This is achieved with a virtual plant model that 
is similar to the actual plant but has a term to capture the 
uncertainties with an online neural network. Consider a 
general nonlinear system given as 

                            (20) 
where ∈  is the state vector and ∈  is the control 
vector. Let the actual plant have the structure 

                     (21) 
where the controller  will have to be re-optimized to 
optimize the plant performance with the unmodeled 
dynamics  present. Since the term  in the plant 
equation is unknown, the first step in controller re-
optimization is to approximate the uncertainty in the plant 
equation. For this purpose a virtual plant is defined. Let  
represent the state vector of the virtual plant.  

The dynamics of this virtual plant is governed by 
, 0 0  (22) 

where 0 is a design parameter. We assume that we have 
all the actual plant states, , available for measurement at 
every step. The term  is the neural network 
approximation of the actual plant. Subtracting equation (22) 
from (21), by defining ≡ , we obtain 

 or . It 
can be seen that as  approaches zero,  is 
exponentially stable, i.e.  → 0 as → ∞. The J-SNAC 
dynamic re-optimization scheme is shown in Fig. 2.  

 
Fig. 2.  J-SNAC Dynamic Re-optimization Scheme 

Defining , , ⋯ , , , , ⋯ , , and 
≡ , ,⋯ , , where  denotes the 

unmodeled dynamics in the differential equation for the ith 
state of the system. The approach in this study is to have ‘n’ 
NNs, one for each component of the unmodeled dynamics, 
that accommadtes simpler development and analysis. (See 
Fig. 3). The state equation for each channel is given by 

                        (23) 
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                  (24) 
where ≡ . Subtracting (24) from (23), we obtain 

                   (25) 
How do we approximate the uncertainty  with a 

neural network? Different architectures for neural networks 
exist in the literature (Haykin, 1999). In this chapter, a 
linear-in-the-parameter network is chosen. The reasons are 
two fold: keep the architecture simple and mathematically 
tractable. Let us assume that there exists an NN with an 
optimum set of weights that approximates  within a 
certain accuracy of . Thus we have 

 .                          (26) 
In equation (26), ∙  represents basis functions used in 

the neural network approximations. Choosing proper basis 
functions for a given problem is still an art and not a science. 
In applications, one examines the system model and selects 
the number and form of the basis functions from the states of 
the system. Note that , where  is 
the output of the uncertainty approximation NN.  
represents the uncertainty approximation NN weights. 
Substituting (26) into (25), we obtain 

              (27) 
             (28) 

where , is the difference between the optimal 
weights of the NN that represents  and the actual 
network weights. More details on the update rule can be 
found in (Padhi 2007; Unnikrishnan et al. 2006). 

 
Fig. 3.  Uncertainty Neural Network Structure 

V. NUMERICAL RESULTS 

5.1 Example: Spacecraft Control 
5.1.1. Problem Description and Optimality Conditions 

The dynamic rotational motion equation (Slotine and Li, 
1991) is given by  

                               (29) 
where I is the matrix of moment of inertias,   is the angular 
velocity, p is the total spacecraft angular momentum 
expressed in spacecraft coordinates and  is the torque 
applied to the spacecraft by the reaction wheels motors.  

Choosing the states , , , the kinematic equations 
describing the attitude of a spacecraft may be written as 

                                  (30) 
where 

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

              (31) 

The total spacecraft angular momentum p is written as 
                                  (32) 

where 1, 1,0 is the (constant) inertial angular 
momentum and  can be found in (Slotine and Li, 1991).  

Choosing , , , , , as the states, 

, , as the control, and assuming an uncertainty 
, , 0  to be present in the system, the dynamics of the 

system are characterized by 

0

0

0

0
0
0

0

          (33) 

where  0.1 , 0.5 sin cos are uncertainties. The 
control objective is to drive all the states to zero as → ∞. A 
non-quadratic cost function, , is selected as 

       (34) 
where 0 and 0 are weighting matrices for state 
and control respectively.  is the control constraint.  

The state equation is discretized as  
∆                       (35) 

The non-quadratic cost function (34) is discretized as 
∑ ∆→    (36) 

Optimality condition leads to the control equation  
∆ ⁄  

∆ ∆      (37) 

The costate equation can be obtained as 
Δ ⁄                     (38) 

where  represents the expression on the right hand side of 
equation (35). For this problem, Δ 0.005, is selected as 

20, 20,20,0,0,0  and  is selected as 10 , 10 , 10 . 
The Lipschitz continuous function  is selected as ∙

tanh ∙ . In the J-SNAC synthesis, the cost  is a function of 
the network weights and states , which is given by 
equation (A.2) as  Φ . In this problem, the 
network weights were initialized to zero. The basis function 

is selected as , … , , , … , , , , , , , ,
, , , , , , , ,

  

and , the number of sets in (A.7) for the network synthesis 
is selected as 100.  
5.1.2. Uncertainty Estimation 

In this study, the uncertainty NN structure is
 

, 
1, 2. The observer gain  is selected as 10.  and  are 

both initialized as 27 1 random vectors. The basis functions 
is selected as , , ,  where 

1  sin  cos , 1  sin  cos ,

1  sin  cos ,  and  denotes Kronecker product.  
The discretized equations can be written as 

∆                   (39) 
Expression for optimal control is the same as equation 

(37). The costate equation though changes to 
Δ ′ /                   (40) 

where ′  represents the expression on the right hand side of 
equation (39), which also accounts for the uncertainty. 
During each iteration of the simulation, the critic network is 
updated. Since  is unknown,  , the output of the online 
neural network is used. The online training is carried out at 
every instant  by using  as the input to the cost network 
and obtaining the new target cost  as the output. 
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5.1.3. Analysis of Results 
Actual and reference state histories are shown in Fig. 4 

and Fig. 5. It can be seen that all the states go to zero within 
5 seconds. Fig. 6 shows the history of the constrained 
control. The control limit is selected as follows: firstly the 
program is run without control constraint to find the 
maximum control value , which is , ,

71,71,69   ∙  and then to demonstrate the working of the 
proposed constrained optimal control technique, the control 
constraint  is selected as 50% of . It can be seen that 
at the very beginning the torque stays at 0.5

35.5,35.5,34.5   ∙  and is within the limit after that.  

 
Fig. 4.  Histories of Angles 

 
Fig. 5.  Histories of Rates 

 
Fig. 6.  Constrained Control History 

True and estimated uncertainty histories are shown in Fig. 
7. It can be seen that the estimated uncertainties nicely and 
quickly track the true uncertainties. Weights histories of the 
uncertainty NNs are shown in Fig. 8 and Fig. 9.  

VI. CONCLUSIONS 

In this paper, an online J-SNAC technique has been 
presented to solve nonlinear constrained control problems 
with model uncertainties. A non-quadratic cost function is 
used that incorporates the control constraints. Necessary 
equations for optimal control are derived and an algorithm to 
solve the constrained-control problem with J-SNAC is 
developed. Extensions to optimal control-constrained 
problems in the presence of uncertainties are also 

considered. A spacecraft control problem is used to illustrate 
the working of the proposed technique.  

 

 
Fig. 7.  True and Estimated Uncertainties Histories 

 
Fig. 8.  Weights Histories 

 
Fig. 9.  Weights Histories 

APPENDIX 

This appendix is derived from the convergence proof by 
Al-Tamimi et al. (2008). The difference is that the action 
network is eliminated in this study. Consider a discrete 
nonlinear control-affine system 

                               (A.1) 
where    is an 1 vector,    is an 1 vector, ∙  can be a 
nonlinear function of the states,  is a constant   matrix.  

  is a function of the network weights and states    
Φ                             (A.2) 
Φ                     (A.3) 

where it is assumed that  stay within a compact domain, 
⊂ Ω  so that ⁄  is bounded.  
In  iteration, if a non-quadratic cost function in (11) is 

used, the control is computed as 

      (A.4) 

Cost relationship at stages  and 1 is given by  
                             (A.5) 

Substituting equation (A.2) into equation (A.5), we obtain 
Φ Φ                     (A.6) 

Equation (A.6) is linear in  with  unknowns, where 
 is number of elements of Φ . Taking the transpose of 

equation (A.6), and selecting  sets of states  called  to 
, it ends up with  equations with  unknowns: 
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Φ , Φ      

⋮

Φ , Φ

              (A.7) 

where for 1, 2,… , . 

,
≡

Φ        (A.8) 

,                        (A.9) 
Equations (A.7) can be rewritten as  

,                    (A.10) 
where the RHS is the 1 vector composed of all the RHS 
of equation (A.7) and the   matrix   is given by 

Φ
⋮

Φ

, ⋮               (A.11) 

By using (A.11) in (A.10), a recursive relationship for the 
network weights is given as 

  ,                 (A.12) 
For the inverse    to exist, ’s should not be 

identical and the elements of vector  should be linearly 
independent. One can select more than ‘ ’ minimum 
required sets of states, and formulate a recursive relationship 
for the over-defined system of equations. In this case, the 
unique solution of the least squares minimization problem is: 

,      (A.13) 
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