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Abstract— We consider the problem of maximizing the alge-
braic connectivity of the communication graph in a network
of mobile robots by moving them into appropriate positions.
We describe the Laplacian of the graph as dependent on the
pairwise distance between the robots and formulate an approx-
imate problem as a Semi-Definite Program (SDP). We propose
a consistent, non-iterative distributed solution by solving local
SDP’s which use information only from nearby neighboring
robots. Numerical simulations show the performance of the
algorithm with respect to the centralized solution.

I. INTRODUCTION

A robotic network is a collection of mobile units that

communicate with one another to achieve a common goal.

Such systems are present in several applications ranging

from underwater [1] and space exploration [2], to search

and rescue [3], fire monitoring [4] and other surveillance

applications [5]. Maintaining connectivity between the in-

dividual robots and guaranteeing a certain level of com-

munication quality given the environmental constraints and

objectives have been considered as key requirements to

meet the demands of such applications. Furthermore, several

different coordination and control algorithms designed for

these networks rely on some type of agreement protocol or

consensus process [6]–[8], whose effectiveness is profoundly

influenced by the interconnections between the units.

Motivated by the importance of the communication net-

work, we study distributed solutions for maximizing its

algebraic connectivity (often denoted as λ2) in mobile robotic

networks. This parameter is the second smallest eigenvalue of

the communication graph’s Laplacian matrix, and it dictates

the convergence properties of consensus protocols [9], [10].

Maximization of λ2 is also crucial for collaborative target

tracking [11], where a network of mobile robots strive for

increased accuracy of the joint position estimate of one

or more moving objects [12]–[14]. Besides an increase in

accuracy, a positive λ2 also ensures that the network stays

connected during the motion. We will focus on distance-

based connectivity aspects of robotic networks, as opposed

to ensuring line-of-sight connectivity in the presence of

obstacles, which is also a relevant related problem actively

studied in the literature (see e.g., [15]).

The works of [16]–[21] give a comprehensive overview

of distributed algorithms for networks of vehicles that aim

at ensuring connectivity (i.e., nonzero λ2 rather than its

maximization). Typically, these are either limited to specific
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scenarios only, or imply heavy communication requirements.

Often the proposed approaches are not obtained by decom-

posing the centralized problem but constructed using ad-hoc

methods that are not directly related to the solution of the

centralized version.

In terms of distributed connectivity maximization, the

available literature appears very limited. To the best of our

knowledge, only the work of [22] investigates a distributed

solution for the maximization of λ2. The authors use a two-

step distributed algorithm, which relies on super-gradients

and potential functions. The required communication load

scales with the square of the graph diameter and can impede

fast real-time implementations for large groups of agents.

In this paper, we present a distributed approach for the

λ2 maximization problem as formulated by [11], [23], [24]

in a centralized framework. Our perspective is model-based

optimization and control, which allows additional constraints

(e.g., the dynamics of the robots) to be included explicitly

in the problem formulation. Moreover, our approach is

consistent, in the sense that (i) the local problems are derived

via a suitable decomposition of the centralized one, (ii) the

linearized algebraic connectivity of the approximate problem

is guaranteed to be monotonically increasing, and (iii) the

local solutions are feasible with respect to the constraints

of the original centralized problem. These properties, espe-

cially (i) and (iii), appear to be completely absent in the

aforementioned literature. Our proposed distributed approach

relies on local problems that are solved by each robot using

information only from nearby neighbors and, in contrast with

[22], it does not require any iterative schemes, making it

more suitable for real-time applications. This last property

is not a trivial aspect when using common decomposition

methods [25], as done in various approaches to distributed

control [26], [27]. Finally, the proposed solution can also be

extended to incorporate other interesting scenarios, such as

collaborative target tracking.

Simulation results support the efficacy of our approach and

show interesting properties of the algorithm. For instance,

given the nonlinear/nonconvex nature of the problem, in

certain scenarios the distributed solutions converge to a

higher λ2 value than the centralized ones obtained from the

approximate problem formulation.

The paper’s main contribution is to improve and extend

our preliminary heuristic approaches presented in [28], and

provide proofs of its most important properties. Furthermore,

we discuss new insights gained from simulation studies,

along with suggestions for further improvements.

The paper is organized as follows. Section II formulates
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the approximate centralized problem as suggested by [11],

[23], [24]. The proposed distributed approach is described in

Section III. Numerical simulations are shown in Section IV

to assess the performance of the distributed solutions with

respect to centralized schemes. Conclusions and open issues

are discussed in Section V.

II. PROBLEM FORMULATION

We consider a network of N agents. The agents represent

mobile robots and the network encodes undirected communi-

cation links, meaning that if two agents are connected, they

can communicate with each other. As a general notation

ai(k) represents the value of the variable a for agent i at

time k while δai(k) = ai(k) − ai(k − 1). For simplicity

of exposition and without loss of generality, we will assume

identical discrete-time agent dynamics of the following form:

xi(k) = xi(k − 1) + vi(k − 1)∆t (1)

where the agents are limited to move on a 2-D plane, vi(k)
is the velocity control input and ∆t the sampling time. Let

x(k) ∈ R
nN be the collection of the agents’ positions in a

2-D space, i.e., x(k) = (x⊤
1 (k), . . . , x

⊤
N (k))⊤. We use graph-

theoretical notions to model the network. The set S contains

the indices of the mobile agents (nodes), with cardinality

N = |S|. We use E to indicate the set of communication

links, i.e., the edges {(i, j)|i, j ∈ S}. The graph G is

then expressed as G = (S, E). Let the graph be connected

initially, the agent clocks synchronized, and assume perfect

communication (no delays or packet losses). The agents with

which agent i communicates are called neighbors and are

contained in the set Ni. Note that node i is not included in

the set Ni. We define Ji = Ni ∪ {i} and Ni = |Ji|. We

define a set of Laplacian matrices L associated with G as

L = {L ∈ R
N×N |L = L⊤, ℓij = 0 iff (i, j) /∈ E, L1 = 0}

The entries of a Laplacian matrix L are defined as

ℓij :=







0 (i, j) /∈ E
−wij (i, j) ∈ E, i 6= j

∑

l 6=i wil i = j
(2)

where the positive weights wij represent the “connection

strength” between agent i and j. The weights themselves

depend on the physical distance between the agents. For this

purpose we introduce the square distance matrix D, whose

entries dij are defined as

dij(k) = ||xi(k)− xj(k)||2 (3)

The value of the normalized weights wij will be 1 repre-

senting a “strong connection” if dij is less than a certain

threshold, i.e., dij ≤ ρ1, with ρ1 > 0. On the other hand,

agents will not be connected at all (wij = 0) for dij > ρ2,

with ρ2 > ρ1. For ρ1 < dij ≤ ρ2 the agents are connected

with a connection strength that decreases smoothly with their

distance. Some of the typical functions used for the weights

wij can be found in [11], [23], [28], for simulation purposes

we will use the polynomial description shown in Table I,

which for a suitable choice of the coefficients αp is both

continuous and twice-differentiable.

TABLE I

5-TH ORDER POLYNOMIAL CHOICE FOR THE WEIGHTING FUNCTION.

  

0

 

1

ρ1 ρ2

dij

wij

wij :=







1 dij < ρ1
∑5

p=0 αpd
p
ij ρ1 ≤ dij < ρ2

0 dij ≥ ρ2

As a direct consequence of the above definitions, the en-

tries of the Laplacian matrix (2) will depend on the pairwise

distance and therefore on the position of the agents, making

it state-dependent, which we will denote by L(x). We are

interested in the maximization of the algebraic connectivity

of the weighted graph by moving the robots to appropriate

positions. This goal could be formulated as the following

time-invariant optimization problem [24]:

P (L(x)) : max
x,γ

γ (4a)

s.t. γ > 0 (4b)

L(x) + 11
T ≻ γI (4c)

where the decision variables are the final robot locations and

the optimal value of γ which is the maximum λ2 for L(x).

This problem would be convex if L was the decision

variable, but it is non-convex given that we are optimizing

over the positions x and the entries of L are nonlinear

functions of x. However, we can obtain a time-varying

convex approximation of the problem by using first-order

Taylor approximations and the dynamical equation (1):

dij(k) = dij(k − 1) + 2(xi(k − 1) − xj(k − 1))⊤(δxi(k)− δxj(k))

therefore

dij(k) = −dij(k − 1) + 2(xi(k − 1) − xj(k − 1))⊤(xi(k)− xj(k))

and in the same way, the weights of the state-dependent

Laplacian L(x) are approximated as

wij(k) = wij(k − 1) +
∂wij

∂dij

∣
∣
∣
dij(k−1)

(
∂dij
∂xi

δxi(k) +
∂dij
∂xj

δxj(k)
)

= wij(k − 1) + 2
∂wij

∂dij

∣
∣
∣
dij(k−1)

×

(xi(k − 1)− xj(k − 1))⊤(δxi(k)− δxj(k))

This allows us to consider the maximization of the algebraic

connectivity of L as the following convex optimization

problem to be solved at each time step k:
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Pk (L(x), x(k − 1), D(k − 1), ρ1, vmax) :

max
x(k),D(k),γ(k)

γ(k) (5a)

s.t.

Q1 :

{
γ(k) > 0

L(x(k)) + 11
T ≻ γ(k)I

(5b)

Q2 :







Q2.1 : dij(k) + dij(k − 1)− 2(xi(k − 1)− xj(k − 1))⊤×
(xi(k)− xj(k)) = 0

Q2.2 : dij(k) > ρ1, ∀(i, j) ∈ E
Q2.3 : ||xi(k)− xi(k − 1)|| ≤ vmax∆t i = 1, . . . , N

(5c)

where the constraint Q2.2 is used both to enforce positive

distance values and to avoid agents getting too close to each

other. This is not ensured by Q2.1 alone, since there dij(k)
is not constrained to be ≥ 0. The constraint Q2.3 on the

velocity represents the physical limitations of the agents.

The optimization problem that has been described in

this section attempts to solve the connectivity maximiza-

tion problem in a centralized manner using linearization

and an optimization problem at each time k. In realistic

application scenarios, computing the desired positions and

the corresponding motion commands for the robots cannot

be performed in a single centralized location due to compu-

tational and communication constraints. In the next section,

we describe a solution approach that allows the problem to

be solved in a distributed fashion, using local computation

and limited communication resources, which increases the

flexibility of the robotic network and is thus appealing in

practice.

III. THE PROPOSED DISTRIBUTED SOLUTION

In this section we present a non-iterative distributed and

consistent solution to solve (5). We note that this is not a triv-

ial achievement since the most common decomposition meth-

ods, such as Jacobi algorithms [25], Primal decomposition

[26], Dual decomposition [27], and Augmented Lagrangian

Method [25], typically require iterative solutions which may

not be amenable to fast real-time implementations. We

are currently exploring the use of recent developments in

parallel and distributed algorithms to decompose and solve

SDPs [29], [30], which may lead to applicable alternative

approaches.

Before presenting the main contribution of this paper,

we first introduce some notation and definitions. We then

proceed to describe our non-iterative distributed solution

method and argue why it leads to a consistent algorithm.

As described before, this means that solving local problems

leads to a monotonically increasing λ2 of the linearized

Laplacian of the entire network.

In order to describe the local problems each agent will

be solving, we define subgraphs that correspond to the

agents and their neighborhood. Let Mi denote the enlarged

neighborhood for each agent i defined as

Mi =
⋃

l∈Ji

Jl, i = 1, . . . , N (6)

whose cardinality will be Mi. We denote the vector contain-

ing all the positions of the agents in this set with xMi
. We

define

Ji
Agent i

Mi

∂Mi

Fig. 1. Notation for the distributed solution

∂Mi = {l|l ∈ Mi, l /∈ Ji}, i = 1, . . . , N (7)

as the bordering set of Mi, while we call the set of

agents belonging to ∂Mi, the bordering agents of Mi.

Figure 1 provides a graphical illustration of this notation.

An illustrative example and arguments justifying the choice

and role of the enlarged neighborhood set is given in our

earlier work [28].

Finally, we will denote the graph Laplacian associated

with subgraph Mi as Li with corresponding distance matrix

Di. We also introduce a scaled minimum distance ρ̃1ij and

a scaled maximum velocity ṽmax,i defined as

ρ̃1ij =




∑

p∈Mi∩Mj

1

Np





−1

×



ρ1 + dij(k − 1)




∑

p∈Mi∩Mj

1

Np
− 1







 , ∀(i, j) ∈ E (8)

ṽmax,i =




∑

j∈Mi

1

Nj





−1

vmax, i = 1, . . . , N (9)

whose values vary from agent to agent. These quantities will

be used to tighten the global constraints in such a way that

the global solution constructed from the local ones satisfies

the original Q2.2 and Q2.3 constraints.

Our algorithm consists of two steps. First, each agent

solves the problem Pk,i defined as

Pk(Li(xMi
), xMi

(k − 1), Di(k − 1), ρ̃1ij , ṽmax,i) (10a)

s.t. Q3 : xj(k) = xj(k − 1), for j ∈ ∂Mi (10b)

computing the solution x̂Mi
(k), which is composed of

x̂ij(k) for each j ∈ Mi. Thus, we will call x̂ij(k) the

position of agent j as computed by agent i. Note that the

extra constraint Q3 is an important requirement to guarantee

consistency as will be explained later in this section.

As the second step, the solutions x̂Mi
(k) are shared within

the enlarged neighborhood Mi and averaged according to

xi(k) = xi(k − 1) +
∑

j∈Mi

1

Nj

δx̂ji(k), i = 1, . . . , N

(11)

Algorithm 1 summarizes the method.

Remark 1: We emphasize again that although Q3 keeps

some agent positions fixed in the local solutions, they will

not remain stationary when constructing the global solution

due to the averaging step (11).
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Algorithm 1 λ2 Maximization.

1: Input: xi(k − 1), xj(k − 1), j ∈ Mi

2: Compute: dij(k − 1) from input based on (3)

3: Solve: Pk,i in (10) computing x̂ij(k), j ∈ Mi

4: Communicate: x̂ij(k) among members of Mi

5: Average: xi(k) = xi(k − 1) +
∑

j∈Mi

1

Nj

δx̂ji(k)

6: Output: xi(k)

We claim that the above algorithm leads to a consistent

solution, i.e., if we consider the resulting global position

vector x(k) = (x⊤
1 (k), . . . , x

⊤
N (k))⊤, then

(C1) the algebraic connectivity of the corresponding global

linearized Laplacian L(x(k)) is monotonically increas-

ing in each iteration;

(C2) all the constraints of the global problem are met.

We will prove these claims in two steps: Theorem 1 es-

tablishes (C1), by establishing a link between the average

value (11) and the algebraic connectivity through the linear

dependence of the linearized Laplacian on x. The constraint

Q3 plays a crucial role here to ensure the feasibility of

the local solutions. Theorem 2 guarantees (C2), by showing

how the tightened constraints (8)-(9) of the local problems

ensure that the global solution, obtained via the average (11),

satisfies the global constraints.

Consider the local problem Pk,i and its solution comprised

of x̂ij(k) for all j ∈ Mi. Construct the vector

x̂(i)(k) = (x⊤
1 (k − 1), . . . , x̂⊤

ij(k), . . . , x
⊤
N (k − 1))⊤ (12)

where we keep those agent positions that have not been

optimized fixed, and we update the rest from the solution

of the local problem.

Theorem 1: (C1) The algebraic connectivity of the global

linearized Laplacian L(x(k)) is monotonically increasing in

each iteration, meaning L(x(k)) � L(x(k−1)), where x(k)
is computed by the average (11).

Proof. Due to constraint Q3, L(x̂(i)(k))−L(x(k− 1)) �
0, meaning that the new positions x̂(i)(k) do not decrease

the algebraic connectivity of the Laplacian matrix. In fact,

L(x̂(i)(k)) − L(x(k − 1) = L(δx̂(i)(k))), which, up to a

renumbering of the agents, leads to:
[

L(δx̂Mi
(k)) 0

0 0

]

� 0

which is positive semi-definite due to the nature of the local

solution.

The previous property implies (L(x̂(i)(k)) − L(x(k −
1)))/Ni � 0 for all i. Thus summing over all agents leads

to
N∑

i=1

1

Ni
(L(x̂(i)(k))− L(x(k − 1))) � 0

Considering the weighted sum xi(k) in (11), and the asso-

ciated global vector x(k), it can be shown that

L(δx(k)) =
N∑

i=1

1

Ni
L(δx̂(i)(k)) (13)

which leads to the desired consistency property

L(x(k)) � L(x(k − 1))

To show the correctness of (13), let us consider the entry

(i, j) of the Laplacian L on both sides of the expression. For

the right side, ℓij is

ℓij = aij
∑

p∈Mi∩Mj

δx̂pi(k)− δx̂pj(k)

Np

where aij is a constant depending on x(k − 1).
For the left side,

ℓij =aij (δxi(k)− δxj(k))=

aij




∑

p∈Mi

1

Np
δx̂pi(k)−

∑

p∈Mj

1

Np
δx̂pj(k)





the last expression can be divided in three parts: p ∈ Mi ∩
Mj , p ∈ Mi ∧ p /∈ Mj , and p ∈ Mj ∧ p /∈ Mi. Since

aij 6= 0 only if (i, j) are first-order neighbors, we make the

key observation that: {p|p ∈ Mi ∧ p /∈ Mj} ⊆ ∂Mi and

{p|p ∈ Mj ∧ p /∈ Mi} ⊆ ∂Mj which leads to:

ℓij = aij
∑

p∈Mi∩Mj

δx̂pi(k)− δx̂pj(k)

Np
+

aij
∑

p∈Mi∧p/∈Mj

δx̂pi(k)

Np

︸ ︷︷ ︸

=0

− aij
∑

p∈Mj∧p/∈Mi

δx̂pj(k)

Np

︸ ︷︷ ︸

=0

where the last two terms are 0 due to the constraint set Q3.

Since both sides of the expression (13) are the same, then

the consistency property (C1) holds. �

Theorem 2: (C2) The global vector x(k) computed with

the average (11), satisfies the constraint sets Q1 and Q2 .

Proof. The previous proof guarantees that the averaged

solution satisfies the constraint Q1. With regards to Q2, we

begin with the constraints Q2.1 and Q2.2. In subproblem

Pk,p with p ∈ Mi ∩Mj the distance variable is written as

dij(k) = dij(k − 1) + 2(xi(k − 1)− xj(k − 1))⊤×

(δx̂pi(k)− δx̂pj(k)) > ρ̃1ij

or

2(xi(k − 1) − xj(k − 1))⊤(δx̂pi(k)− δx̂pj(k)) > ρ̃1ij − dij(k − 1).

When considering the use of the average x(k), following

similar arguments as in the previous proof leads to

dij(k − 1) + 2(xi(k − 1) − xj(k − 1))⊤×
∑

p∈Mi∩Mj

1

Np
(δx̂pi(k)− δx̂pj(k)) >

dij(k − 1) + (ρ̃1ij − dij(k − 1))
∑

p∈Mi∩Mj

1

Np
>

∑

p∈Mi∩Mj

1

Np
ρ̃1ij − dij(k − 1)




∑

p∈Mi∩Mj

1

Np
− 1





which for the chosen ρ̃1ij in (8) further leads to
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dij(k) = dij(k − 1) + 2(xi(k − 1)− xj(k − 1))⊤×
∑

p∈Mi∩Mj

1

Np
(δx̂pi(k)− δx̂pj(k)) > ρ1.

Thus x(k) satisfies Q2.2.

Considering now Q2.3, for each subproblem we have

||δx̂ii(k)|| < ṽmax,i =




∑

j∈Mi

1

Nj





−1

vmax

and for the global problem

||δxi(k)|| <
∑

j∈Mi

1

Nj
||δx̂ji(k)|| < vmax

Thus x(k) satisfies also Q2.3 and (C2) is established. �

Possible further improvements

A natural way to try to improve the proposed solution

is to consider S sub-steps for each discrete time step, e.g.

from k− 1 to k. At each sub-step the agents are allowed to

communicate to each other to average their local solutions

according to (11). Therefore, in this case, the final position

vector will be

x(k) = x(k − 1) +
1

S

S∑

p=1

∑

j∈Mi

δx̂
[p]
ji

Nj

where we indicate with x̂
[p]
ji the solution at the p-th sub-step.

However, given the nonlinear/nonconvex nature of the

problem, it is not straightforward to prove that increasing

S would lead to a better solution. Although simulation

results show that in practice choosing bigger S helps to be

closer to the centralized algorithm, at least when the initial

configurations are the same, a rigorous characterization of

this property is still an open question.

IV. SIMULATION RESULTS

In this section, we present numerical simulation results

to illustrate how the algorithms perform with respect to the

centralized scheme. We use a benchmark problem motivated

by [23]. This scenario starts with N = 6 agents forming

a connected graph. The initial position vector is xi(0) =
[1 + 1.05(i− 1), yi]

⊤
, with yi ∼ ℵ(0, σ), meaning that yi

is drawn from a Gaussian distribution ℵ(0, σ), with mean

0 and standard deviation σ = 0.5. Randomness is added

to test the algorithm’s sensitivity to slightly different initial

conditions. The other simulation parameters include the

weighting function of Table I, ρ1 = 0.5, ρ2 = 2, velocity

bound of 0.3, and final time T = 75. We collected 50
simulation runs. As a general notation, we will denote with

S = 1 the standard distributed algorithm as expressed in

Algorithm 1, while with S = s the distributed algorithm

with s sub-steps.

In Figure 2, an example of the trajectories using the

centralized and the distributed solutions for the S = 1 case is

depicted, respectively. The initial positions are marked with

squares. The final positions are marked with circles. The bold

lines represent the final communication graph and the thin

lines the agent trajectories. The values of
√
ρ1 and

√
ρ2 are

also depicted for comparison and illustration of scale.

Figure 3 shows, in the same simulation, the algebraic

connectivity as a function of the sampling time k for the

cases S = 1, 2, 4. Although omitted from Figure 2 for read-

ability purposes, the S = 2, 4 cases lead qualitatively to the

same final network configuration as S = 1. Figure 3 clearly

illustrates the nonlinear/nonconvex nature of the problem. In

fact, although S = 4 seems better at the beginning, it has

slower convergence than S = 2. We can see also how S = 4
leads to a slightly better final λ2 than the centralized case.

It appears also that the local problems grow in size as

the connectivity increases. Random algorithms have been

proposed to handle this growth in [28], but they do not

possess the desired consistency properties.

1 2 3 4 5 6
−1

−0.5

0

0.5

1

1 2 3 4 5 6
−1

−0.5

0

0.5

1

√
ρ1

√
ρ1

√
ρ2

√
ρ2

(a)

(b)

Fig. 2. Trajectories for the centralized solution (a) and for the distributed
approach using S = 1 (b). The initial positions are marked with squares.
The final positions are marked with circles. The bold lines represent the
final communication graph and the thin lines the agent trajectories.
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Fig. 3. Algebraic connectivity as a function of time k for both the
centralized and the distributed solutions.

Table II shows the ratio between the final connectivity of

the distributed solution and the centralized one for S = 1,

in the 50 simulation runs. We can observe that although the

distributed solution with S = 1 may even converge to a

higher λ2 value than the centralized one in some instances,

or get stuck for a while in local minima, it has performance
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TABLE II

RATIO BETWEEN THE FINAL CONNECTIVITY OF THE DISTRIBUTED

SOLUTION AND THE CENTRALIZED ONE FOR S = 1.

Ratio (0.3−0.5] (0.5−0.8] (0.8−1.0] (1.0−1.1]
♯ of Cases 2 20 22 5

comparable to the centralized solution in about half of the

cases. Furthermore, although the network size is rather small,

the distributed solution provides on average a reduction of

20% in communication and of 30% in computational time

of each agent solving the local optimization problems with

respect to the centralized approximation.

V. CONCLUSIONS

We have presented a distributed solution for the maximiza-

tion of algebraic connectivity in a network of mobile robots,

which allows greater modularity and resilience compared to

calculating the solution in a central location. The method

is optimization-based, it is consistent with the approximate

centralized solution and we have presented simulation results

for different iteration strategies to assess the performance of

the method. We highlighted cases in which the distributed

solution converges to a higher λ2 value than the centralized

scheme, and cases in which it converges to local minima.

Although simulation results confirm the consistency of

our distributed approach and show its practical applicability,

several open issues still remain and will be the focus of

our future research. In particular, a more realistic dynamical

model for the agents, suboptimality of the distributed solu-

tion, implications due to the choice of the enlarged neigh-

borhood are current research topics along with experimental

validations.
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