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Abstract— In this paper, we show that there is a dual
effect with state-based scheduling. In general, this makes the
optimal scheduler and controller hard to find. However, by
removing past controls from the scheduling criterion, we find
that certainty equivalence holds. This condition is related to
the classical result of Bar-Shalom and Tse, and it leads to the
design of a sub-optimal scheduler with a certainty equivalent
controller. Furthermore, we show that a mapping of the state-
based scheduler into one which fulfills this condition, and
consequently has an optimal certainty equivalent controller,
does not result in an equivalent class of design in the sense
of Witsenhausen. Computing the estimate remains hard, but
can be simplified by introducing a symmetry constraint on the
scheduler.

I. INTRODUCTION

There is a need for innovative scheduling policies in
networked control systems. These systems aim to support
the regulation of physical plants over wireless networks.
The push to wireless is motivated by a need for mobility
and reduced cabling and installation costs, among other
benefits. But, scheduling over wireless networks is more
demanding due to the interference-limited nature of these
networks. Also, control applications may share access to
the wireless medium with non-regulatory and non-critical
applications, which makes the problem challenging. This
calls for a two-pronged approach: to limit access to the
communication channel from the application, and to ensure
that performance guarantees are met by the scheduler. The
first approach has driven the design of event-based sampling
systems [1], which seek to reduce the traffic in the network
by transmitting only when required. This is often achieved by
assigning a cost for every channel-use [2], and minimizing
the net cost of controlling the plant and communicating over
the medium. The design of the optimal scheduler, in this
sense, might be enabled by providing the scheduler access
to all the information about the plant including the state and
its evolution, the applied control signals, the disturbances
and the cost criterion. The second approach tries to ensure
performance guarantees from the scheduler, which makes the
design of a medium access control (MAC) protocol for net-
worked control systems equally challenging. Random access
protocols facilitate a distributed implementation, particularly
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for wireless networks, but they cannot provide a guarantee
on performance measures in general. However, by utilizing
all the information available to the scheduler, and using this
information to determine a probability of channel access, it
may be possible to provide performance guarantees with a
simple, distributed implementation.

The approaches discussed above motivate the use of a
state-based scheduler in the closed loop. Here, we use the
term state-based scheduler in a generic sense, to mean that
the arrival of a data packet is correlated to the plant state. We
are interested in studying the effect of such a scheduler on
the control design. Using a quadratic criterion for the cost
of controlling a linear plant disturbed by Gaussian noise,
we ask, in this paper, if the certainty equivalence principle
holds. To answer this question, we examine if there is a dual
effect due to the influence of the control action in the arrival
of a data packet, as this determines the ease of designing a
controller. The lack of a dual effect implies that the certainty
equivalence principle holds [3]. Certainty Equivalence is a
desirable trait, as the presence of the scheduler can then be
ignored and the optimal controller designed with full state
information. The lack of state information is compensated
with an estimate of the state. However, the presence of a dual
effect makes the design of an optimal controller a harder task.
In this case, the scheduler cannot be neglected and there is
a coupling between the controller, estimator and scheduler.

In this paper, we show that there is a dual effect of the
control with state-based scheduling. The optimal controller,
scheduler and estimator are coupled and hard to find. We
illustrate, with a simple example, some of the computational
difficulties in finding the optimal estimates and control
signals for a given scheduler. As a suboptimal and simplified
approach, we discuss the constraints to be placed on the
scheduling criterion such that the resulting system has no
dual effect. Consequently, the optimal controller becomes
certainty equivalent and for symmetric scheduling criteria,
the estimator becomes computationally simple. We note that
it is possible to map any state-based scheduler into one
which satisfies the constraints required to possess no dual
effect. Such transformations or equivalent classes have been
constructed, particularly in the problem of encoder design for
control over limited data-rate communication channels [4],
[5]. In these problems, however, the resulting control actions
are not affected by the equivalent design. We show that this
is not true for the problem described in this paper. Thus, it
is not easy to do away with the dual effect in state-based
scheduling and the problem must be solved as such.

The results presented in this paper are built on the classical

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2216



work on dual effect [6] and Certainty Equivalence (CE)
[3], [7], as applied to, for instance, adaptive control [8]. In
networked control, state-based scheduling has recently been
discussed in [9] and [10]. It has not been made sufficiently
clear in the recent literature that the CE controller obtained
is with a possibly sub-optimal scheduler. In this paper, we
highlight some of the difficulties in optimal controller design
with a state-based scheduler in the closed loop. The rest of
the paper is organized as follows. In section II, we discuss
the system architecture and the notation used in the paper.
The main results are presented in the form of theorems and
propositions in section III. The optimal controller and the
CE controller for an equivalent scheduler are presented in
section IV, followed by the conclusion.

II. PROBLEM SETUP
We consider a single plant and controller, which commu-

nicate over a network with a state-based scheduler in the
loop, as shown in Fig. 1. The plant P has state dynamics
given by

xk+1 = Axk +Buk + wk, (1)

where A ∈ Rn×n, B ∈ Rn×m and wk is an i.i.d. zero-mean
Gaussian noise with covariance matrix Rw. The initial state
x0 is a zero-mean Gaussian with covariance matrix R0.

There is a scheduler S between the plant and the controller
C, which decides if the state is to be sent to the controller or
not. The measurement at the controller is denoted yk = δkxk,
where δk ∈ {0, 1} is the scheduler output. It takes a value 1
when the state xk is sent and 0 otherwise.

The scheduling criterion f and the control law g denote
admissible policies for the finite horizon N defined on the
information patterns of the scheduler and the controller, I

S

k

and I
C

k , respectively, as given by

δk = fk(I
S

k ); I
S

k =
[
xk0 ,y

k−1
0 , δk−1

0 ,uk−1
0

]
(2)

uk = gk(I
C

k ); I
C

k =
[
yk0 , δk0 ,u

k−1
0

]
(3)

where the history of a variable is denoted by the boldface
notation, as in xk0 = {x0, . . . , xk}. The objective function,
defined over a horizon N is given by

J(f, g) = E

[
xTNQ0xN +

N−1∑
s=0

xTs Q1xs + uTs Q2us

]
(4)

where Q0,Q1 and Q2 are positive definite weighting matri-
ces.

A. Dual Effect

Note that the control uk might affect the future state
uncertainty, in addition to its direct effect on the state. This
is called the dual effect of control [6].

Definition 1: A control signal is said to have no dual
effect of order r ≥ 2, if

E[Mr
k |I

C

k ] = E[Mr
k |x0,w

τk
0 ] (5)

where Mr
k = E[(xk − E[xk|I

C

k ])r|ICk ] is the rth central
moment of xk conditioned on I

C

k and τk is the time index
of the last received measurement at time k [3].

Fig. 1. The system architecture with a state based scheduler.

Note that Mr
k in (5) must specifically not be a function of

the past control policies {g0, . . . , gk−1} for the control signal
to have no dual effect of order r. In other words, if there is
no dual effect, the expected future uncertainty is not affected
by the controls uk−1

0 . In the presence of a dual effect, the
optimal control laws are hard to define [8].

B. Certainty Equivalence
Definition 2: The Certainty Equivalence Principle is said

to hold if the closed-loop optimal controller has the same
form as the deterministic optimal controller with the state
xk replaced by the estimate x̂k|k = E[xk|I

C

k ].
In contrast, a certainty equivalent controller uses the

deterministic optimal controller, with the state xk replaced
by the estimate x̂k|k , as an ad hoc procedure [11], [3].

In the rest of the paper, we address the question of whether
the control problem described in this section has a dual effect
or not.

III. MAIN RESULTS
In this section, we show that the control signal has a dual

effect in the presence of a state-based scheduler in the closed
loop. We derive the conditions on the scheduling function
f for which the system has no dual effect, and discuss
how a transformation of the state-based scheduler into one
without a dual effect results in another control system, not
an equivalent one. Finally, we comment on the structure of
the estimator.

A. Dual Effect
For the problem defined in section II, the following result

on the dual effect can be stated.
Theorem 1: The control signal for the plant (1) with state-

based scheduler (2), controller (3) and cost criterion (4) has
a dual effect of order r = 2.

Proof: We examine the estimation error covariance
Pk|k , and show that it is a function of the applied control
signals uk−1

0 . The measurement yk contains the full state xk
only when a packet arrives, or when δk = 1. Thus, we have
an expression for the estimate x̂k|k , E[xk|I

C

k ], as given by

x̂k|k =

{
xk δk = 1
E[xk|I

C

k , δk = 0] δk = 0

The estimation error, x̃k|k , xk − x̂k|k , can be written as

x̃k|k =

{
0 δk = 1
xk − E[xk|I

C

k , δk = 0] δk = 0
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Then, the error covariance, Pk|k , E[x̃k|k x̃Tk|k |I
C

k ], is given
by

Pk|k =

{
0 δk = 1
E[x̃k|k x̃Tk|k |I

C

k , δk = 0] δk = 0
(6)

The covariance Pk|k is zero if the scheduling criterion (2) is
fulfilled, and non-zero otherwise. Clearly, Pk|k is a function
of the past controls, as the scheduler outcome δk is influenced
by the applied control inputs uk−1

0 . Since Pk|k does not
satisfy the condition (5) required to have no dual effect, we
see that the system (1)–(4) exhibits a dual effect of order
r = 2.

In this setup, the control signal can probe the state, due
to which it has influence over the scheduler outcome, and
consequently over the estimation error. This provides an
incentive to the control policy to modify the estimation error
along with controlling the plant. Thus, the optimal controller
is not certainty equivalent. This can also be noted from
the classical result of Bar-Shalom and Tse [3], which says
that the certainty equivalence principle does not hold for a
system, such as (1)–(4), which exhibits a dual effect.

Note that the above result implies that the dual effect is
visible in any control signal applied to the plant, not just the
optimal one, as the control signal will always influence the
estimation error, irrespective of whether it has been designed
to do so or not. Finally, in this context, the dual effect can
be best explained as a coupling between the control and
scheduling policies. The information at the scheduler con-
tains all the information available to the controller. Despite
this, the control policy can signal to the estimation error as
the scheduler outcome is a function of the control design.

B. Conditions for Certainty Equivalence

A scheduling criterion independent of the past control
actions results in no dual effect. This statement is formalized
in the theorem below on certainty equivalence.

Theorem 2: The optimal controller for the system (1)–(4)
is certainty equivalent if the scheduling decisions are not a
function of the applied control actions, i.e. if

δk = f̃k(x0,w
k−1
0 ) (7)

Proof: To minimize the quadratic cost J (4), we need
to find a solution to the Bellman equation [11], which is a
one-step minimization of the form

Vk = min
uk

E[xTkQ1xk + uTkQ2uk + Vk+1|I
C

k ] (8)

In general, without defining a structure for the estimator, Bar-
Shalom and Tse [3] give us the solution to the functional, of
the form

Vk = E
[
xTk Skxk|I

C

k

]
+ sk (9)

where Sk is a positive semi-definite matrix and both Sk and
sk are not functions of the applied control signals uk−1

0 . We
now prove that a solution of this form can be found for our
problem with the scheduler (7).

At time N , the functional has a trivial solution (9) with
SN = Q0 and sN = 0. This solution can be propagated
backwards, in the absence of a dual effect. To show this, we

use the principle of induction, and assume the solution to
hold at time k + 1. Then, at time k, we have

Vk = min
uk

E[xTkQ1xk + uTkQ2uk + xTk+1Sk+1xk+1 + sk+1|I
C

k ]

= min
uk

E[xTk (Q1 +ATSk+1A)xk|I
C

k ] + tr{Sk+1Rw}

+ E[sk+1|I
C

k ] + uTk (Q2 +BTSk+1B)uk
+ x̂Tk|kA

TSk+1Buk + uTkB
TSk+1Ax̂k|k

The optimal control is then found to be

uk = −(Q2 +BTSk+1B)−1BTSk+1Ax̂k|k (10)

Substituting the expression for uk into Vk gives us a solution
of the form in (9), with

Sk = Q1 +ATSk+1A

−ATSk+1B(Q2 +BTSk+1B)−1BTSk+1A

sk = tr{Sk+1Rw}+ E[sk+1|I
C

k ] (11)

+ tr{ATSk+1B(Q2 +BTSk+1B)−1BTSk+1APk|k}

where the matrix Sk is positive semi-definite and not a
function of the applied controls uk−1

0 . The scalar sk is not
a function of the applied controls uk−1

0 if and only if Pk|k
has no dual effect [3]. From the expression for the error
covariance Pk|k (6), it is clear that a scheduling criterion
that is not a function of the past control actions, such as
(7), results in no dual effect. Under this condition, sk is not
a function of the applied controls uk−1

0 and the proof by
induction is complete. Since the optimal control signal (10)
is a function of only the estimate x̂k|k , Certainty Equivalence
holds.
Theorem 2 gives a condition on the scheduler to guarantee
certainty equivalence. Note that the resulting closed loop
system is not optimal in general. A scheduler with a dual
effect may result in a better design with lower cost.

C. Equivalent Classes for the Scheduler

We now examine the question of whether this dual effect
can be removed by the construction of an equivalent sched-
uler. Following the results presented in subsections III-A and
III-B, it is tempting to note that every state-based scheduler
f (2) can be transformed into an equivalent scheduler f̃ (7),
as the applied controls uk−1

0 are known at time k [4]. This
theoretical construct implies that f and f̃ result in the same
set of transmission instants for a given system. In particular,
if the optimal control policy for the system with scheduling
criterion f is denoted g∗ , and the optimal certainty equivalent
control policy for the system with scheduling criterion f̃
is denoted gCE , we show that the system {f̃ , gCE} is not an
equivalent replacement for the system with {f, g∗}. We begin
with a definition of an equivalent system.

Equivalent System: In [7], Witsenhausen notes that two
designs g and galt are equivalent when they result in the same
control signals for a given set of primitive random variables
ω, as this implies that the joint distribution of all system
variables is the same with either design.
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In the context of our problem, we define equivalent
systems, in the sense of Witsenhausen, as

Definition 3: An equivalent control design geq for the
optimal controller g∗ , which minimizes the cost criterion (4)
for the system defined by (1)–(3), satisfies the equivalence
relationship given by u∗ = S(ω, g∗) = Seq(ω, geq), where
the relations S and Seq can be obtained by recursive substi-
tution for the control policies g∗ and geq , respectively.

Due to the dual effect, the optimal control action, given by
the design g∗ , takes on two roles. One, to control the plant,
and the other, to probe the plant state which could result
in an improved estimate [8],[12] and [13]. In the certainty
equivalent setup, the probing action cannot be implemented
due to the lack of a dual effect. The resulting control actions
will not remain the same, i.e. gCE does not belong to the class
of equivalent controllers such as geq . Let {P, f̄ , ḡ} denote the
system (1)–(3), with f̄ as the given scheduler and ḡ as the
optimal controller for the cost criterion (4) applied to this
system. We now observe the following result.

Theorem 3: For two schedulers f , given by (2) and f̃ ,
given by (7), which result in the same schedules for the
system (1)–(3), {P, f̃ , gCE} is not an equivalent system to
{P, f, g∗}.

Proof: Definition 3 requires the resulting control signals
from g∗ and gCE to be equal. We show that this is not possible.
Solving the backward recursion as we did in the proof of
theorem 2, we find that VN and VN−1 for both systems have
a solution of the form (9), with SN = Q0 and sN = 0, and
SN−1 and sN−1 given by (11) with k = N − 1. However,
at time N − 2, the cost-to-go VN−2 results in different
minimization problems for the two systems because of the
dual effect in {P, f, g∗}.

For the system {P, f̃ , gCE}, due to its certainty equivalent
property, the optimal control signal uCE

N−2 is obtained by
minimizing VN−2 over uCE

N−2, to get

∂VN−2

∂uCE
N−2

= 2uCET
N−2(Q2 +BTSN−1B)

+ 2x̂TN−2|N−2A
TSN−1B = 0

(12)

However, the system {P, f, g∗} is not certainty equivalent,
and the optimal control signal u∗N−2 can be obtained by
solving

∂VN−2

∂u∗N−2

= 2u∗TN−2(Q2 +BTSN−1B) + 2x̂TN−2|N−2A
TSN−1B

+
∂

∂u∗N−2

(
tr{ATSNB(Q2 +BTSNB)−1BTSNA

· E[PN−1|N−1 |I
C

N−2]}
)

= 0 (13)

This is obtained by substituting the solution to the function
VN−1 into the minimization problem at N − 2. From Theo-
rem 1, we know that the additional term in (13) is not zero.
Due to this term, the solutions uCE

N−2 and u∗N−2 need not
be equal. From this point on, the cost-to-go for the optimal
control policy g∗ does not have a solution of the form given
by (9). Hence, the control signals {uCE}N−3

0 and {u∗}N−3
0 are

not equal and the joint distribution of all system variables can

be quite different for schedulers f and f̃ . Thus, the described
transformation of the scheduling criterion does not result in
an equivalent class construction.

D. Estimator

In this section, we provide additional constraints on the
scheduler that simplify the estimator considerably. Note that
the estimation error is reset to zero with every successful
transmission. Consider one such reset instant, a time k such
that δk = 1. The state is sent across the network, yk = xk,
so the estimate x̂k|k = xk. A suitable control signal uk is
found and applied to the plant, which results in the next state
xk+1. Now, the scheduler can generate one of two outcomes.
We consider each in detail below:

a) δk+1 = 0: We need an estimate of wk. We use the
scheduler output as a coarse quantized measurement to
generate this, as follows:

x̂k+1|k+1 = E[xk+1|I
C
k+1, δk+1 = 0]

= Axk +Buk + E[wk|f̀ (wk) = 0] (14)

x̃k+1|k+1 , xk+1 − x̂k+1|k+1 = wk − E[wk|f̀ (wk) = 0]

where, f̀ (wk) ≡ f (Axk+Buk+wk|xk,uk).
b) δk+1 = 1: There is no estimation error as x̂k+1|k+1 =
xk+1 and the estimator is reset.

We use the transformation to f̀ (14), as it does not affect the
control law outcome uk0 . This transformation is not intended
to remove any dual effect, as the dual effect has resulted in
the packet being sent or not, i.e., in the value of δk+1. Once
δk+1 is known, the transformation merely serves to remove
the known variables from the expression.

To see this more clearly, we look at the next time instant.
So, now a signal uk+1 is generated, and applied to the plant.
We note that xk+2 = A2xk + ABuk + Buk+1 + Awk +
wk+1. The state xk+2 is either sent to the controller or not
depending on the scheduler outcome δk+2. Again, we look
at both cases:

i) δk+2 = 0: We now need to estimate Awk +wk+1, as
the rest is completely known from xk+2. We use both
scheduler outputs δk+1 and δk+2 to generate an estimate
of the unknown variables as

x̂k+2|k+2 = A2xk +ABuk +Buk+1

+ E[Awk + wk+1|f̀ (wk) = 0, f̀ (Awk+wk+1) = 0]

x̃k+2|k+2 = Awk + wk+1

− E[Awk + wk+1|f̀ (wk) = 0, f̀ (Awk+wk+1) = 0]

ii) δk+2 = 1: There is no estimation error as x̂k+2|k+2 =
xk+2 and the estimator is reset.

This process can be continued recursively through a non-
transmission burst, until finally a measurement is received
and the estimation error is reset to zero. Thus, the estimate
at any time k is given by

x̂k|k =



xk δk = 1

Ak−τkxτk +

k−τk∑
s=1

As−1Buk−s

+ E[

k−τk∑
s=1

As−1wk−s|f̀k, .., f̀τk+1 = 0]

δk = 0
(15)
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where τk is the time index of the last received mea-
surement at time k and

∑t−τt
s=1 A

s−1wt−s are the ar-
guments of f̀t. Note that the computation of the term
E[
∑k−τk
s=1 As−1wk−s|f̀k, .., f̀τk+1 = 0] is non-trivial for a

burst of non-transmissions of length greater than one, as
the quantized noise is not Gaussian. As a sub-optimal, but
simplified approach, the scheduling criterion at any time k
can be chosen as a symmetric function of the argument∑k−τk
s=1 As−1wk−s to obtain a zero mean term from the

quantized noise when there is no transmission. Then, the
estimate is easy to compute and a certainty equivalent control
can be applied, as observed in the following proposition.

Proposition 4: For the system (1)–(4), choosing the
scheduling criterion to be a symmetric function of the argu-
ment

∑k−τk
s=1 As−1wk−s results in a computationally simple

estimator and an optimal CE controller.

IV. A 2-STEP HORIZON EXAMPLE
We now look at a simple example to see the computational

difficulties in identifying optimal estimates and controls for
a system with a state-based scheduler in the closed loop.
We also show that for an equivalent scheduler such as f̃ in
Section III-C, which is free of a dual effect, the entire plant
is altered, so the equivalence construction does not work.

For this example, we consider a scalar plant, given by
xk+1 = axk+buk+wk, with a, b ∈ R and x0, wk ∼ N (0, 1).
The packet is scheduled for transmission when xk ≥ 0.5. The
controllers are designed to minimize the LQG cost (4), for a
horizon of two steps, i.e., N = 2, and with Q0, Q1, Q2 ∈ R.
In the first subsection, we derive the optimal controller for
the scheduler with dual effect. Then, for the same schedule,
in the second subsection, we define the certainty equivalent
controller, assuming that an equivalent scheduler has been
designed without a dual effect. We do not discuss the design
of the equivalent scheduler as it is a theoretical construct,
which sometimes permits a simplification of the problem.
We finally compare the resulting control actions and show
that they are not the same, and thus, the equivalent scheduler
does not simplify the controller design in our problem.

A. Optimal Controller
We first derive the estimation error covariances P0|0 and

P1|1, as these are used in the derivation of the optimal control
signals u0 and u1. From (15), we get

x̂0|0 =

{
x0 δ0 = 1
E[x0|x0 < 0.5] δ0 = 0

As x0 ∼ N (0, 1), we can find the expected value

x̄δ0 := E[x0|x0 < 0.5] =
∫ 0.5

−∞
xφxδ0(x)dx

where φxδ0 is the conditional probability distribution func-
tion (pdf) of x0, conditioned on x0 < 0.5. Thus, φxδ0(x) =
φx0(x)/Pr(x0 < 0.5), where φx0 is the pdf of x0. The
probability of a non-transmission is given by

Pr(x0 < 0.5) =
∫ 0.5

−∞
φx0(x)dx

The estimation error x̃0|0 is non-zero only when δ0 = 0, and
is given by x0 − x̄δ0. The corresponding estimation error
covariance P0|0 = Rx̃0 , which is given by

Rx̃0 = E[(x0 − x̄δ0)2|x0 < 0.5] =

∫ 0.5−x̄δ0

−∞
x2φxδ0(x+ x̄δ0)dx

where, the pdf of x̃0|0 is φx̃0(x) = φxδ0(x+ x̄δ0).
Let e1 denote the unknown part of x1 before y1 is received:

e1 =

{
w0 δ0 = 1
ax0 + w0 δ0 = 0

φe(ε) =

{
φw0(ε) δ0 = 1
φeδ0(ε) δ0 = 0

where φe is the pdf of e1. The variable e1 is the sum of two
random variables if δ0 = 0, and its pdf is denoted φeδ0 , and
given by

φeδ0(ε) =
∫ 0.5

−∞
φxδ0(x)φw0(ε− ax)dx

=
e−ε

2/2(1+a2)√
2π(1 + a2)

Pr(t < 1+a2−2aε
2
√

1+a2 )

Pr(x0 < 0.5)


where, t ∼ N (0, 1). Then, at the next time instant, we get

x̂1|1 =


x1 δ1 = 1{
ax0 + bu0 + w̄0 δ0 = 1
bu0 + ēδ0 δ0 = 0

δ1 = 0

As w0 ∼ N (0, 1), we can find the expected value

w̄0 = E[w0|w0 < 0.5−ax0−bu0] =
∫ 0.5−ax0−bu0

−∞
wφw0(w)dw

where φw0 is the pdf of w0. Similarly, using the expression
for φeδ0 , we can derive

ēδ0 = E[ax0 + w0|x0 < 0.5, ax0 + w0 < 0.5− bu0]

=
1

Pr(e1 < 0.5− bu0)

∫ 0.5−bu0

−∞
εφeδ0(ε)dε

where Pr(e1 < 0.5− bu0) is the probability of no transmis-
sion at time k = 1. We know that

Pr(e1 < 0.5− bu0) =
∫ 0.5−bu0

−∞
φeδ0(ε)dε

We now define ẽ1 as the error in estimating the term e1 after
y1 arrives, with pdf φẽ, so that

ẽ1 =

{
w0 − w̄0 δ0 = 1
ax0 + w0 − ēδ0 δ0 = 0

φẽ(ε) =

{
φw̃(ε+ w̄0|w0 < 0.5− ax0 − bu0) δ0 = 1
φeδ0(ε+ ēδ0|e1 < 0.5− bu0) δ0 = 0

Now, the estimation error variance P1|1 = Re1 when δ1 =
0, and zero otherwise. Here, Re1 = E[ẽ2

1|δ1 = 0] is given by

Re1 =


∫ 0.5−ax0−bu0−w̄0

−∞ w2 φw0 (w+w̄0)

Pr(w0<0.5−ax0−bu0)dw δ0 = 1∫ 0.5−bu0−ēδ0

−∞ ε2 φδ0(ε+ēδ0)
Pr(e1<0.5−bu0)dε δ0 = 0
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To solve for the optimal control signals, we use V1 and
V0 from (8). Using the principles of dynamic programming,
we find the u1 that minimizes V1 to be

u1 = − abQ0

Q2 + b2Q0
x̂1|1 (16)

Substituting for u1 in the above expression for V1, we get

V1 = E[x2
1S1 + tr{ a2Q2

0b
2

Q2 + b2Q0
P1|1}|I

C

1] + tr{Q0Rw}

where S1 = Q1 + a2Q0 − a2Q2
0b

2

Q2+b2Q0
. To derive V0, we need

to find the expected value E[P1|1|I
C

0]. From the definition of
P1|1, we find that E[P1|1|I

C

0] = Pr(δ1 = 0|IC

0) E[Re1 |I
C

0].
Then, we can find u0 that minimizes V0, by solving

∂V0

∂u0
=2u0(Q2 + b2S1) + 2x̂0|0abS1

+
a2Q2

0b
2

Q2 + b2Q0
· ∂

∂u0

(
E[P1|1|I

C

0]
)

= 0
(17)

This can be simplified using the expression for Re1 , to get

∂V0

∂u0
= 2u0(Q2 + b2S1) + 2x̂0|0abS1 −

a2Q2
0b

2

Q2 + b2Q0
K = 0 ,

where K = b(w0,max − w̄0)2φw0(w0,max) when δ0 = 1
and K = b(emax − ēδ0)2φeδ0(emax) when δ0 = 0. In these
expressions, w0,max = 0.5−ax0−bu0 and emax = 0.5−bu0.
The final equation is obtained using Leibnitz rule. Solving
these equations give the optimal u0.

B. CE Controller

For the same scheduler outcomes δ0, δ1 obtained through
an equivalent scheduler which has no dual effect, the cer-
tainty equivalent controller gives us the control signals

u1 = − AbQ0

Q2 + b2Q0
x̂1|1 , u0 = − AbS1

Q2 + b2S1
x̂0|0 (18)

Note that u1 is found by minimizing V1, which results in the
same expression as for the optimal controller (16). However,
u0 for the CE controller is obtained by solving the equation

2u0(Q2 + b2S1) + 2x̂0|0abS1 = 0 (19)

C. Discussion

A comparison of the control signals for the CE controller
(18) with u1 and u0 obtained in (16) and (17), shows that
the signal u1 remains the same. However, u0 is different,
and displays a dual effect in the optimal controller. From
(19), it is clear that the additional term in (17) alters the
solution for the optimal controller. This observation can be
explained as follows. In a controller with a dual effect, the
control signal can be chosen to probe the plant state in order
to improve the quality of the estimate. However, there is no
motive in improving the estimate in a one-step optimization
process. Thus, u1 is the same for both controllers. When the
optimization is performed over two steps, a probing effect in
the first step can improve the estimate and the corresponding

control applied in the next step. Thus, u0 is different in the
optimal controller for a state-based scheduler.

This example shows us that even the same schedule can
result in a different control sequence for a system without a
dual effect. Thus, an equivalent construction for the scheduler
does not result in an equivalent system in our setup.

V. CONCLUSION
We examined the design of an optimal controller with a

state-based scheduler in the closed loop. The state dependent
scheduler permits a probe of the state by the control signal
to effect an improvement in the future estimation error, and
thus the system exhibits a dual effect. This dual effect does
not exist in a system where the arguments of the scheduling
criterion are independent of the past control actions, but this
system is not equivalent to the original system even if the
resulting schedules are similar. Thus, certainty equivalence
can be achieved at the cost of optimality in this problem. We
also discussed a structure for the scheduler, and constraints
on the scheduling criterion which simplified computations
for this problem.
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