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Abstract— We consider the problem of robust stability anal-
ysis for feedback interconnections of causal linear systems that
are potentially time-varying with unbounded gain over the
space of finite-energy inputs. To this end, a combination of ν-
gap metric and integral-quadratic-constraint based analysis is
employed. The main results are developed in an abstract setting
using generalized Wiener-Hopf and Hankel operators and the
Fredholm index. Underlying assumptions are then verified for
two important classes of system: multiplication by constantly
proper Callier-Desoer transfer functions; and stabilizable and
detectable finite-dimensional state-space systems with coeffi-
cients of bounded and continuous variation across time.

Index Terms— Feedback, robust stability, integral quadratic
constraints, ν-gap metric, time-varying linear systems

I. INTRODUCTION

Recent work [16], [6] considers the problem of struc-

tured robustness analysis for feedback interconnections of

transfer functions, via a combination of ν-gap metric [21]

and integral-quadratic-constraints (IQCs) [18] based analysis.

Importantly, the use of IQCs to characterize the elements of

the interconnection permits exploitation of structure, beyond

small gain and passivity. On the other hand, ν-gap metric

based analysis facilitates the direct accommodation of po-

tentially unstable transfer functions in the interconnection.

The main objective of this paper is to extend the results

of [16], [6] to accommodate feedback interconnections of

causal linear time-varying systems, including those without

bounded gain over the space of finite-energy input signals.

Towards this end, an abstract framework is developed in

terms of generalized Wiener-Hopf and Hankel operators

which are defined with respect to bounded linear operators

over doubly-infinite time. Eventually, a ν-gap measure of

distance is established in terms of the Fredholm index of

a Wiener-Hopf operator associated with a composition of

normalized coprime representations of the system graphs

and the compactness of a corresponding Hankel operator.

Together, these generalize the well-known winding number

condition used for the time-invariant case [21], [6]. In the

development, the normalized representations of the graphs

are assumed to exist on the basis that this is true for important

classes of linear system. These include: time-invariant map-

pings corresponding to multiplication by constantly proper
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Callier-Desoer transfer functions (see also [6]); and linear

time-varying systems that admit stabilizable and detectable

finite-dimensional state-space realizations with coefficients

of bounded and continuous variation across time, as recently

shown in [19].

As in [6], the main result provides a sufficient condition

for the robust stability of a family of potentially time-varying

feedback interconnections, parametrised in terms of (i) a

path of corresponding open-loop systems that is assumed to

be continuous with respect to the ν-gap measure of distance

introduced; and (ii) the satisfaction of an IQC along this

path. Its development involves consideration of behaviour

over the doubly-infinite time axis, as also arises in the purely

time-invariant case. In keeping with the time-varying setting

of the paper, we take care to not attribute special significance

to any particular time dividing the past and the future, while

still maintaining a handle on the causality of inverses via a

condition on the corresponding instantaneous gains. Indeed,

these points differentiate the work presented here from pre-

vious studies of general linear feedback interconnections via

the gap metric, where behaviour is considered over a fixed

positive time index set, and causality is either not treated at

all, or only as an after-thought; see e.g. [11], [7].

The paper evolves along the following line. First some

preliminaries are developed in Section II, including the gen-

eralized Wiener-Hopf and Hankel operator framework. The

stability of feedback interconnection of possible unbounded

but causal linear systems is then considered in Section III,

in terms of causal and causally invertible normalized rep-

resentations of the system graphs. Section IV provides an

initial definition of a ν-gap metric for time-varying systems

and the main robust stability result. An alternative, more

familiar, formulation of this is then established in Section V,

under an assumption that the Hankel operator associated with

normalized left representations of the system graphs are com-

pact. In Section VI, all assumptions underpinning the abstract

development are then verified for the aforementioned classes

of system. Finally, some illustrative examples involving the

application of the main result are presented.

We refer to [15] for proofs of the results in this paper.

II. PRELIMINARIES

A. Basic Notation and Operator Theory

The real and complex numbers are denoted R and C.

The transpose of a matrix M ∈ R
p×m is denoted MT , the

complex conjugate transpose of an M ∈ C
p×m is denoted

M∗, and the largest and smallest singular values of M in

either case are denoted σmax(M) and σmin(M), respectively.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3734



Let H1,H2 be Hilbert spaces and X : H1 → H2 be a

bounded linear operator. The Hilbert adjoint X
∗ : H2 → H1

is uniquely defined by the equation

〈Xw, v〉H2
= 〈w, X

∗v〉H1
∀w ∈ H1 and v ∈ H2.

It follows that img(X)⊥ = ker(X∗) and ker(X)⊥ =
cl img(X∗), where ⊥ denotes the orthogonal complement

and cl the closure of a subspace; see e.g. [17, Theorem 3].

Next we make note of some useful gain relations. Given

bounded X,X1 : H1 → H2 and X2 : H2 → H3, let

γ(X) := sup
‖w‖H1

=1

‖Xw‖H2
and

γ(X) := inf
‖w‖H1

=1
‖Xw‖H2

,

which satisfy the relations γ(X∗) = γ(X), γ(X∗
X) =

γ(X)2,

γ(X2X1) ≤ γ(X2)γ(X1), γ(X2X1) ≥ γ(X2)γ(X1)

and, if γ(X) > 0, then γ(X∗) = γ(X). When X has a

bounded inverse we have γ(X−1) = 1/γ(X). Finally, if

[ X
Y

] : H1 → H2 × H3 is such that X
∗
X + Y

∗
Y = I (i.e.

it is an isometry) then γ(Y)2 = 1 − γ(X)2; similarly, if[
X Y

]
: H1 × H2 → H3 is such that XX

∗ + YY
∗ = I

(i.e. it is a co-isometry) then γ(Y)2 = 1 − γ(X)2; see e.g.

[5, Lemma 3].

In this paper, Fredholm operators play an important role.

Indeed, the associated Fredholm index is eventually used to

define a ν-gap measure of distance between systems.

Definition 1: A bounded linear operator X : H1 → H2

from a Hilbert space H1 to a Hilbert space H2 is of Fredholm

type if both dim ker(X) and codim img(X) = dim coker(X)
are finite, where dim denotes the dimension of a subspace

and coker denotes the quotient space of the codomain by

the image; note img(X) is necessarily closed. The Fredholm

index is defined to be

ind(X) = dim ker(X) − codim img(X)
Lemma 1: Let X,X1 : H1 → H2 and X2 : H2 → H3 be

Fredholm operators. Then:

(i) ind(X∗) = −ind(X);
(ii) ind(X2X1) = ind(X2) + ind(X1);

(iii) if Y : H1 → H2 is a bounded linear operator such

that γ(X) > γ(Y), we have ind(X + Y) = ind(X);
and

(iv) if K : H1 → H2 is a compact linear operator, we have

ind(X + K) = ind(X).
In what follows, operators mappings between time-domain

signal spaces are of central concern. For any time interval

X ⊆ T := (−∞,∞) = R, the notation L m
2 (X) is used for

the Hilbert space of square integrable R
m-valued functions

with support on X, inner product

〈w, v〉
L2(X) =

∫

X

w(t)T v(t)dt

and norm ‖w‖L2(X) = 〈w, w〉1/2
L2(X). We sometimes suppress

the spatial dimension m from the notation.

When studying feedback interconnection of linear map-

pings that act causally on subspaces of L2(T) it is convenient

to split the doubly-infinite time axis in to the past T− =
(−∞, t0) and future T+ = [t0,∞) relative to a t0 ∈ T; see

Section III. Defining v(t) = 0 when t < t0 for v ∈ L2(T+),
and v(t) = 0 when t ≥ t0 for L2(T−), we get the useful

subset inclusions L2(T−),L2(T+) ⊂ L2(T) and the direct

sum decomposition L2(T−) ⊕ L2(T+) = L2(T).
The frequency domain space L m

2 (jR) comprises the

Fourier transforms of signals in L m
2 (T). The time and

frequency domain spaces are isometrically isomorphic; i.e.

‖v‖L2(T) = ‖v̂‖L2(jR), where v̂ denotes the Fourier trans-

form of v. Finally, we let

L
m×m
∞ (jR) = {Π : jR → C

m×m : ‖Π‖∞ < ∞},
where ‖Π‖∞ = supω∈T

σmax(Π(jω)). In developing the

main stability result in Section IV we use quadratic forms

defined by a frequency-dependent multiplier Π ∈ L m×m
∞ as

〈v̂, Πv̂〉
L2(jR) =

∫ ∞

−∞

v̂(jω)∗Π(jω)v̂(jω)dω.

This satisfies the bound 〈v̂, Πv̂〉
L2(jR) ≤ ‖Π‖∞‖v̂‖2

L2(jR).

Let M : L m
2 (T) → L

p
2 (T) be a bounded linear operator.

Its restrictions to L m
2 (T+) and L m

2 (T−) are denoted by

M|L m
2 (T+) and M|L m

2 (T−), respectively. M is said to be

causal if

PT M(I − PT ) = 0 ∀T ∈ T,

where PT denotes the truncation operator defined by

(PT v)(t) = v(t), t ≤ T and (PT v)(t) = 0, t ≥ T
for any v ∈ L m

2 (T), which is a projection; in this case,

img(M|L m
2 (T+)) ⊂ L

p
2 (T+). M is called anti-causal if

(I − PT )MPT = 0 ∀T ∈ T;

in this case, img(M|L m
2 (T−)) ⊂ L

p
2 (T−). Note that M is

causal if, and only if, M
∗ is anti-causal.

B. Wiener-Hopf and Hankel Operators

In this section we introduce some preliminary results on

generalized Wiener-Hopf and Hankel operators. These are

used in the proof of the main robust stability result.

Definition 2 (Wiener-Hopf and Hankel operators): Let

M : L m
2 (T) → L

p
2 (T) be a bounded linear operator

and given a t0 ∈ T, let P+ denote the projection

from L
p
2 (T) to L

p
2 (T+) defined by (P+v)(t) = v(t)

when t ∈ T+ = [t0,∞) and (P+v)(t) = 0 when

t ∈ T− = (−∞, t0). Finally, let P− := I − P+. We

associate with M:

1) the Wiener-Hopf operator TM : L m
2 (T+) →

L
p
2 (T+) defined as TM = P+M|L2(T+);

2) the forward Hankel operator H
+−
M

: L m
2 (T−) →

L
p
2 (T+) defined as H

+−
M

= P+M|L2(T−); and

3) the backward Hankel operator H
−+
M

: L m
2 (T+) →

L
p
2 (T−) defined as H

−+
M

= P−M|L2(T+).

Remark 1: Note that the projections and, in general, the

Wiener-Hopf and Hankel operators defined above all depend

on the choice of t0 ∈ T. For notational convenience this
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dependence is left implicit. Reference to the corresponding

t0 is made where necessary, often implicitly (again) via the

intervals T− = (−∞, t0] and T+ = [t0,∞).
The following result establishes some basic properties of

the generalised Wiener-Hopf and Hankel operators.

Lemma 2: Let M : L m
2 (T) → L

p
2 (T) be a bounded

linear operator. For any t0 ∈ T, we have

(i) T
∗
M

= TM∗ and

(ii) (H+−
M

)∗ = H
−+
M∗ and thus, H

−+
M

= (H+−
M∗)∗.

Lemma 3: For any t0 ∈ T, the Wiener-Hopf operator

TM : L n
2 (T+) → L n

2 (T+) associated with a bounded

linear operator M : L n
2 (T) → L n

2 (T) has a bounded

inverse if, and only if,

(i) γ(TM) > 0 and

(ii) ind(TM) = 0.

In the applications of this paper we need to establish con-

ditions under which the inverse of a Wiener-Hopf operator

is causal. To this end, the following results prove useful.

Lemma 4: Let M,M1 : L m
2 (T) → L

p
2 (T) and M2 :

L
p
2 (T) → L

q
2 (T) be bounded linear operators. The follow-

ing properties hold for any t0 ∈ T:

(i) If M is causal then TM = M|L2(T+) and TM is

causal in the sense that PT TM(I − PT ) = 0 for all

T > t0;

(ii) TM2M1
= TM2

TM1
+ H

+−
M2

H
−+
M1

;

(a) if M1 is causal, then TM2M1
= TM2

TM1
; and

(b) if M1,M2 are both causal, then TM2M1
=

TM2
TM1

= M2M1|L2(T+).

Definition 3: A bounded causal M : L n
2 (T) → L n

2 (T)
is said to have non-singular instantaneous gain if

ρI(M)
def
= inf

t′∈T

inf
δt>0

γ((Pt′+δt − Pt′)M(Pt′+δt − Pt′)) > 0.

Lemma 5: Suppose a bounded causal operator M :
L n

2 (T) → L n
2 (T) has non-singular instantaneous gain.

Then, for each t0 ∈ T, the Wiener-Hopf operator TM

is injective and the corresponding inverse map T
−1
M

:
img(TM) → L n

2 (T+) is causal in the sense that

PT T
−1
M

ṽ = 0 ∀ṽ ∈ {v : v ∈ img(TM); PT v = 0} and

all T > t0.

The above lemma can be strengthened when the Wiener-

Hopf operator has a bounded inverse, as summarised below.

Lemma 6: For a bounded causal operator M :
L n

2 (T) → L n
2 (T) suppose the Wiener-Hopf operator TM :

L n
2 (T+) → L n

2 (T+) has a bounded inverse for all t0 ∈ T.

Then T
−1
M

is causal if, and only if, M has non-singular

instantaneous gain.

Finally, in developing the main stability result we exploit

particular relationships between the gains

γ(M) = sup
‖w‖L n

2 (T)=1

‖Mw‖L n
2 (T),

γ(M) = inf
‖w‖L n

2 (T)=1

‖Mw‖L n
2 (T),

γ(TM) = sup
‖w‖L n

2 (T+)=1

‖TMw‖L n
2 (T+) and

γ(TM) = inf
‖w‖L n

2 (T+)=1

‖TMw‖L n
2 (T+).

Lemma 7: Suppose M : L n
2 (T) → L n

2 (T) is a bounded

linear operator. Then γ(TM) ≤ γ(M) and if in addition M

is causal we have γ(M) ≤ γ(TM).

III. MAIN FEEDBACK STABILITY CRITERION

Let linear operators H : dom(H) ⊂ L m
2 (T) → L

p
2 (T)

and ∆ : dom(∆) ⊂ L
p
2 (T) → L m

2 (T) be causal in the

following generalized sense:

PTGH ⊂ L
m+p
2 (T) ( resp. PTG′

∆ ⊂ L
m+p
2 (T) )

is a graph (resp. inverse graph) of a linear operator for all

T ∈ T,1 where

GH =

{[
e1

He1

]
: e1 ∈ dom(H); e2 = He1 ∈ L

p
2 (T)

}

(resp.

G′
∆ =

{[
∆e2

e2

]
: e2 ∈ dom(∆); e1 = ∆e2 ∈ L

m
2 (T)

}
)

is the graph of H (resp. inverse graph of ∆). Cor-

respondingly, img(H|dom(H)∩L m
2 (T+)) ⊂ L

p
2 (T+) and

img(∆|dom(∆)∩L
p
2 (T+)) ⊂ L m

2 (T+) for all t0 ∈ T; recall

that T+ := [t0,∞).
Consider the feedback interconnection [∆,H] defined by

{
e1 = −∆e2 + r1

e2 = −He1 + r2.
(1)

Definition 4 (Feedback Stability): We say that the inter-

connection (1) is stable if, for all t0 ∈ T,

Ft0 :=

[
I ∆

H I

]∣∣∣∣
(dom(H)×dom(∆))∩L

m+p
2 (T+)

(2)

has a bounded and causal inverse.

Towards characterizing the existence of a bounded causal

inverse

F
−1
t0 =

[
r1

r2

]
∈ L

m+p
2 (T+)

7→
[
e1

e2

]
∈ L

m+p
2 (T+) ∩ (dom(H) × dom(∆)),

we now assume that the graphs of H and ∆ admit

normalized right and left coprime representations; this

is known to be the case for various classes of lin-

ear systems, including time-invariant systems with con-

stantly proper transfer functions in the Callier-Desoer al-

gebra [6] and time-varying systems with stabilizable and

detectable finite-dimensional state-space realisations [19],

for example. In particular, we assume the existence of

bounded causal operators V,U, Ṽ, Ũ,XH,YH, X̃H, ỸH

and N,M, Ñ, M̃,X∆,Y∆, X̃∆, Ỹ∆, defined on the whole

of L2(T), such that the following properties hold:

(A1) the double Bezout identity

[
XH YH

−Ũ Ṽ

][
V −ỸH

U X̃H

]
= I;

1A subspace G is a graph of linear operator if
`

0
w

´

∈ G implies w = 0,
and an inverse graph if ( v

0 ) ∈ G implies v = 0.
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(A2) the double Bezout identity

[
Y∆ X∆

M̃ −Ñ

] [
N X̃∆

M −Ỹ∆

]
= I;

(B1) the graph symbols

GH =

[
V

U

]
and G̃H =

[
−

eU eV
]

are normalized – i.e. G
∗
H
GH = I and G̃HG̃

∗
H

= I;

(B2) the (inverse) graph symbols

Γ∆ =

[
N

M

]
and Γ̃∆ =

[
−

fM eN
]

are normalized – i.e. Γ
∗
∆

Γ∆ = I and Γ̃∆Γ̃
∗
∆

= I;

(C1) for every t0 ∈ T we have

G+
H

:= GH ∩ L2(T+)

= img(GH|L2(T+)) = ker(G̃H|L2(T+)).

(C2) for every t0 ∈ T we have

G′+
∆

:= G′
∆ ∩ L2(T+)

= img(Γ∆|L2(T+)) = ker(Γ̃∆|L2(T+)).

(D1) V and Ṽ have non-singular instantaneous gains; and

(D2) M and M̃ have non-singular instantaneous gains.

Note that the graph symbols just defined are causal and

that by properties (A1), (A2) and Lemma 4, the following

additional properties hold: G+
H

= img(TGH
) = ker(T eGH

);

TeGHGH
= TeGH

TGH
= 0;

TGH
has a causal left inverse T[XH YH ]; TeGH

has a causal

right inverse T[−eY ∗

H
eX∗

H
]∗ ; G′+

∆
= img(TΓ∆

) = ker(TeΓ∆
);

TeΓ∆Γ∆
= TeΓ∆

TΓ∆
= 0;

TΓ∆
has a causal left inverse T[Y∆ X∆ ]; and TeΓ∆

has a

causal right inverse T[ eX∗

∆
−eY ∗

∆
]∗ .

We are now in a position to characterize the existence

of a bounded inverse for Ft0 ; causality follows under an

additional assumption as described after the following result.

Lemma 8: For any t0 ∈ T the operator Ft0 in (2) has

bounded inverse if, and only if, TeGHΓ∆
has a bounded

inverse. Moreover, in this case,

F
−1
t0 =

[
−I 0
0 I

]
TΓ∆

(TeGHΓ∆
)−1

TeGH
+

[
I 0
0 0

]
.

By the formula for F
−1
t0 in Lemma 8 and the properties that

TΓ∆
has a causal left inverse and TeGH

has a causal right

inverse, it is immediate that F
−1
t0 is causal if, and only if,

(TeGHΓ∆
)−1 is causal. This leads to the following feedback

stability result.

Lemma 9: Suppose G̃HΓ∆ has non-singular instanta-

neous gain. Then the feedback interconnection [∆,H] is

stable if, and only if, for all t0 ∈ T,

(i) γ(TeGHΓ∆
) > 0 and

(ii) ind(TeGHΓ∆
) = 0.

To this point the normalization properties (B1) and (B2)

have not been used. These lead to the following identities

on L2(T), which play an important role in establishing the

main robust stability result of the next section:
[
G̃H

G
∗
H

] [
G̃

∗
H

GH

]
=

[
I 0
0 I

]
(3)

and

G̃
∗
HG̃H + GHG

∗
H = I. (4)

The last property follows from (3) by an argument used in

the proof of [5, Proposition 4]. Indeed, from (3) we have

img

([
G̃H

G
∗
H

])
= L

p+m
2 (T)

and by the structure of this that

ker

([
G̃H

G
∗
H

])
= ker(G̃H) ∩ ker(G∗

H)

= ker(G̃H) ∩ img(GH)⊥ = {0},

which together imply that

[
G̃H

G
∗
H

]
is boundedly invertible,

whereby (4) holds.

IV. ROBUST STABILITY ANALYSIS (MAIN RESULT)

Consider a family of feedback interconnections of the

form (1), parametrized by Hθ with θ ∈ [0, 1]. We let

H1 = H so that θ = 1 corresponds to the system of interest.

Furthermore, as in the preceding section, we assume that

each Hθ, θ ∈ [0, 1], has normalized graph symbols GHθ

and G̃Hθ
satisfying the properties described above, so that

the following is well defined for a, b ∈ [0, 1]:

δν(Ha,Hb) :=

{
γ(G̃Ha

GHb
) if G̃Ha

G̃
∗
Hb

∈ N
1 otherwise

, (5)

where

N = {M : L
p
2 (T) → L

p
2 (T) : M has bounded inverse;

ind(TM) = 0 and H
−+
M

is compact}.∀ t0 ∈ T

The condition in (5) requires γ(G̃Ha
G̃

∗
Hb

) > 0 and

TeGHa
eG∗

Hb

to be Fredholm with ind(TeGHa
eG∗

Hb

) = 0. The

nature of δν(·, ·) is considered further in Section V.

Assumption 1: The path θ ∈ [0, 1] 7→ Hθ is continuous in

the following sense: for any η > 0, there exists δ > 0 such

that δν(Ha,Hb) ≤ η whenever |a − b| ≤ δ.

The main result below is formulated in terms of IQCs.

Specifically, given Π ∈ L
(p+m)×(p+m)
∞ (jR), we say Hθ

satisfies the strict IQC defined by Π (denoted H ∈ SIQC(Π))
when there exists ǫ > 0 such that

〈v̂, Πv̂〉
L2(jR) ≥ ǫ‖v̂‖2

L2(jR) ∀ v ∈ img(GHθ
) ⊂ L2(T),

where v̂ denotes the Fourier transform of v. Similarly, ∆

with normalized right graph symbol Γ∆ is said to satisfy

the complementary IQC (denoted ∆ ∈ IQCc(Π)) when

〈ŵ, Πŵ〉
L2(jR) ≤ 0∀w ∈ img(Γ∆) ⊂ L2(T).
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Assumption 2: for each θ ∈ [0, 1], G̃Hθ
Γ∆ has non-

singular instantaneous gain.

Theorem 1: Suppose Assumptions 1 and 2 hold. Then the

feedback interconnection [∆,H] in (1) is stable if

(i) [∆,H0] is stable and

(ii) there exists Π ∈ L
(p+m)×(p+m)
∞ (jR) such that:

(a) ∆ ∈ IQCc(Π); and

(b) Hθ ∈ SIQC(Π)∀ θ ∈ [0, 1].

V. AN ALTERNATIVE FORMULATION OF THE ν-GAP

In this section we consider the nature of the ν-gap defined

in (5), including an alternative formulation of it, under the

following assumption, which is known to hold for LTI sys-

tems with constantly proper transfer functions in the Callier-

Desoer algebra and LTV systems with finite-dimensional

state-space realisation; see the next section.

Assumption 3: For all a ∈ [0, 1], the Hankel operator

H
+−
eGHa

is compact.

The next result shows that δν(·, ·) as defined in (5)

under the above assumption has simpler and more familiar

formulations. The arguments employed in [21] can be used

to conclude that δν(·, ·) is a metric.

Proposition 1: Suppose Assumption 3 holds. Then

δν(Ha,Hb)=





γ(G̃Ha
GHb

) if γ(G̃Ha
G̃

∗
Hb

) > 0 and

ind(TeGHa
eG∗

Hb

) = 0∀t0 ∈ T

1 otherwise

,

(6)

where δν(·, ·) is defined in (5). Furthermore,

γ(G∗
Ha

GHb
) = γ(G̃Ha

G̃
∗
Hb

),

γ(G̃Ha
GHb

)2 = 1 − γ(G̃Ha
G̃

∗
Hb

)2 and

ind(TG∗

Ha
GHb

) = 0 ⇔ ind(TeGHa
eG∗

Hb

) = 0,

(7)

whereby

δν(Ha,Hb)=





γ(G̃Ha
GHb

) if γ(G∗
Ha

GHb
) > 0 and

ind(TG∗

Ha
GHb

) = 0∀t0 ∈ T

1 otherwise

.

VI. SYSTEM CLASSES

In this section we illustrate with some examples of systems

that satisfy the required properties.

A. The Callier Desoer Class of LTI Systems

We let Ap×m(β) be algebra of transfer functions obtained

as the Laplace transforms of the impulse response functions

(see [10], [9])

h(t) = hc(t)θ(t) +

∞∑

k=0

hkδ(t − τk),

where e−βthc(t) ∈ L
p×m
1 [0,∞) := {f : [0,∞) → R

p×m :∫ ∞

0
|fij | dt < ∞}, hk ∈ R

p×m, τ0 = 0, τk > 0, k ≥ 1,∑∞
k=0 e−βτk |hk| < ∞, θ(·) is the unit step function and δ(·)

is the Dirac distribution. For convenience let A := A(0).

To each H ∈ Ap×m we associate the causal time-domain

operator H : L m
2 (T+) → L

p
2 (T+) defined by

(Hv)(t) =

∫ t

t0

hc(t − τ)v(τ) +

t∑

k=0

hkv(t − τk).

This is bounded, with induced norm ‖H‖ =
supω∈R

σmax(H(jω)). The extension H : L m
2 (T) →

L
p
2 (T) is defined similarly, except that the lower

bound of the integral is now t0 = −∞. Finally, we

let Ap×m
− = {A×m(β) : β < 0} and Ap×m

cp,− be the subclass

of constantly proper transfer functions corresponding to

hk = 0 for k ≥ 1, which implies that the transfer functions

are constant at infinity.

The Callier-Desoer class Bp×m consists of transfer func-

tions where each element belongs to the quotient algebra

A−[A∞] and A∞ = {G ∈ A− : lim|s|→∞ σmin(G(s)) >
0}. Each transfer function from Bp×m has a normalized right

and left coprime factorization H = UV −1 = Ṽ −1Ũ , where

U, Ũ ∈ Ap×m
− , V ∈ Am×m

∞ , Ṽ ∈ Ap×p
∞ are such that

U(jω)∗U(jω) + V (jω)∗V (jω) = I,

Ũ(jω)Ũ(jω)∗ + Ṽ (jω)Ṽ (jω)∗ = I;

see [3], [4]. To H ∈ Bp×m we associated a causal time-

domain operator H : dom(H) ⊂ L m
2 (T+) → L

p
2 (T+),

with graph defined by

G+
H

=

{
v =

[
v1

v2

]
: v̂1 = V ŵ; v̂2 = Uŵ; ŵ ∈ e−jωt0H

m
2

}
,

where the explicit expression for the domain is

dom(H) = {v : v̂ = V ŵ; ŵ ∈ e−jωt0H
m

2 },

and the frequency domain space H m
2 comprises the Fourier

transforms of signals in L m
2 [0,∞). The operator H is

unbounded outside this domain of definition and therefore

regarded as an unstable system.

In order to define the ν-gap we use the subclass of con-

stantly proper transfer functions Bp×m
cp , where each matrix

element belongs to the quotient algebra Acp,−[Acp,∞] and

Acp,∞ = {G ∈ Acp,− : lim|s|→∞ σmin(G(s)) > 0}. Any

two H1,H2 ∈ Bp×m
cp have normalized right and left coprime

factorizations Hk = UkV −1
k = Ṽ −1

k Ũk, from which we can

define so-called right and left graph symbols

GHk
=

[
Vk

Uk

]
∈ A(p+m)×m

cp,− and

G̃Hk
=

[
−Ũk Ṽk

]
∈ Ap×(p×m)

cp,− .

The Hankel operator H
+−
eGHk

is compact by [9, Lemma 8.2.4].

So Assumption 3 holds. Therefore, by Proposition 1 the ν-

gap in (5) can be formulated as in (6), which in turn reduces

to

δν(H1,H2) =





γ(G̃H1
GH2

), γ(G̃H1
G̃∗

H2
) > 0 and

wno(G̃H1
G̃∗

H2
) = 0

1, otherwise
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where

γ(G̃H1
GH2

) = sup
ω∈T

σmax(G̃H1
GH2

)(jω)

γ(G̃H1
G̃∗

H2
) = inf

ω∈T

σmin(G̃H1
G̃∗

H2
)(jω)

and where the winding number is defined as

wno(G) = lim
ω→∞

arg(det(G(jω))) − arg(det(G(−jω)))

2π
.

The fact that the index is equal to the winding number is

well known; see e.g. [12, Chapter XII].

B. Finite Dimensional LTV Operators

Consider a time-varying linear system on the form

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t).
(8)

It is assumed that A,B,C,D are continuous and bounded

matrix valued functions

A : T → R
n×n, B : T → R

n×m,

C : T → R
p×n, D : T → R

p×m.

We let X(·) denote the invertible fundamental matrix

defined by the solution of dX
dt (t) = A(t)X(t) with X(t) = I

for t ∈ T, which exists by the assumptions on A(·); see

e.g. [2], [13]. It follows that the state transition matrix

ΦA(t, s) = X(t)X(s)−1 satisfies

d

dt
ΦA(t, s) = A(t)ΦA(t, s), ΦA(t, t) = I.

Definition 5: The continuous and bounded matrix func-

tion A : T → R
n×n defines an exponentially dichotomous

evolution with associated exponential dichotomy (projection)

P = P 2 ∈ R
n×n if there exist constants ρ > 0 and σ > 0

such that

‖X(t)PX(s)−1‖ ≤ ρe−σ(t−s) ∀ t ≥ s and

‖X(t)(I − P )X(s)−1‖ ≤ ρe−σ(s−t) ∀ s ≥ t.
This is equivalent to the following requirement: for each t0 ∈
T, there exist a projection Pt0(= X(t0)PX(t0)

−1) such that

‖ΦA(t, t0)Pt0ΦA(t0, s)‖ ≤ ρe−σ(t−s) ∀ t ≥ s and

‖ΦA(t, t0)(I − Pt0)ΦA(t0, s)‖ ≤ ρe−σ(s−t) ∀ s ≥ t,

which implies

img(Pt0) = {x ∈ R
n : ΦA(·, t0)x ∈ L

n
2 (T+)} and

ker(Pt0) = {x ∈ R
n : ΦA(−·, t0)x ∈ L

n
2 (T−)} .

Note that rankP = rankPt0 . If P = I , then A defines an

exponentially stable evolution.

When A defines an exponential dichotomy it follows

that the state space system in (8) can be interpreted as a

convolution operator M : L m
2 (T) → L

p
2 (T) defined by the

integral equation [13, Theorem 1.2.3]

(Mu)(t) =

∫ ∞

−∞

k(t, s)u(s)ds + D(t)u(t), (9)

where

k(t, s) =

{
C(t)X(t)PX(s)−1B(s), t ≥ s

−C(t)X(t)(I − P )X(s)−1B(s), s > t
;

the first case corresponds to the causal part of the operator

while the second case corresponds to the anti-casual part of

the operator. The class of all such operators is an algebra [13,

Theorem I.2.4]. The corresponding Wiener-Hopf operator is

defined by

(TMu)(t) =

∫ ∞

t0

k(t, s)u(s)ds + D(t)u(t),

where k(t, s) is defined as above. We notice that since the

state corresponds to

x(t) = ΦA(t, t0)Pt0

∫ t

t0

ΦA(t0, s)B(s)u(s)ds

− ΦA(t, t0)(I − Pt0)

∫ ∞

t

ΦA(t0, s)B(s)u(s)ds,

we have x(t0) ∈ Im(I − Pt0); i.e. x(t0) ∈ kerPt0 .

The operator in (9) is henceforth denoted in terms of the

state space realisation as

M =

[
A B
C D

]
.

In order to define the Fredholm index we use the inverse

dynamics, which has stabilizable and detectable state-space

representation

M
−1 =

[
A − BD−1C BD−1

−D−1C D−1

]
, (10)

where it is assumed that D−1 is uniformly bounded. If we

further assume the matrix A× := A − BD−1C has an

exponential dichotomy defined by the projection P×, then

the Fredholm index of TM can be computed as

ind(M) = rankP − rankP×

= dim ImP − dim ImP×

= dim kerP× − dim kerP ;

see [13, Theorem II.5.2].

The verification of upper and lower gain bounds must for

this class of operators be performed using optimal control

theory. Suppose γ(M) < γ̄. This implies that the cost

function

J(u) =

〈[
x
u

]
,
[
−CT C −CT D

−DT C γ̄2−DT D

] [
x
u

]〉

L2(T)

is strictly positive over all solutions (xT , uT )T ∈ L
n+m
2 (T)

of ẋ = Ax + Bu. Similarly γ(M) > γ if

J(u) =

〈[
x
u

]
,
[
−CT D−T D−1C −CT D−T D

−DT D−1C γ−2−D−T D−1

] [
x
u

]〉

L2(T)

is strictly positive over all solutions (xT , uT )T ∈ L
n+m
2 (T)

of ẋ = (A − BD−1C)x + BD−1u. Riccati theory for

verifying these conditions can be found in [14]. An alter-

native technique to estimate gain bounds is obtained using
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the integral operator formulation in (9). We may the use the

following result from [10].

Lemma 10: The integral operator in (9) satisfies

γ(M) ≤ √
γ1γ∞,

where

γ1 = sup
s∈R

∫ ∞

−∞

|k(t, s)|dt,

γ∞ = sup
t∈R

∫ ∞

−∞

|k(t, s)|ds.

Remark 2: Notice that both γ1 and γ∞ are bounded since

A defines an exponential dichotomy.

Now, without assuming that A defines an exponentially

dichotomous evolution, if the pairs (A,B) and (A,C) are

stabilizable and detectable, respectively, then from results

in [19] there exists normalized coprime representations of

the graph satisfying the properties identified in Section III;

see also [1], [20] where the same result is obtained under

stronger assumptions;

GH =

[
V

U

]
=




A + BF BR−1/2

C + DF DR−1/2

F R−1/2


 and

G̃H =
[
−Ũ Ṽ

]
=

[
A + LC −L B + LD

R̃−1/2C −R̃−1/2 R̃−1/2D

]
,

where

R = I + DT D, F = −R−1(DT C + BT X),

R̃ = I + DDT , L = −(BDT + Y CT )R̃−1,

and X = XT , respectively Y = Y T , are the exponentially

stabilizing solutions to the differential Riccati equations

Ẋ =X(A − BR−1DT C) + ((A − BR−1DT C)T X

− XBR−1BT X + CT R̃−1C, respectively

Ẏ =(A − BDT R̃−1C)Y + Y (A − BDT R̃−1C)T

− Y CT R̃−1CY + BR−1BT .

Indeed, any such time-varying system

»
A B

C D

–
may be as-

socited with a causal operator H : dom(H) ⊂ L m
2 (T+) →

L
p
2 (T+), with graph defined by

G+
H

=

{
v =

[
v1

v2

]
: v1 = Vw; v2 = Uw; w ∈ L2(T+)

}
,

where the explicit expression for the domain is

dom(H) = {v : v = Vw;w ∈ L
m
2 (T+)} ,

and U and V are defined as in the normalized right coprime

realization above.

The Hankel operator can be factorized as H
+−
eGH

= LCLB ,

where LC : R
n → L

p
2 (T+) and LB : L m

2 (T−) → R
n are

defined by

(LCx0)(t) = C(t)Φ(t, t0)x0 and

(LBv)(t) =

∫ t0

−∞

Φ(t0, s)v(s)ds.

Since both LC and LB have finite rank it follows that H
+−
eGH

is compact. Hence, Assumption 3 holds and therefore, by

Proposition 1 the ν-gap in (5) can be formulated as in (6),

which here reduces to

δν(H1,H2)

=





γ(G̃H1
GH2

), γ(G̃H1
G̃

∗
H2

) > 0 and

rankP eG1
eG∗

2
− rankP×

eG1
eG∗

2

= 0

1, otherwise,

where

G̃H1
GH2

=

[
A eG1G2

B eG1G2

CeG1G2
DeG1G2

]
,

G̃H1
G̃

∗
H2

=

[
A eG1

eG∗
2

B eG1
eG∗

2

CeG1
eG∗

2
DeG1

eG∗
2

]
,

and where P eG1
eG∗

2
and P×

eG1
eG∗

2

are the projections defining

the exponential dichotomies of A eG1G2
and A×

eG1
fG2

∗ =

A eG1
eG∗

2
− B eG1

eG∗
2
D−1

eG1
eG∗

2

CeG1
eG∗

2
, respectively. Bounds on

γ(G̃H1
GH2

) and γ(G̃H1
G̃

∗
H2

) can be verified using optimal

control techniques, as discussed above.

C. Interconnections of LTV and LTI Systems

The theory in the previous sections can be applied to

interconnections where an unstable system from the Callier

Desoer class is stabilized by a finite dimensional linear time-

varying system. We will here show that the assumption on

nonsingular instantaneous gain necessarily will be satisfied if

the interconnection is well-posed. The remaining conditions

can be verified using the results discussed in the previous

subsections.

Let H be defined by a transfer function from Bp×m
cl and

let ∆ be a finite dimensional LTV system. To establish the

assumption on nonsingular instantaneous gain we use the left

graph representation

(G̃Hw)(t) = DeGH
(t)w(t) +

∫ t

−∞

h eGH
(t − s)w(s)ds

and the right graph representation

(Γ∆v)(t) = DΓ∆
(t)v(t) +

∫ t

−∞

kΓ∆
(t, s)v(s)ds,

where

kΓ∆
(t, s) = CΓ∆

(t)ΦAΓ∆
(t, s)BΓ∆

(s).

Note that both representations are causal with exponentially

decaying integral kernels. This implies that there exists α >
0 such that

eαth eGH
(t) ∈ L1[0,∞) (11)

and |ΦAΓ∆
(t, s)| ≤ ce−α(t−s) which in turn implies

|kΓ∆
(t, s)| ≤ ρe−α(t−s) (12)

for some ρ > 0.
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The next result shows that the instantaneous gain is equal

to the product of the direct terms. This implies that the

assumption on nonsingular instantaneous gain necessarily

will be valid in a well-posed interconnection.

Proposition 2:

ρI(G̃HΓ∆) ≥ inf
t∈T

σmin(DeGH
DΓ∆

(t)).

VII. EXAMPLE

Consider an interconnection [∆,H], where H ∈ Bn×n
cp

and ∆ is an exponentially stable LTV system with stabi-

lizable and detectable state space realization as in (8). We

assume the circle constraint

γ(∆ − cI) ≤ r

for some center position c and radius r > 0. By Lemma 10

this holds if

sup
t∈R

|D(t) − cI| + √
γ1γ∞ ≤ r

where γ1 and γ∞ are computed as in the lemma. This implies

that ∆ ∈ IQCc(Π), where Π =

[
I −cI

−cI (c2 − r2)I

]
.

By Theorem 1 it follows that [∆,H] is stable if

(i) there exists a ν-gap continuous parametrization Hθ with

H1 = H and [∆,H0] stable.

(ii) Hθ ∈ SIQC(Π), ∀θ ∈ [0, 1].

Let us for simplicity specialize to the single-input single-

output case. Let c = −2, r = 3/4 and H0(s) = 1
s−1 . Then

the interconnection [∆,H0] is stable, which is straightfor-

ward to verify since r · ‖ 1
1−cH0

‖∞ = 3
4 < 1 and the stability

follows from the small gain theorem. The IQC condition in

(ii) above simplifies to the circle condition

∣∣∣∣Hθ(jω) − c

c2 − r2

∣∣∣∣
2

>
r2

(c2 − r2)2
, ∀ω ∈ R ∪ {∞}.

(13)

Consider the following parametrizations

Hθ =
1

s − 1 + 2θ
, and Hθ =

e−sθh̄

s − 1

for θ ∈ [0, 1]. It is shown in [8] that these parametrizations

are ν-gap continuous and the Nyquist plots in Figure 1 shows

that the circle condition in (13) is satisfied in both cases. We

conclude that all systems are stable.
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