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Abstract— In this paper, we address the regulation problem
for a linear plant driven by a neutrally stable exosystem.
It is assumed that the plant is subjected to an exogenous
disturbance, and that this signal is formed of known harmonics
of a sinusoidal reference signal whose frequency is unknown.
Such an exosystem is motivated by the case where the system
possesses an input nonlinearity like hysteresis. We propose an
adaptive servocompensator requiring estimation of only the
primary frequency. Using two-time-scale analysis, we establish
the semi-global convergence of the parameter error to an
arbitrarily small neighborhood of zero, when the adaptation
gain is small enough and when the disturbance is sufficiently
small comparing to the reference signal. The proposed control
scheme involves far fewer adaptation variables than existing
methods, and its performance is verified in both simulation
and experiments conducted on a nanopositioning stage.

I. INTRODUCTION

The subject of adaptive regulation theory has seen several

developments over the past years. Such work is based on the

adaptation of an internal-model based controller to compen-

sate for disturbances injected into the system by a neutrally

stable exosystem. However, just what form that internal

model controller takes varies greatly from one method to

the next. The work reported in [1] and by others proposed

parameter-based adaptation of the controller parameters in

the internal model transfer function. Work on nonlinear

regulation has produced more varied designs such as that

proposed by Serrani et al [2] where a stable system together

with an adaptive state feedback was utilized to generate an

internal model controller. In the most recent works, nonlinear

internal models have become common. For example, in

[3], internal model possesses linear state dynamics but a

nonlinear output function. Nikiforov designed an adaptive

observer in [4] to estimate and then cancel disturbances

generated by a linear exosystem, while Priscoli et al. [5]

dealt with the design of adaptive observers for nonlinear

exosystems.

One feature shared by all the aforementioned methods

is that the internal models tend to have many adapted

parameters. This allows them to adapt to very diverse ex-

osystems, assuming that the internal model controller is of

appropriate order. In several instances of practical impor-

tance, the structure of the nonlinearities and disturbances
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in the system restricts the set of possible exosystems. For

example, consider the setup in [6], where the reference is a

sinusoid and disturbances in the system are generated by a

nonlinear operator, namely hysteresis. In such a case, while

the exosystem is infinite-dimensional, it can be parameterized

as a function of only one unknown variable, the primary

reference frequency. If we consider a finite dimensional

approximation, the exosystem for such a system can be

written as

σ̇ = S(wr,ζ )σ (1)

where wr is the reference frequency, ζ ∈ ℜn is a known

constant vector of whole numbers, and the structure of S with

respect to wr and ζ is known. By this structure, we imply

that all disturbances have frequencies at multiples of the ref-

erence signal’s frequency, in particular at ζiwr, i = 1, . . . , n.

Frequency estimation has been a commonly explored topic

in the literature (see [7], [8], [9] and others). However, most

often these works are not aimed at regulation, and need to

estimate frequencies, amplitudes, and phases of the signals

in question in order to cancel them.

In order to deal with systems like those discussed above,

we will consider systems comprised of a linear plant Gp(s),
represented in the state-space as

ẋ =Ax+B(u(t)+α(t))

y(t) =Cx (2)

where u(t) is a control signal, and α(t) is a matched

disturbance. The control objective is to regulate the tracking

error e(t) = yr(t)− y(t) to zero, where

yr(t) = Rr sin(wrt) (3)

is the reference, but the frequency wr and the amplitude are

unknown. The disturbance α(t) is given by

α(t) =
n

∑
i=1

Rdi(sinζiwrt +φdi) (4)

where the vector ζ = [ζ1,ζ2, · · · ,ζn]
′ is known. We will

assume that the vector ζ is comprised of increasing whole

numbers, such that ζ j > ζk if and only if j > k. Such a setup

is indicative of a linear system with unknown sinusoidal

reference and input nonlinearity. Rather than attempting to

directly estimate the parameters of the internal model for

such a system [6], we will take an indirect adaptive control

approach, wherein we use an online adaptive law to estimate

the reference frequency, and then use this estimate in an

internal model controller. The form of this adaptive law is
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inspired by a formal gradient algorithm, which we modify

from its original form to improve stability.

Our analysis and design is based on merging a parameter

estimation problem with a linear internal-model controller. A

similar approach was taken by Brown and Zhang in [10]. We

design our internal model controller in terms of wr and ζ .

We then utilize slow adaptation to separate the estimation

of wr from the dynamics of the plant and time-varying

internal model controller. Using the two-time-scale averaging

framework of [11], we will show stability of the closed-

loop system and practical regulation of the output. For the

class of systems in question, this controller is capable of

generating the same internal model as the aforementioned

adaptive internal model controllers [1]–[5], but requiring far

fewer adapted variables.

Another practical advantage the proposed controller has is

that it is capable of compensating disturbances generated by

the exosystem that are small in a norm sense. While pursuing

the work reported in [6], we found that the method used

there struggled to adapt the internal model to compensate for

smaller harmonics generated by the nonlinearity hysteresis.

The problems encountered in that work represent the key

motivation for the current work. The proposed method is

able to avoid this problem by needing only to estimate a

parameter related to the much larger reference trajectory.

Simulation results will demonstrate that, with a sufficiently

small adaptation gain, arbitrarily small parameter error and

regulation error can be achieved. We will also verify our re-

sults experimentally on a commercial nanopositioning stage.

The remainder of this paper is organized as follows. In

Section II, we present the design of the stabilizing and

internal model controllers, as well as the form of the adaptive

law. The analysis of the system is presented in three parts.

We first stabilize the boundary layer system in Section

III-A. Second, in Section III-B we prove the stability of

the average system when α = 0. Finally, the case where

α 6= 0 is addressed in Section III-C to address the case

where the exosystem has a higher order. We then verify the

performance of the method by simulation and experimental

results in Section IV. Finally, concluding remarks and future

work are presented in Section V.

II. CONTROLLER DESIGN

Based on the internal model principle [12], [13], we design

a servocompensator for the system (2)-(4). We define the

servocompensator C(s), with state η = [η1,η2, . . . ,η2n]
′ and

input e(t), as

η̇ = C̄∗(w)η + B̄∗e(t) (5)

where

C̄∗(w)=











C∗(w) 0 · · · 0

0 ζ1C∗(w) · · · 0
...

. . .
...

0 · · · 0 ζnC∗(w)











, B̄∗=











kcB∗

κ1B∗

...

κnB∗











C∗(w) =

[

0 −w

w 0

]

, B∗ =

[

0

1

]

Fig. 1. Block Diagram of the closed-loop system.

and κ = [kc,κ1,κ2, · · · ,κn]
′, kc are design parameters as-

sumed to be positive. Based on the work of [12], if the

interconnected system (2) - (5) is stable, and w = wr, the

tracking error e(t) will go to zero. To stabilize the intercon-

nected system, we design a stabilizing compensator D(s),
given in the state-space as

ξ̇ = Adξ +Bd(kη(w)η +Dc(w)e(t)) (6)

The control signal to the plant (2) is then given by

u(t) =Cdξ +Dd(kη(w)η +Dc(w)e(t)) (7)

kη(w), Dc(w), and κ will be used to define the numerator of

C(s) in order to stabilize the system. Since the reference

frequency is unknown, the parameter w will be updated

by an adaptation law, the goal of which is to drive the

parameter error w̃ = w−wr to zero. The estimation of w

will be governed by the following adaptation law,

ẇ =−γw2e(t)1/s[η2] (8)

where γ > 0 is the adaptation gain, and η2 represents the

second component of the state vector η for C(s). The form

of this adaptation law was originally derived from a formal

gradient approach, then modified into that in (8) to improve

stability. Throughout the paper, the notation F(s)[g(t)] will

denote filtering of the time-domain signal g(t) by the transfer

function F(s). Equations (2) to (8) form a complete de-

scription of the closed-loop system, represented in the block

diagram shown in Fig. 1.

III. SYSTEM ANALYSIS

We will use the two-time-scale averaging framework of

[11] to analyze this system. In order to make use of the

results of [11], we must define the fast and slow systems,

called the boundary-layer system and the average system

respectively in the two-time-scale literature. Two-time-scale

averaging theory then allows us to analyze the behavior of the

two systems independently, assuming that the adaptation gain

γ << 1 is sufficiently small. In particular, this framework

allows us to separate the parameter identification problem

from the stabilization and regulation problems.

A. Boundary-Layer (BL) System

The boundary-layer system is defined by combining (2) -

(7), and setting γ = 0 in (8). This fixes the value of w at wbl .
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Denoting the state variables of the boundary-layer system as

χbl = [x′bl ,η
′
bl ,ξ

′
bl ]

′, the closed-loop system is then,

χ̇bl =Fbl(χbl ,wbl , t)

=





A−BDdDc(wbl)C BDdkη(wbl) BCd

−B̄∗C C̄∗(wbl) 0

−BdDc(wbl)C Bdkη(wbl) Ad



χbl

+





BDdDc(wbl)yr(t)+Bα(t)
B̄∗yr(t)

BdDc(wbl)yr(t)



 (9)

Our first step in the analysis it to show the input-to-state

stability (ISS) of the BL system. To achieve this stability, we

have the freedom to design both the stabilizing compensator

D(s) as well as the numerator of C(s), denoted as Cn(s). We

will stabilize the system using frequency domain techniques.

First, we design D(s) to stabilize the transfer function

H(s) =
D(s)Gp(s)

1+D(s)Gp(s)
(10)

This stabilizing controller provides a given phase margin at

the gain crossover frequency ωgc. Next, we can evaluate the

servocompensator transfer function C(s) as

C(s) =
Cn(s)

(s2 +w2
bl)(s

2 +ζ 2
1 w2

bl) · · ·(s
2 +ζ 2

n w2
bl)

(11)

If kη(wbl) and Dc(wbl) are designed so that

Cn(s) = (s2 +2ζcwbls+w2
bl)(s

2 +2ζcζ1wbls+(ζ1wbl)
2) . . .

(12)

with ζc << 1, we can approximately cancel the effect of

C(s) on the stability of the closed-loop system, assuming

that wbl is far enough away from ωgc. This is a crucial step

in being able to counteract the effect of the servocompensator

on the stability of the system. Otherwise, it is a very difficult

task to stabilize the system over a wide range of possible

reference frequencies. For the framework of [11] to apply, it

is also required that the solutions of (9) are asymptotically

periodic (or almost periodic). In system considered herein,

this requirement is easily satisfied since (9) represents an

exponentially stable linear system driven by a 2π/wr , T -

periodic signals yr(t) and α(t). It is important to note that

if wbl = wr, the tracking error e(t) will be zero in the steady

state.

B. Controller & Average System When α = 0

We now will analyze the average of (8), defined by the

evolution of the average of w, wav, evaluated along the

steady-state solutions of the boundary layer system χbl(w).
We also define the average estimation error, w̃av = wav −wr.

For the remainder of this paper, we will simplify the presen-

tation by writing G(s) = D(s)Gp(s). The average system is

defined by

ẇav =Fav(χbl(wav),wav,ϑ ,e)

=−
γ

T

∫ T

0
w2

ave(t)
1

s
[η2] dt (13)

We split our analysis of the above system into two parts.

First, we will deal with the case where α(t) = 0, in order

to present our analysis more clearly. Then, in Section III-C,

we will address the case where α(t) 6= 0.

In order to evaluate the integral in (13), we will formulate

Fav(χbl(wav),wav,ϑ ,e) as a function of only the adaptation

variable wav and reference trajectory yr. Proceeding under

the assumption that α(t) = 0, we can evaluate the controller

transfer function as

C(s) =
Cn(s)

s2 +w2
av

(14)

where Cn(s) = s2 + 2ζcwavs + w2
av. Letting G(s) =

Gn(s)/Gd(s), we can now evaluate the sensitivity transfer

function S(s) as

S(s) =
Gd(s)(s

2 +w2
av)

Gd(s)(s2 +w2
av)+Cn(s)Gn(s)

(15)

This allows us to represent the error e(t) as

e(t) = S(s)[yr(t)] (16)

We can arrive at a similar expression for the term G f (s)[η2].
Defining η2(s) as the transfer function from e(t) to η2(t),
we arrive at an expression for η2,

η2(t) =η2(s)[e(t)] =
skc

s2 +w2
av

[e(t)]

=
skcGd(s)

Gd(s)(s2 +w2
av)+Cn(s)Gn(s)

[yr(t)] (17)

Using (16) and (17), all the terms inside the integral in (13)

are now dependent only on the adaptation parameter wav and

reference trajectory yr. It is well known that given the form

of yr in (3), at steady state the terms e(t) , A(s)[yr(t)] and

1/s[η2(t)] , B(s)[yr(t)] will evaluate to terms of the form

Rsin(wrt+φ), where R and φ depend on the magnitudes and

phases of A(s) and B(s). Using this, we can now evaluate

the integral in (13) as

Fav(·) =−
γw2

av|A( jwr)||B( jwr)|R
2
r

2
cos(φA −φB) (18)

where φA =∠A( jwr), and φB =∠B( jwr). It is clear that the

properties of the average system depend heavily on the terms

|A( jwr)|, |B( jwr)|, φA, and φB. Note that A(s) = S(s),and

B(s) = 1/sη2(s)S(s). To simplify the coming expressions,

we will use the shorthand notation,

Sd(s) = Gd(s)(s
2 +w2

av)+Cn(s)Gn(s) (19)

First, we evaluate the magnitude of A( jwr) and B( jwr) as

|A( jwr)|=
|Gd( jwr)||wav +wr||wav −wr|

|Sd( jwr)|
(20)

|B( jwr)|=
kc|Gd( jwr)|

|Sd( jwr)|
(21)

and the phases as

φA =∠Gd( jwr)+
π

2
sgn(wav −wr)−

π

2
−∠Sd( jwr) (22)

φB =∠Gd( jwr)−∠Sd( jwr) (23)
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where sgn(a) represents the sign of a. First, we note that the

term |wav−wr| in (20) is equal to |w̃av|. Second, we subtract

(22) from (23) to arrive at the argument of the cosine term

in (18),

φA −φB =
π

2
sgn(w̃av)−

π

2
(24)

which implies that

cos(φA −φB) = cos(
π

2
sgn(w̃av)−

π

2
) = sgn(w̃av) (25)

We can write (13) as

ẇav =−
w2

avγ |Gd( jwr)||wav +wr||B( jwr)|R
2
r

2|Sd( jwr)|
w̃av (26)

,−M(wav,wr)w̃av (27)

where we have used |wav −wr|sgn(w̃av) = w̃av. We can now

use (26) to show asymptotic stability of the equilibrium point

w̃av = 0. From (19), we note that if the adaptation parameter

w and reference frequency is bounded above and below, we

can guarantee that |Sd( jwr)| is finite and nonzero for all wr

and w, where the nonzero property follows from the stability

of the boundary-layer system. This implies that M(wav,wr) is

bounded above and below by finite constants kh > 0 and kl >
0 respectively. Next, define the Lyapunov function candidate

V (t) = w̃2
av/2, whose time derivative is

V̇ =w̃avẇav =−M(wav,wr)w̃
2
av

≤− klV (28)

since ˙̃wav = ẇav. Thus, we can conclude exponential stability

from the Lyapunov Theorem [14]. Using this result together

with the results of Section III-A, the framework of [11]

ensures that, for any δ > 0, there exists a pair of class K L

functions βs and β f such that, when the adaptation gain is

sufficiently small, the solutions of the complete system (2)

to (8) obey the ultimate bounds

|w̃(t)| ≤βs(|w̃(0)|, t)+δ

|e(t)| ≤β f (||e(0), w̃(0)||, t)+δ (29)

C. Controller & Average System When α 6= 0

We now consider the case where α(t) 6= 0. The servo-

compensator is once again given in the form of (5). The

adaptation law will be unchanged from the form in (8). Since

the proof requires us to maximize some terms, we introduce

the following assumption to establish a bound on wav by

bounding w.

Assumption 1: There exists a wh such that for any ωh, if

the frequency estimate w is constrained to be less than wh,

then wav is less than ωh.

Theorem 1: Let w and wr be less than wh. Let Rr be

greater than a known constant c. Consider the system (2)

- (8), depicted in Fig. 1. Then, for every δ , there exists a

γ2 > 0 such that if γ ∈ (0,γ2), the average system is semi-

globally exponentially stable, and the trajectories of (2) - (8)

satisfy the ultimate bounds

|w̃(t)| ≤βs(|w̃(0)|, t)+δ

|e(t)| ≤β f (||e(0), w̃(0)||, t)+δ

Proof: The proof follows the same steps as did the

analysis for the case where α = 0. After showing stability

of the boundary-layer system, the first step in the proof is

to expand the terms e(t) and 1/s[η2(t)] so that they are de-

pendent on only the adaptation parameter, disturbance α(t),
and reference trajectory yr(t). Next, the resulting integral is

evaluated, which results in a series of terms related to the

transfer functions of the system. By evaluating the magni-

tudes and phases of these transfer functions, it is possible

to prove that the average system possesses a semi-global

exponentially stable equilibrium point at w̃av = 0, when the

reference amplitude Rr is large enough. The complete details

of this proof are omitted for space concerns, but will be

available in an upcoming journal paper extending this work.

IV. SIMULATION & EXPERIMENTAL RESULTS

A. Simulation Results

We will now demonstrate that the controller is capa-

ble of achieving near-zero tracking and parameter error in

simulation. Our simulations will be conducted on a 4th

order plant designed to model the dynamics of a commer-

cial nanopositioner (Nano-OP65 with Nano-Drive controller,

Mad City Labs Inc). The reference trajectory is chosen as

20sin(2π200t). Motivated by disturbances like (4), the plant

is also subjected to a matched disturbance of 3sin(2π400t).
Accordingly, the internal model controller (5) is designed

with ζ = 2 to compensate the reference and disturbance. The

notch filter parameter ζc in (12) was set to .2, and stability

over the frequency range of interest is achieved through the

use of a stabilizing controller

D(s) =
2.083×107

s2 +4900s+1.225×107
(30)

Simulation results are presented in Fig. 2 and Fig. 3. The

results when w(0) = 2π120 & w(0) = 2π280 are plotted

in Fig. 2. With γ = .05, the parameter error in both cases

converged to the order of 10−10. Tracking error was on the

order of 10−9 after 3 seconds. The fact that the controller

is able to drive the parameter and tracking errors to very

near zero seems to imply that the ultimate boundedness

result acquired through the two-time-scale framework is

conservative.

B. Experimental Results

Our experiments are conducted on a commercial nanopo-

sitioner (Nano OP-65, Mad City Labs). This nanopositioner

has a travel range of 65 µm. In accordance with the results of

[15] and [16], we utilize a feedforward hysteresis inversion

to guarantee that the system will posses a stable periodic

solution. The stabilizing controller (30) was used to stabilize

the feedback connection. Since the reference trajectories re-

quired a bias, a low gain proportional-integral controller was

added to the system in parallel with the servocompensator.

There are two properties of the controller that we will

verify with these experiments. The first property is that our

adaptive controller can recover the performance of a nominal
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Fig. 2. Parameter error w̃ in 200 Hz simulation. Two different initial
conditions are plotted.
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Fig. 3. Tracking error e(t) in 200 Hz simulation. Initial condition is 120 Hz.

controller where the parameters are known. Second, we

verify that the controller responds to changes in the reference

signals. Both properties should be satisfied by any adaptive

internal model controller. We will compare the performance

of our various methods via the mean tracking error, computed

by taking the mean of |e(t)| over one period of the reference.

Recovery of nominal performance was done with two

controller types. First, we use a second-order internal model

controller, designed to compensate for the sinusoidal refer-

ence signal. Second, we utilize a sixth-order controller, with

ζ = [2,3]. This controller is capable of compensating for

the primary reference as well as the first two harmonics of

the reference generated by the hysteresis nonlinearity of the

piezoelectric. Experiments are conducted with inputs at 5,

25, 50, and 100 Hz. Due to issues with the experimental

platform, the amplitude of the reference was changed from

40 µm peak-to-peak at 5 Hz and 25 Hz to 20 µm peak-to-

peak at 50 Hz and 100 Hz. The adaptation gain γ was chosen

as 0.001 for each frequency.

Fig. 4 and Fig. 5 show the results of this experiment.

In both cases, the adaptive controller does very well at

TABLE I

TRACKING ERRORS IN PERCENTAGE OF REFERENCE AMPLITUDE FOR

ADAPTED AND NOMINAL SYSTEMS UNDER VARYING INPUTS.

Second-Order Sixth-Order

Reference Adapted Nominal Adapted Nominal

5Hz 0.4935 0.3715 0.0905 0.097
25Hz 0.5425 0.543 0.216 0.231
50Hz 1.119 1.01 0.302 0.318

100Hz 1.131 1.054 0.535 0.563
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Fig. 4. Tracking error in percentage for adapted and nominal controller,
with the second-order internal model.

recovering the nominal controller’s performance. It is worth

noting however that the sixth-order controller does a better

and more consistent job at recovering the performance than

the second-order controller. Since the sixth-order controller

is able to greatly reduce the tracking error as compared to

the second-order controller, the parameter estimation error

stays closer to zero over time, which allows the system to

behave much closer to the nominal system. A sample of the

tracking error for this signal is also presented in Fig. 6.

Next, we examine the controller’s performance when the

reference signal is changing. The internal model controller
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Fig. 5. Tracking error in percentage for adapted and nominal controller,
with the sixth-order internal model.
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Fig. 6. Tracking error for 100 Hz reference signal with the sixth-order
controller.
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Fig. 7. Frequency Estimate w and tracking error for a changing reference
signal.

used for this experiment was sixth order. Initially, the refer-

ence signal was 10sin(2π50)+ 20 µm. At 25 s, the signal

changed to 10sin(2π75)+ 20 µm, and at 50 s changed to

20sin(2π25)+20 µm. The adaptation gain γ was increased

to 0.003 to improve convergence speed. Fig. 7 shows the

evolution of the parameter estimate under the changing

reference signal. Note that the tracking error, also shown in

Fig. 7 is high until the frequency estimate gets very close to

the actual value. Once the parameter converges, the tracking

error rapidly shrinks to its steady state value.

V. CONCLUDING REMARKS

We have presented the design and analysis of a novel

adaptive servocompensator. The method is capable of com-

pensating small signals, like those resulting from hysteresis.

In addition, it requires fewer adapted states to compensate for

the exosystem considered here than other adaptive regulators.

We have also shown through analysis and testing that the

estimation error is capable of converging to an arbitrarily

small value over a semi-global range. Tracking error perfor-

mance is comparable to other state-of-the-art methods used

in nanopositioning control.

Strengthening our analytical results will be pursued in

our future work. We will seek to generalize the adaptation

law and analysis, by considering a wider range of possible

disturbances and reference trajectories, such as disturbances

where ζ is not made of whole numbers. In addition, we plan

on considering reference trajectories consisting of multiple

sinusoids or parameterized like the disturbance α , where

there is one unknown frequency, and the reference trajectory

can be written as a sum of sinusoids with frequencies at

known multiples of the unknown frequency. An example of

such a reference signal is a sawtooth wave, commonly used

in nanopositioning applications.
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