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Abstract— Congestion on roads and highways is an issue that
leads to reductions in the energy-efficiency of travel. Current
GPS navigation devices include features which provide turn-by-
turn directions to vehicles based on real-time traffic conditions,
and these features provide an opportunity to improve average
fuel consumption. Routing strategies in these devices optimize
individual travel times, but theoretical (e.g., Braess’s paradox)
and empirical results show that this can actually increase
congestion and average travel times. We model traffic routing in
the game-theoretic framework of Stackelberg games, which is a
simplification of the true information patterns, and then use this
model to provide an algorithm for turn-by-turn directions. One
advantage of our algorithm is that it can be easily incorporated
into existing GPS devices by modifying the traffic information
sent to them. Our framework is used to qualitatively study
the effectiveness of traffic routing on a specific road network
topology. If roughly 60% of users follow GPS directions
implementing our strategy, then the average delay will be close
to the optimal average delay for the road network. This poses
social and technological challenges for reduction in congestion
through routing. The situation is not hopeless though, because
our qualitative results indicate that having a small percentage of
compliant users may still lead to large reductions in congestion.

I. INTRODUCTION

Vehicle traffic congestion is a growing problem with many

associated costs. In addition to economic costs from lengthy

travel times, there are external, environmental costs from

increased fuel consumption and vehicle emissions. Reducing

congestion can lead to improvements, and the associated

design of intelligent transportation systems (ITS’s) is an

important area of research. ITS’s combine computation,

communication, and infrastructure to improve safety and

congestion [1], [2]. An example of design in an ITS is the

scheduling of traffic lights for highway on-ramps [3], [4].

ITS’s typically make significant use of fixed infrastructure

such as electronic road signs, but the growing computational

power of cellular phones and GPS navigation devices will

enable more efficient systems [5], [6], [7]. Magnetic detectors

in roads have been used to measure traffic levels on highways

[8], and a recent demonstration has shown that cellular

phones equipped with GPS can also be used for this purpose

[6]. An advantage of systems based on cellular phones is a

reduction in fixed costs due to construction of infrastructure.

GPS navigation devices have begun to provide traffic

congestion reports [6], in addition to planning routes for

vehicles. These devices indicate the location of accidents
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and the level of congestion on highways, and they assist

with planning routes which take traffic levels into account in

order to minimize expected travel time. The impact of such

devices has not been explicitly considered in the literature,

and one aim of this paper is to do so. The other aim of this

paper is to provide a basis for improving their operation.

A. Traffic Assignment

Traffic assignment is the selection of routes for different

pairs of origin-destination, and it has historically been used

to study the potential impact of adding new roads. The

techniques can be broadly classified into being either static

[9], [10], [11], which consider the assignment of routes

under equilibrium conditions, or dynamic [12], [13], [14],

[15], [16], [17], which consider the evolving nature of

traffic patterns. Fundamentally, GPS navigation devices are

an implementation of traffic assignment techniques.

The seminal work in [18] defined two notions of route

assignment that are now prevalent. A traffic flow in which

each vehicle minimizes individual travel time leads to a user

equilibrium (UE) flow, which is also called a Wardrop or

Nash equilibrium [19] and satisfies Wardrop’s first principle

of route choice. Flows in which vehicles cooperate to mini-

mize average travel times lead to system optimal (SO) flows,

and they satisfy Wardrop’s second principle of route choice.

GPS navigation devices with traffic information encourage

UE flows, but this is problematic because it can lead to

perverse behavior. Traffic assignment which minimizes indi-

vidual vehicle travel times can lead to increased congestion.

This is most dramatically realized in Braess’s paradox [19],

[20] where the addition of roads can increase congestion,

and it has been observed in real world situations [19]. On

the other hand, ensuring SO flows corresponds to reducing

the societal costs of traffic congestion by reducing the travel

times for an average vehicle.

B. Overview

The purpose of this paper is to study how to best provide

turn-by-turn directions on GPS navigation devices in order to

promote reductions in congestion and energy consumption.

We make proposals on the nature of what delay information

to provide and what types of routes should be presented to

GPS users. A benefit of our proposal is that existing GPS

devices would not need to be updated, just the information

sent to them would change. Additionally, we discuss what

fraction of GPS users are needed in order to get appreciable

improvements in congestion.

Studying these issues involves understanding the interplay

between cooperative and non-cooperative behavior of users,
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and this analysis is most easily framed in the language of

game theory. We begin by describing a quasi-static model

for vehicle traffic flow on uninterrupted highways, and we

provide models for user behavior. A quasi-static model

assumes that traffic levels are slowly varying [21], [19].

Results from game theory provide the tools to efficiently

compute turn-by-turn directions which minimize congestion,

and further results are used to qualitatively study the effec-

tiveness of traffic routing. To make the analysis tractable,

we make simplifications on the models of traffic flow and

the information pattern provided to different drivers, and we

consider a simple road network topology.

II. QUASI-STATIC TRAFFIC ASSIGNMENT MODEL

A road network is represented by a directed graph G =
(N,L) where N = {1, . . . , n} is a set of nodes representing

junctions between roads and

L = {(i, j,m) : the m-th road going between

node i to node j} (1)

is a set of links representing roads between junctions. Roads

going in opposite directions are distinct links, meaning

that (i, j, ·) 6= (j, i, ·), and having a road (i, j, ·) does not

guarantee having a road in the opposite direction (j, i, ·).
We do not consider roads that loop back to the original node

(i, i, ·).
In our model, there are w origin-destination pairs

{o1, d1}, . . . , {ow, dw}. The k-th simple route for the i-th
pair {oi, di} is a path which starts at node oi and ends at

node di such that there are no loops, and it is given by

Pi,k = (oi, j1, l0), (j1, j2, l1), . . . , (jm, di, lm), (2)

where m is the number of links in the route and l0, . . . , lm
specifies which road. The set of all routes for the pair {oi, di}
is denoted by Pi =

⋃

k Pi,k, and the set of paths for all pairs

is given by P =
⋃

Pi.

We associate a finite and positive rate ri for each pair

{oi, di}, and this rate denotes the number of vehicles entering

and exiting {oi, di}, when the network is at equilibrium. A

flow fPi,k
gives the number of vehicles following path Pi,k,

and a flow is feasible if
∑

k fPi,k
= ri. The flow

f(i,j,m) =
∑

Pi,k:(i,j,m)∈Pi,k

fPi,k
(3)

gives the number of vehicles on the m-th road going between

nodes i and j. For each link, we define a delay function

D(i,j,m) : f(i,j,m) → R+ which gives the time required to

travel over the road as a function of the number of vehicles

on the road.

A. Delay Functions

In the game-theoretic framework we use, standard results

require that the delay function D(i,j,m) be non-negative, dif-

ferentiable, non-decreasing, and independent of the number

of vehicles in other links [21], [22]. For reasons of tractability

and analyzability, several simplifying assumptions are made
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Fig. 1: The delay (solid line) D(i,j,m)(f(i,j,m)) is constant

until the number of cars hits the critical density of the

road, and then it increases up to an asymptote at the

capacity of the road. The marginal delay time (dashed line)

D̃(i,j,m)(f(i,j,m)) is monotonically increasing, and it has

similar behavior.

about the behavior of traffic networks [4]. The delay in link

(i, j,m) is interpreted as the time required for one vehicle

to travel from the start to the end of the corresponding road,

and the delay in the link is assumed to be only a function

of the number of vehicles in the link (i, j,m).
One model for vehicle delay is shown in Fig. 1, and this

model can be mathematically represented by

D(i,j,m)(f) = K1 +K2/(C − f), (4)

where K1,K2 are non-negative constants and C > 0.

These constants can vary for different links (i, j,m). This

model is representative of the fundamental flow diagram

in macroscopic-scale, fluid-flow models of traffic networks,

and the delay function implicitly enforces constraints on the

maximum number of vehicles on a link. The number of

vehicles on the road cannot exceed the capacity, otherwise

the delay would be infinite.

B. User Equilibrium Flow

In a user equilibrium (UE) flow, each vehicle tries to

minimize its individual delay [18], [19]. Mathematically,

it corresponds to a feasible flow (it is a constraint) which

minimizes the following objective:

DUE = min
f(i,j,m)

∑

(i,j,m)∈L

∫ f(i,j,m)

0

D(i,j,m)(f)df (5)

subject to the constraints:

f(i,j,m) ≥ 0

ri +
∑

j,m

f(j,oi,m) =
∑

j,m

f(oi,j,m), ∀{oi, di}

∑

j,m

f(j,di,m) = ri +
∑

j,m

f(di,j,m), ∀{oi, di}

∑

j,m

f(j,k,m) =
∑

j,m

f(k,j,m), ∀k 6= oi, di, ∀i.

(6)

The constraints (6) are convex, and they ensure non-

negativity of flows and conservation of flows (i.e., flow into

a node equals the flow out of the node). This optimization

problem can be reformulated as a variational inequality [22],

and this inequality provides a more intuitive description

of the UE flow. The UE flow is the flow such that each
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vehicle going between {oi, di} travels along a path Pi,k

with minimum delay, otherwise the vehicle would reroute to

follow a path with smaller delay. Consequently, all vehicles

going between {oi, di} experience equal delay.

The delay function (Fig. 1 and (4)) and constraints (6) are

convex. Furthermore, the number of constraints is polyno-

mial in terms of the number of edges [22]. As a result, this

problem can be efficiently solved in reasonable time using

either centralized or decentralized algorithms. If desired, we

can compute fPi,k
by solving the linear system of equations

given in (3).

C. System Optimal Flow

In a system optimal (SO) flow, each vehicle tries to

minimize the average vehicle delay [18], [19], [22]. The SO

flow corresponds to minimizing the following objective:

DSO = min
f(i,j,m)

∑

(i,j,m)∈L

f(i,j,m)D(i,j,m)(f(i,j,m)) (7)

subject to the constraints (6). Because we are interested

in minimizing average vehicle delay, the expression in (7)

qualitatively looks like the expectation of some random

variables. As discussed in the introduction, the SO flow

corresponds to reductions in congestion (and indirectly to

reductions in fuel consumption and vehicle emissions).

There is an important connection between SO and UE

flows. A SO flow corresponds to a UE flow with the modified

delay function

D̃(i,j,m)(f(i,j,m)) = D(i,j,m)(f(i,j,m))

+ f(i,j,m)D
′

(i,j,m)(f(i,j,m)), (8)

where the prime indicates differentiation, and an example

of this delay is shown in Fig. 1. This relationship can

be shown by direct integration of delay (8) in the cost

of (5). Note that D̃(i,j,m)(f(i,j,m)) is typically called the

marginal delay function [22], and it corresponds to having

a toll of f(i,j,m)D
′

(i,j,m)(f(i,j,m)) in addition to the delay

D(i,j,m)(f(i,j,m)). This connection is important because in

an SO flow, the vehicles selfishly choose paths to minimize

the marginal delay function. If all vehicles were to pick the

path with minimal marginal delay, then the network would

converge to an SO flow [22].

III. STACKELBERG FLOW

The goal of the traffic engineer is to design an ITS which

solves (7), and this is challenging because it is at odds with

the preferences of an individual vehicle which solves (5).

A GPS navigation device can aid with this by providing

vehicles with directions which correspond to the SO flow.

Unfortunately, not all vehicles are GPS users, and not all

GPS users will follow the directions.

This brings up the important question of what nature of

delay information should be provided to GPS users. The

number of vehicles on a link can be measured in a number of

ways [8], [6], and these measurements can be used to display

to users either delay D(i,j,m)(f(i,j,m)) or marginal delay

D̃(i,j,m)(f(i,j,m)). Since vehicles tend to selfishly minimize

their own delay, it is best to present GPS users with marginal

delay information, because users individually minimizing

marginal delay encourages the formation of an SO flow that

minimizes average delay. The other benefit of displaying

marginal delay to users is that it does not require giving false

information in order to make vehicles behave favorably.

If GPS users are given marginal delay, then we can model

vehicle behavior in a simple manner that is a consider-

able simplification of the true information pattern. Future

approaches should consider more accurate notions such as

Bayesian games and learning in policies. Vehicles can be

classified into two groups: a) those that follow the GPS

directions, and b) those that try to minimize individual delay

D(i,j,m)(f(i,j,m)). The second group consists of both users

without GPS devices and users with GPS devices who ignore

the provided directions. Note that some users might try to

use knowledge that the GPS device provides marginal delay

to compute individual delay. To match the terminology to

the game theory literature, users in group (a) will be called

Stackelberg leaders, and users in group (b) will be called

Stackelberg followers.

This can be modeled as a Stackelberg game in which the

leaders determine their routes and the followers pick their

routes based on what the leaders have picked [23], [11], [24].

A defining characteristic of a Stackelberg game is that the

leader tries to pick a strategy in anticipation of the follower,

such that after both players make moves, the objective of

the leader is minimized. The traffic routing problem fits this

framework well. The leader picks traffic routes, such that

after the followers selfishly pick their routes to minimize

individual delay, the average delay is minimized. The optimal

way of doing this would be a leader which can anticipate

how the followers will respond, and pick traffic routes in

anticipation.

Unfortunately, it has been shown that picking the optimal

Stackelberg strategy for an arbitrary network is NP-hard [25],

and so several heuristic algorithms have been developed. Two

common strategies are SCALE (scale the optimal flow) and

LLF (largest latency first) [25], [23], [24]. These strategies

can be improved by playing a finite number of rounds where

the leader and follower successively select routes based on

those of the previous player [26]. For simplicity, we focus

on the SCALE strategy because it is computationally simpler

and easier to generate qualitative results.

Suppose that α ∈ [0, 1] is the fraction of vehicles which

are Stackelberg leaders. Then, the SCALE strategy is as

follows. Define f̃(i,j,m) to be SO flow, which minimizes (7)

by definition. The Stackelberg leaders have flow αf̃(i,j,m),

meaning that their flow is the SO flow that has been scaled

by the fraction of vehicles that are leaders. The Stackelberg

followers have flow f∗

(i,j,m) which is the UE flow for the

delay functions

D∗

(i,j,m)(f
∗

(i,j,m)) = D(i,j,m)(f
∗

(i,j,m) + αf̃(i,j,m)). (9)
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Algorithm 1: Turn-by-Turn Directions for Vehicle with

GPS Navigation Device

input : Road Network – (N,L);

Marginal Delay – D̃(i,j,m);

Current Traffic – f̂(i,j,m);

Origin-Destination – {oi, di};

output: Route – Pi,k

1 foreach (i, j,m) ∈ L do

2 set W (i, j,m) := D̃(i,j,m)(f̂(i,j,m));
3 end

4 Dijkstra’s algorithm returns path of

minimum length for an

origin-destination pair on directed

graph with weighted edges;

5 set Pi,k := Dijkstra(N,L,W );
6 return Pi,k

A. Algorithm for Turn-by-Turn Directions

Generating turn-by-turn directions for GPS users is simple

when using the SCALE strategy, and it can be done in a

decentralized manner as long as current traffic information is

centrally generated and transmitted to everyone. Essentially,

every GPS navigation device picks a route which minimizes

the marginal delay between the desired origin-destination

pair {oi, di} for the vehicle. This requires that the GPS

device receive traffic information updates which give the

number of vehicles on each link. It is formally described

in Algorithm 1, which is simply Dijkstra’s algorithm that

returns a path of minimum length for an origin-destination

pair on a directed graph with weighted edges.

This algorithm is decentralized in the sense that it routes

individual users, though traffic information is aggregated

centrally, and it leads to a Stackelberg flow in which the

leaders approximately follow the SCALE strategy [27]. In

fact, if α of these vehicles follow the directions generated by

this algorithm, then the flow in network will equilibrate such

that (7) will be no worse than it would have been with the

SCALE strategy for the corresponding value of α [26]. This

algorithm is simply an application of Dijkstra’s algorithm

which is a polynomial time algorithm. It can be implemented

on a GPS navigation device. Furthermore, this approach

allows easy incorporation of existing GPS devices by simply

modifying the traffic information sent to the device: It does

not require updating the GPS devices.

IV. IMPORTANCE OF USER COMPLIANCE

Understanding the impact of turn-by-turn directions gener-

ated by traffic routing algorithms is important for designing

an ITS. There are issues of cost-effectiveness and societal

impact that need to be qualitatively studied, and the game-

theoretic framework introduced above is very useful in being

able to do this. The key question is how much reduction

in average delays is possible as the fraction of Stackelberg

leaders α varies from zero to one. By definition, if α = 0,

then there is no reduction in congestion from GPS users,

because there are no GPS users. Similarly, if α = 1, then

congestion is at the minimum possible level, because all

vehicles are GPS users.

There are two measures of improvement in congestion that

can be used. The first measure is known as the price of

anarchy [22], [23], [24], and it gives the worst possible ratio

between average delay with Stackelberg routing and average

delay with an SO flow:

ρ(α) , sup
(G,N),D(i,j,k)

∑

(i,j,m)∈L

S
(

αf̃(i,j,m) + f∗

(i,j,m)

)

∑

(i,j,m)∈L

S
(

f̃(i,j,m)

) ,

(10)

where S(i,j,m)(f(i,j,m)) = f(i,j,m)D(i,j,m)(f(i,j,m)). The

second measure is known as the value of altruism; though

this is a new quantification that we have defined, it is

motivated by ideas (and the same phrase) from [28]. The

value of altruism gives the best possible ratio of improvement

in average delay between Stackelberg routing and a UE flow,

and it is defined as

σ(α) , inf
(G,N),D(i,j,k)

∑

(i,j,m)∈L

S
(

αf̃(i,j,m) + f∗

(i,j,m)

)

∑

(i,j,m)∈L

S
(

f (i,j,m)

) ,

(11)

where S(·) is as defined above and f (i,j,m) is the UE flow

that minimizes (5).

There is an important point to note concerning the compu-

tation of these values for the delay function (4). The delay

function is unbounded because D(i,j,m)(C) is infinite. To

make these computations sensible, we have to impose an

additional constraint on the maximum flow through any link

[22]. Specifically, we assume that f(i,j,m) ≤ fmax.

A. Price of Anarchy

The price of anarchy can be easily computed for α = 0 and

α = 1. When α = 0, we use a general method for computing

the price of anarchy [22] which can be used with the delay

function in (4). Some thought shows that this computation is

equivalent to the price of anarchy for an M/M/1 queue, and so

a result in [22] gives that ρ(0) = (1+
√

( Cmin

Cmin−fmax
))/2, where

Cmin is the minimum value of C across the delay functions

for each link (4). We trivially have ρ(1) = 1, because here

the SCALE flow is equivalent to the optimal flow.

Computing the price of anarchy for α ∈ (0, 1) for the

delay function in (4) is much more difficult. Existing results

for the SCALE strategy only give tight bounds when the

delay function has certain scaling properties [23], [24], and

unfortunately the delay functions in (4) do not have these

properties. Consequently, existing results provide bounds

which are too weak to provide meaningful, qualitative in-

sights. As a result, we focus on a particular network to

derive bounds which are more useful for gaining a qualitative

understanding.
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o1 d1

(o1, d1, 1)

(o1, d1, 2)

fmax fmax

Fig. 2: Pigou’s example [22] has certain worst-case properties

when α = 0.

The two node network with two parallel links shown in

Fig. 2 is known as Pigou’s example [22], and it has certain

worst-case properties. Meaning, this simple network achieves

the price of anarchy for when α = 0. Consequently, we use

a specific instance of this network to derive lower bounds

on the price of anarchy for α ∈ (0, 1). We specifically pick

delay function values of:

D(o1,d1,1)(f(o1,d1,1)) = K

D(o1,d1,2)(f(o1,d1,2)) =
K(Cmin − fmax)

C − f(o1,d1,2)
.

(12)

By construction, the second link has less delay

D(o1,d1,2)(f(o1,d1,2)) < D(o1,d1,1)(f(o1,d1,1)) (13)

for f(o1,d1,2) < fmax, and they are equal at fmax.

The average delay of different routing strategies can be

computed by using the variational inequality formulation of

UE flows. The summary of this formulation is that the flow

follows paths of minimum delay, and all flows for a given

origin-destination pair have the same delay [22]. Also, recall

that the SO flow is given by the UE flow for the marginal

delay. The UE flow is given by the path of minimum delay:

f (o1,d1,1) = 0 and f (o1,d1,2) = fmax, and the average delay

is fmaxK . On the other hand, the SO flow occurs when the

marginal delay of the two paths are equal. If amount of

flow on the second link is f̃(o1,d1,2) = λfmax, then we can

calculate λ by solving the following equation:

D∗

(o1,d1,1)
(λfmax) = D∗

(o1,d1,2)
((1− λ)fmax)

K(Cmin − fmax)

C − λfmax

+ λfmax

K(Cmin − fmax)

(C − λfmax)2
= K.

(14)

Simplifying the expression and using the quadratic equation

gives that λ = Cmin

(

1−
√

1− fmax/Cmin

)

/fmax. Thus, the

average delay is

λfmax

K(Cmin − fmax)

Cmin − λfmax

+ (1− λ)fmaxK. (15)

We can use these results to compute the average delay for

a SCALE flow where α fraction of the users are Stackel-

berg leaders. The Stackelberg leaders have flow given by

αf(i,j,m). The Stackelberg followers have flow given by

f∗

(o1,d1,1)
= 0 and f∗

(o1,d1,2)
= (1−α)fmax, because all of the

Stackelberg followers use the second link which has lower

delay. Thus, the average delay for a SCALE flow is

(αλ + (1− α))fmax

K(Cmin − fmax)

Cmin − (αλ + (1− α))fmax

+ α(1 − λ)fmaxK. (16)
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Fig. 3: Lower bounds for the price of anarchy ρ(α) and

upper bounds for the value of altruism σ(α) are plotted as

functions of α, for four different values of φ.

This provides a lower bound on the price of anarchy: ρ ≥
(16)/(15). We can further simplify by setting fmax = φCmin,

and the interpretation is that φ gives the largest fraction of

utilization in the road links. After algebraic simplifications,

we get that

ρ ≥
α(1 − λ) + (αλ+ 1− α) 1−φ

1−(αλ+1−α)φ

1− λ+ λ 1−φ
1−λφ

(17)

λ =
(

1−
√

1− φ
)

/φ. (18)

This expression is a function of the fraction of users α which

follow the GPS directions and the maximum fraction of road

utilization φ.

This lower bound on the price of anarchy ρ is plotted

in Fig. 3a, and it gives several important qualitative insights.

As road utilization φ increases, a larger fraction of compliant

GPS users α are needed in order to make the average delay

of the SCALE flow close to the average delay of the SO

flow (i.e., make ρ close to one). Improvements in the price

of anarchy ρ saturate at about α = 0.6. This means that

if roughly 60% of vehicles are compliant GPS users, then

the average delay of the SCALE flow will be close to the

optimal average delay of the SO flow.
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B. Value of Altruism

Using the results from Sect. IV-A, we can provide a bound

on the value of altruism. An upper bound on the value of

altruism is given by: σ ≤ (16)/K . Setting fmax = φCmin and

performing algebraic simplications, we get that

σ ≤ α(1 − λ) + (αλ+ 1− α)
1− φ

1 − (αλ + 1− α)φ
, (19)

where λ is given in (18). This upper bound on the price of

anarchy ρ is plotted in Fig. 3b, and it gives several important

qualitative insights on the reduction of average delay with

the SCALE flow as compared to the UE flow (i.e., value of

altruism). As road utilization φ increases, larger reductions

in average delay with the SCALE flow are possible (i.e.,

ρ(1) is smaller). Once again, improvements in the value of

altruism σ saturate at about α = 0.6. This means that if

roughly 60% of vehicles are compliant GPS users, then no

further reductions in average delay with the SCALE flow are

possible. However, when φ is large, small values of α still

lead to large reductions in congestion; thus, having even a

small percentage of compliant users can still be advantageous

when there is heavy congestion.

V. CONCLUSIONS

We modeled turn-by-turn directions of GPS navigation

devices as an implementation of a Stackelberg game. Though

we simplify existing traffic models and the information

pattern, it allows for a tractable analysis of traffic routing

and leads to a simple algorithm (which existing GPS devices

can use) for providing turn-by-turn directions. The main

qualitative insight from the model is that a large fraction

of complaint GPS users are needed in order to effect real

improvements in congestion and energy consumption. If

roughly 60% of users follow GPS directions implementing

a SCALE strategy, then the average delay will be close

to the optimal average delay for the network. This poses

social and technological challenges for the implementation

of an ITS system which reduces congestion through routing.

Fortunately, our qualitative results indicate that having a

small percentage of compliant users can still lead to large

reductions in congestion. We used a simple network topology

to study these issues, and an open question is how these

results translate to real road topologies.
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