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Abstract— The runway configuration is the subset of the
runways at an airport that are used for arrivals and departures
at any time. Many factors, including weather (wind and
visibility), expected arrival and departure demand, environ-
mental considerations such as noise abatement procedures,
and coordination of flows with neighboring airports, govern
the choice of runway configuration. This paper develops a
statistical model to characterize this process using empirical
observations. In particular, we demonstrate how a maximum-
likelihood discrete-choice model of the runway configuration
process can be estimated using aggregate traffic count and other
archived data at an airport, that are available over 15 minute
intervals. We show that the estimated discrete-choice model
not only identifies the influence of various factors in decision-
making, but also provides significantly better predictions of
runway configuration changes than a baseline model based on
the frequency of occurrence of different configurations. The
approach is illustrated using data from Newark (EWR) and
LaGuardia (LGA) airports.

I. INTRODUCTION

The runway system at major airports are generally con-

sidered to be the primary bottleneck in airport capacity,

and consequently, the capacity of the air transportation

network [1]. Most major airports are equipped with multiple

runways, and at any time, a subset of these runways (and

associated traffic directions) are selected to handle arrivals

and departures. This choice of the set of runways, known

as the airport- or runway configuration, is a critical factor

in determining airport capacity. There are no precise rules

that dictate the choice of active runways; instead, authorities

in the Air Traffic Control Tower (ATCT) consider many

factors including weather (wind and visibility), predicted

arrival and departure demand, environmental considerations

such as noise abatement procedures, and coordination of

flows with neighboring airports, in selecting the runway

configuration at any time. This paper proposes a statistical

model that uses empirical observations to characterize the

configuration selection process. In particular, we propose an

approach to learn the maximum-likelihood discrete-choice

model of configuration selection, and also to infer the air

traffic controllers’ utility functions in making these decisions.

Several past works have acknowledged the role of runway

configuration selection in airport congestion management

[2], [3], [4]. Recent research has focused on the develop-

ment of decision support systems that prescribe the optimal
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sequencing of runway configurations, assuming knowledge

of their respective capacities, expected airport demand, and

prevailing operating conditions influencing configuration fea-

sibility [5], [6]. This paper takes a complementary approach

to the problem of configuration selection: we estimate a

maximum-likelihood model of the runway configuration se-

lection process, as well as the factors that influence the

utility function of the air traffic controllers, using archived

operational data. In short, while past works guide controllers

on what runway configurations to select (in order to optimize

some predetermined objective such as throughput), this study

attempts to model how controllers currently select runway

configurations, and their underlying utility functions.

We model the selection of runway configuration as a

discrete-choice problem faced by the airport authorities. The

utility functions of the different alternatives are represented

as functions of the aforementioned factors (wind, demand,

etc.) that influence configuration selection. The discrete-

choice framework, which has been successfully applied to

other applications such as modeling driver lane-changing

behavior, enables the estimation of the relationship between

influencing factors and the favorability of a configuration,

and the prediction of future configuration choices made in

response to evolving weather and demand conditions [7], [8].

The rest of this paper briefly describes discrete-choice

modeling as well as the proposed methodology for deter-

mining the maximum-likelihood discrete-choice model. We

then describe the specific application of this approach to

the problem of configuration selection. Results from the

application of the approach to LaGuardia (LGA) and Newark

(EWR) airports are used to demonstrate its ability to predict

the runway configuration, given the state of the system in

terms of wind, visibility, demand, etc. In this paper, runway

configurations are represented in the form ‘R1, R2 | R3, R4’

where R1 and R2 are the arrival runways, and R3 and R4

are the departure runways.

II. METHODOLOGY

In this section, we briefly describe discrete-choice models,

followed by descriptions of the model estimation approach,

identification of the utility function that drives runway con-

figuration choice, and the validation techniques applied.

A. Conceptual Framework

Discrete-choice analysis [9] considers problems in which

a decision-maker needs to select one option from a finite

set of alternatives. It is assumed that the decision-maker

chooses the solution that maximizes a utility function that
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depends on several influencing factors (known as attributes,

and denoted X). The utility function for each alternative is

modeled as the sum of an observed component V (which

is a linear combination of the influencing factors) and an

unobserved component ε represented through error terms.

In other words, consider the observation of the nth selection

decision. Suppose Cn is the set of alternatives available for

the nth choice. Then, the utility of choice ci ∈Cn for selection

n is given by

Vin = α +β ·Xin (1)

Uin = Vin + εin, (2)

Equation (1) reflects the assumption that the utilities are

linear functions of the attributes, given by Xin, while Equation

(2) acknowledges the presence of errors due to factors that

are not explicitly modeled or observed. Then, we assume

that for the nth observation, the decision-maker selects the

alternative c j ∈Cn such that

j = argmax
i:ci∈Cn

Uin. (3)

The probabilistic distribution assumed for the error terms

εin determines the analytical relation between alternative

selection probabilities and the observed component of the

utility functions, and hence the type of discrete choice model.

For example, if one assumes complete independence in error

terms across all alternatives and choice observations, and

that the error terms are identically Gumbel distributed, we

obtain the popular multinomial logit (MNL) model [9]. The

MNL model is a popular choice in many applications due

to its analytical tractability, and yields the choice probability

expression given by

P(ci|Cn) =
eVin

∑ j:c j∈Cn
eV jn

. (4)

In other words, Equation (4) provides the probability of the

nth choice being ci, given that the set of feasible alternatives

was Ci. We note that as the observed component of the

utility for alternative ci (given by Vin) increases relative to

the utilities of the other alternatives, so does the probability

of selecting ci.

The assumption of independent error terms in the MNL

model is potentially too restrictive in the context of runway

configuration selection. For instance, let us consider two

feasible configurations that contain a common arrival (or

departure) runway. This common runway might contribute

identical unobserved effects to the configuration utilities,

rendering their error terms correlated. To mitigate this short-

coming, we consider advanced versions like the Nested Logit

(NL) and Cross-Nested Logit (CNL) models [9]. These

model structures permit error correlation within specified

subsets of alternatives as illustrated in the nested frameworks

shown in Figure 1. Here, four alternatives {alt1, alt2, alt3

and alt4} are grouped into two nests in (a) an exclusive

manner (NL representation), and b) an overlapping manner

(CNL representation) with alt2 shared between the two nests.

We also note that some nests can be singletons. In this

framework, under (a), alt1 and alt2 would have a common

component to the error terms, while alt2 and alt 3 would have

independent errors; under (b), alt2 would have a common

component of error with alt1, as well as with alt3 and alt4.

Fig. 1. (a) NL model framework; (b) CNL model framework.

The expressions for alternative probabilities for the NL and
CNL models, and their comparisons with the MNL model
are described in [9]. For example, the selection probability
for alternative alt1 in the NL model (Figure 1 (a)) is given
by

P(alt1|{alt1,alt2,alt3,alt4}) =P(alt1|N1)∗P(N1|{N1,N2}) (5)

where
P(alt1|N1) = eµN1∗Valt1

∑ j:c j∈{alt1,alt2}e
µN1∗Vj

, P(N1|{N1,N2}) = eVN1

eVN1+eVN2

VN1 =
1

µN1
∗ log∑ j:c j∈{alt1,alt2} eµN1∗V j

, and similarly for VN2.

Here, the scale parameters µN1 and µN2 provide a measure

of the magnitude of error correlation among alternatives

within nests N1 and N2 respectively. We investigated the

use of all three models (MNL, NL and CNL) for the airport

configuration choice problem through appropriate statistical

tests.

B. Estimation framework

The model parameters (α , β in Equation (2)), which are

the coefficients of the observed influencing factors Xin on the

alternative utilities Uin, are estimated using the maximum-

likelihood approach. The likelihood of a given choice ob-

servation is simply the probability of selecting the observed

choice given the values of the model parameters (α , β ) and

influencing factors (Xin). The likelihood function for an entire

dataset of choice observations (say, over N time periods)

is the joint probability of observing the sequence of choice

decisions recorded, or in other words

L (α,β ) = P((c1|C1)
⋂

....

⋂
(cN |CN)|α,β ,X) (6)

where ci is the selected alternative, and Ci is the set of

available alternatives for ith observation, i ∈ 1,2, ..,N.

We make the additional assumption that the choice obser-

vations (at each time) are conditionally independent given

the values of the explanatory factors Xin. This allows us

to express the likelihood function presented in Equation

(6) as the product of the likelihood of individual choice

observations:

L (α,β ) =
N

∏
i=1

P(ci|Ci) (7)

where P(ci|Ci) is given by Equation (4) for the MNL model

or Equation (5) for the NL model.
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The parameter estimates (α̂, β̂ ) are those that maximize

this likelihood:

(α̂, β̂ ) = argmax
α ,β

L (α,β ). (8)

Likelihood-maximization is a nonlinear optimization prob-

lem. In this study, we used BIOGEME ([10]), a freeware

package that specializes in estimating discrete-choice models

through customized in-built algorithms.

C. Model specification and structure development

Model specification refers to the exact functional form of

the systematic utility component Vin, comprising of the ob-

served influencing factors Xin. The specification is developed

through iterative consideration of candidate factors affecting

the choice behavior. Standard hypothesis testing procedures

help assess the statistical significance of every new fac-

tor considered (Likelihood-ratio test for nested hypothesis

testing [9], and Cox composite model test for non-nested

hypothesis testing [11], [12]). The structure of a discrete

choice logit model refers to the particular correlation struc-

ture adopted for the alternative error terms εin. As mentioned

earlier, MNL, NL and CNL models were all considered in

this study. Established hypotheses tests (Hausman-McFadden

test [13]), help ascertain the statistical validity of structural

enhancements offered by the NL or CNL model over the

MNL model.

D. Validation

The final step in any empirical model-building process is

the evaluation of its predictive capabilities in comparison to

a different, typically simpler, model that serves as the base

framework. Both the proposed and base models are applied

upon a validation dataset, using parameters estimated from a

common training dataset, and their predicted probabilities are

assessed, through well-defined metrics, for their proximity

to the actual observed choices in the validation dataset. The

definition of the baseline model is critical to the outcome of

the validation task. In this study, we adopt a probabilistic

model depicting configuration selection as a Markovian

transition process to be the base model [14].

The following section presents the details of the applica-

tion of the proposed technique to the configuration selection

process at LGA and EWR airports, as well as the associated

results and inferences.

III. CASE STUDY: LGA AND EWR AIRPORTS

A. Training data set

The training data set comprised of the 15-minute aggregate

ASPM records for the year 2006, which provide for each 15

minute interval, the chosen configuration as well as other

prevailing airport conditions such as weather, demand, etc.

Configuration selection is assumed to occur at every 15-min

interval. Operational data for hours from midnight to 6 am

were excluded from the data set, since it is apparent from

conversations with air traffic controllers that reporting during

these periods is more prone to errors. Feasible configurations

for each time period were determined by the set of runways

that did not exceed the FAA-specified safety thresholds for

tail-winds (5 kn) and cross-winds (30 kn). Observations

featuring operation of infeasible runway configurations (most

likely reporting errors) were also excluded from the data set.

B. List of candidate influencing factors and expected impact

on configuration selection

There are several factors that potentially influence the

choice of configuration (from among the feasible options)

in any time period. The following factors were explicitly

included in the utility functions of the discrete choice model:

• Inertia: Configuration changes are a fairly involved

procedure, require extensive coordination among the

different airport stakeholders, and are thought to cause a

loss in airport throughput [5], [6]. For these reasons, the

configuration from the previous time interval is likely to

be favored pending other considerations, and its utility is

therefore expected to increase on account of this inertial

factor.

• Head-wind speeds: It is hypothesized that higher head-

wind speeds are favorable for both arrival and depar-

ture operations, and therefore increase the utilities of

the respective configurations. In this study, we use a

combination of current and forecasted wind conditions

as the measure of the influencing factor. In the absence

of information on the actual forecast used by airport

planners, the observed wind speeds over the immediate

future of every time period is used as a reliable proxy.

• Arrival/departure demand: During periods of signifi-

cantly high total (arrival+departure) demand, a high-

capacity configuration is likely to be favored. The

capacity envelopes for the configurations observed in

LGA and EWR were acquired from prior work [15].

• Noise abatement procedures: In accordance to FAA

procedures, certain runway orientations (and therefore

configurations) are to be avoided during applicable time

periods. The Standard Operating Procedures (SOPs) for

the NY airports identify the overnight hours (10pm-

7 am) for activating the noise mitigation measures,

and time-specific variables are accordingly defined for

the configuration utilities in this study. The pruning

of observations between midnight and 6 am from the

estimation data set reduced the sample space over which

the noise mitigation measure is active; however, we

believe that the estimation data set was large enough

to compensate for this reduced sample size.

• Configuration switch proximity: Configuration changes

require increased coordination and disrupt the flow of

aircraft on the surface, and authorities might be inclined

to minimize the level of effort involved. For example, a

configuration change that only requires the addition of a

departure or arrival runway may be easier to implement

than a change that needs to change the direction of

arrival flows entirely. In this study, we equate the type

and magnitude of the change to the incident angles

between the respective arrival and departure runways
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of the preceding and succeeding configurations. We

thereby define six distinct possible switch types and

study their relative preferability through appropriate

categorical variables. For example, the configuration

change which results in a 90deg reorientation of the

arrival runway and a 180deg reorientation of the depar-

ture runway is denoted (90,180).
• Inter-airport coordination: In multi-airport terminal-

areas such as New York, arrival and departure flows

into the different airports must be coordinated. We

therefore investigate the effect of JFK’s configuration

on the concurrent choices for LGA/EWR. We define

categorical variables representing interactions between

distinct pairs of runway orientations at JFK and at

LGA/EWR. Since airport authorities follow runway-

specific airspace routes for landing and takeoff oper-

ations, the existing interactions among the routes from

every pair of runways from the two neighboring airports

can be estimated through this set of variables.

C. Estimation of discrete-choice models and utility functions

As explained in the methodological overview, the utility

specifications and error structures were developed and sta-

tistically verified through a sequence of tests. The details of

the resultant models are discussed below.

1) LGA results: The training data set had a total of 17,716

choice observations post-filtering (i.e., data from 17,716

time periods), featuring a total of 10 distinct configuration

alternatives. The final model has a NL structure with two al-

ternative nests, grouping configurations with arrival runways

4 and 13 respectively as illustrated in Figure 2. The other

configurations are modeled as singleton nests.

Fig. 2. Layout of LGA, along with the estimated NL structure for LGA
configuration selection (for year 2006).

The results of the utility coefficients are tabulated in Table

I, along with the corresponding t-statistics in parenthesis. We

note that when the absolute value of the t-statistic exceeds

1.96, the estimate of that parameter can be deemed statisti-

cally significant. As can be observed, our previously outlined

apriori hypotheses are corroborated by the estimation results

in the case of inertial effects and headwind speeds. While the

tasks of interpreting the estimates for the switch category and

the JFK configuration coordination variables are ambiguous

due to the lack of clear apriori understanding, we have

attempted a comparison with the estimates obtained on

application of the same specification on ASPM data from

another year. The estimates for these variable types seem

to exhibit consistency across the two years, thereby offering

credibility to their values.

1. Inertial

Only for config. from prev. time step (incumbent) +5.31 (71.6)

2. Headwind speed

Arrival runway 0.043 (9.2)

Departure runway 0.026 (4.67)

3. Demand

For crossing runway (high-capacity config) 1.65 (9.25)

4. Noise abatement

Runway 31 for morning 6-8 am 1.22 (6.3)

Runway 4 for evening 10 pm - 12 am 0.911 (4.1)

Runway 31 for evening 10 pm - 12 am -0.331 (-1.58)

5. Switch proximity

Angle of incidence (90,180) -1.75 (-7.49)

Angle of incidence (180,180) -1.99 (-4.40)

6. Coordination with JFK

Departure runways (4@LGA vs 4@JFK) 0.524 (2.1)

Departure runways (13@LGA vs 13@JFK) -0.404 (-1.37)

Departure runways (13@LGA vs 22@JFK) -0.586 (-1.68)

Dep. runways (13@LGA vs 31@JFK) -1.05 (-3.59)

Arrival Runways (22@LGA vs 31@JFK) -1.22 (-6.71)

Arrival Runways (31@LGA vs 4@JFK) -0.47 (-2.02)

Departure Runways (31@LGA vs 22@JFK) 0.949 (4.07)

TABLE I

ESTIMATED UTILITY FUNCTIONS (VALUES OF β ) FOR THE

DISCRETE-CHOICE MODEL OF CONFIGURATION SELECTION AT LGA.

The bar plots in Figure 3 depict how the estimated

coefficients translate to configuration choice probabilities.

We restrict our discussion to prominent runway configura-

tions: 4|4, 31|31, 4|13, 22|13, 22|31 and 31|4. We construct

hypothetical scenarios for illustrating the trade-offs between

switch proximity, wind favorability and operational capacity

as configuration selection criteria. We assume VFR operating

conditions, the simultaneous configuration at JFK to be its

most prominent (31R|31L), and a time period with no noise

abatement regulations. Within this set of conditions, we

consider two demand scenarios, low (demand coefficient not

applicable) and high (demand coefficient applicable). Assum-

ing the current incumbent runway configuration at LGA to be

31|31, we examine the relative selection probabilities of the

prominent configurations at LGA for wind speeds of 40 kn

varyingly aligned along runways 31, 22 and 13 respectively.

Firstly, we note that the probabilities presented for non-

incumbent configurations are measured relative to each other

(i.e, conditioned on the non-selection of the incumbent)

to facilitate reasonable comparison. We also append the

associated absolute selection probability for the incumbent
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Fig. 3. Relative configuration selection probabilities at LGA for described
hypothetical scenarios involving (a) Low demand, and (b) High demand.

configuration. For the low demand scenario (Fig. 3 (a)),

we observe that configurations with wind-aligned runways

are typically favored among the non-incumbents, with the

exception occurring when the wind blows along runway 13.

In this scenario, although the non-incumbent configurations

4|13 and 22|13 are ‘wind-favorable’ through their departure

runways, they would both require a less favorable switch

(type 4) from the incumbent configuration 31|31, which

reduces their desirability. Also, inertia effects ensure the

incumbent configuration (31|31) has a high probability of

being retained for all three wind directions, although this

probability progressively reduces as wind directions become

less favorable.

For the high demand scenario (Fig. 3 (b)), configura-

tions with crossing runways (4|13, 22|13, 22|31 and 31|4)

dominate among the non-incumbents, while the retention

probability for the incumbent also comparatively reduces,

highlighting how the increased importance of higher capac-

ity configurations overrides other considerations including

switch proximity.

2) EWR results: The training dataset had a total of 23,506

choice observations post filtering, featuring a total of 20

distinct configuration alternatives. The final model had a

NL structure with one nest for a well-defined subset of

alternatives as depicted in Figure 4. The nest groups together

all EWR configuration alternatives with an additional arrival

runway. The implication of this nesting is that configurations

with an additional arrival runway share commonalities in

terms of unobserved factors influencing their preferences.

The results of the utility coefficients are tabulated in Table

II, along with the corresponding t-statistics in parenthesis.

Once again, we note that when the absolute value of the t-

statistic exceeds 1.96, the estimate of that parameter can be

deemed statistically significant.

Once again, our stated apriori hypotheses for inertia and

wind effects are largely substantiated by the estimation

results. Additional wind speed coefficients are introduced

to capture effects on the supplementary (extra) runways

1. Inertia

Only for config. from prev. time step (incumbent) +4.86 (6.73)

2. Headwind speed

Primary Arrival runway 0.051 (4.28)

Primary Departure runway 0.04 (2.91)

Extra Arrival runway 0.02 (3.19)

3. Demand

For parallel runway configuration (when
1.042 (7.99)

demand exceeds crossing runway config. capacity)

For configurations with extra arrival runway (when
0.447 (3.72)

demand exceeds unhindered arrival capacity)

For configurations with extra departure runway (when
2.32 (9.44)

demand exceeds parallel runway config. capacity)

4. Noise abatement

Runway 11 for morning 6-8 am -1.7 (-7.38)

Runway 29 for morning 6-8 am -1.73 (-5.82)

5. Switch type

Angle of incidence (0,90) -0.728 (-3.16)

Angle of incidence (90,90) -1.28 (-2.02)

Angle of incidence (0,180) -1.91 (-3.29)

Angle of incidence (90,180) -2.12 (-2.80)

Angle of incidence (180,180) -0.407 (-3.92)

6. Coordination with JFK

Dep. Runways (4@EWR vs 31@JFK) 0.826 (2.35)

Dep. Runways (22@EWR vs 4@JFK) -0.615 (-1.32)

Dep. Runways (22@EWR vs 13@JFK) -1.14 (-2.35)

Dep. Runways (29@EWR vs 13@JFK) -0.694 (-2.73)

Arr. Runways (4@EWR vs 22@JFK) -1.25 (-3.07)

Arr. Runways (11@EWR vs 13@JFK) 0.437 (2.57)

Arr. Runways (11@EWR vs 31@JFK) 0.576 (2.84)

Arr. Runways (22@EWR vs 13@JFK) 1.2 (2.95)

Arr. Runways (22@EWR vs 22@JFK) -0.94 (-2.63)

Arr. Runways (29@EWR vs 13@JFK) 1.13 (4.08)

Arr. Runways (29@EWR vs 22@JFK) 0.449 (1.66)

Arr. Runways (29@EWR vs 31@JFK) 1.22 (4.17)

TABLE II

ESTIMATED UTILITY FUNCTIONS (VALUES OF β ) FOR THE

DISCRETE-CHOICE MODEL OF CONFIGURATION SELECTION AT EWR.

independent of the primary runways for configurations fea-

turing more than one arrival or departure runway. Also, the

estimates for the switch category and the JFK configuration

coordination variables were cross-verified with those ob-

tained for year 2007 to assess their credibility. The estimates

for these variable types exhibit reasonable consistency across

the two years, thereby corroborating their validity.

For EWR, we graphically demonstrate the trade-offs be-

tween switch proximity, demand-capacity inter-relationship

and coordination with JFK in configuration selection, as im-

plied by the parameter estimates. As with LGA, we construct

hypothetical scenarios controlling for other factors such as

wind speed and direction (20 kn along runway 11), visibility

conditions (VFR), and noise abatement stipulations (not

present). We restrict our attention to the prominent configu-

rations (4R|4L; 4R,11|4L; 4R,29|4L; 22L|22R; 22L,11|22R;

22L|22R,29) and assume 4R|4L to be incumbent configu-

ration. We consider three demand scenarios (when demand

exceeds crossing runway configuration capacity, when de-

mand exceeds unhindered (or free) arrival capacity, and

when demand exceeds parallel runway config. capacity) each

in conjunction with the two most prominent JFK runway

configurations: 31R|31L and 13L|13R. As with LGA, we
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Fig. 4. Layout of EWR, along with the estimated NL structure for EWR configuration selection (for year 2006).

measure the relative selection probabilities for the non-

incumbent configurations conditioned on the non-selection

of the incumbent.
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Fig. 5. Relative configuration selection probabilities at EWR for described
hypothetical scenarios with JFK configuration as (a) 31R|31L, and (b)
13L|13R.

When JFK is operating 31R|31L (Fig. 5 (a)), we note

that configuration 4R,11|4L dominates among the non-

incumbents across all demand scenarios, owing to its switch-

ing proximity relative to the incumbent as well as favorable-

ness under given JFK configuration (note the positive values

of coefficients for Arr. runways (11@EWR vs 31@JFK)

and Dep. runways (4@EWR vs 31@JFK)). Configuration

22L,11|22R is second-best due to the switching disutil-

ity relative to the incumbent (switch angle of incidence

(180,180)). Configurations featuring runway 29 are least

preferred due to adverse wind direction. Configurations with

additional arrival runway (like 4R,11|4L) are more preferable

when when demand exceeds unhindered arrival capacity,

while configurations with additional departure runway (like

22L|22R,29) are more preferable when demand exceeds

parallel runway configuration capacity. When JFK oper-

ates 13L|13R (Fig. 5 (b)), the dominant non-incumbent is

22L,11|22R, which is now favored by the JFK configuration

(note coefficients for Arr. runways (22@EWR vs 13@JFK)

and Arr. runways (11@EWR vs 13@JFK) are both positive),

overriding switch proximity considerations. Also, we note

the preference for the configuration with additional departure

runway (22L|22R,29) remains suppressed even when de-

mand exceeds parallel runway configuration capacity, since

the JFK configuration strongly inhibits it (negative sign for

coefficient for Dep. runways (29@EWR vs 13@JFK)).

D. Model validation

This section describes the validation of the proposed

configuration selection model and its parameter estimates.

The validation analysis compares the quality of configuration

selection predictions for an external test data set between the

estimated discrete choice model and a simpler model (termed

base model) respectively. The test set consisted of ASPM

data records from 2007 for the study airports, refined using
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same filters applied for the training data set (2006 ASPM

records). The base model structure is described in the next

section, following by a brief discussion of the validation

results.

1) Base Model: The use of the discrete choice modeling

framework enables the incorporation of relevant influencing

attributes like weather conditions, demand, etc. in deter-

mination of configuration selection probability. However, a

more rudimentary approach might compute explicitly, using

available empirical evidence, the probability of a particular

configuration being chosen conditional on the configuration

in effect in the previous time interval. Such an approach

would effectively generate a transition probability matrix

∆, where an element ∆(i, j) would represent the estimated

probability of configuration j being chosen for any time

interval t, given that configuration i was active in time

interval t − 1. Peterson (1992) describes an identical model,

based on the Markovian premise, for representing airport

capacity dynamics featuring finite capacity states. We repli-

cate his empirical estimation procedure to develop parameter

estimates for the base model.
Given Ct ∀t = {1,2, ...T};Ct ∈ {1, ...,Nc}, where T is the

total number of time intervals, Nc is the total number of
possible configurations, and Ct is the configuration selected
at time t, then

∆(i, j) =
∑T

t=1 (Ct == j)∧ (Ct−1 == i)

∑T
t=1Ct−1 == i

∀i, j ∈ {1, ..,Nc}. (9)

Note that the above estimation framework implies a discrete

choice model (MNL) where the configuration utilities are

defined as the aggregation of Nc − 1 time-invariant categor-

ical variables, each serving as an indicator of the runway

configuration in the previous time-step. Other explanatory

factors like weather, demand, etc. are not considered in the

base model.

2) Validation Results: In this study, we aggregate pre-

dicted configuration probabilities to compare the model

predictions to the actual observations. Since typical airport

configuration planning horizons are of the order of 3 hours,

we consider the predicted probabilities conditioned on the

configuration observed 3 hours before, and not the previous

15-min time period.

Suppose obs ct denotes the observed configuration for

time-step t. The aggregate predicted probability (agg pri) for

configuration i is calculated as:

agg pri =
∑t:obs ct=i P(ct = i|ct−12 = obs ct−12)

∑t:obs ct=i 1
(10)

where the prediction probability P(ct = i|ct−12 = k) is com-
puted recursively in the following manner:

P(ct = j|ct−12 = k) =
Nc

∑
i=1

P(ct = j|ct−1 = i)P(ct−1 = i|ct−12 = k)

P(ct−1 = i|ct−12 = k) =
Nc

∑
m=1

P(ct−1 = i|ct−2 = m)P(ct−2 = m|ct−12 = k)

The absolute prediction quality would naturally deteriorate

as we increase the length of the look-ahead duration currently

set at 12 (no. of 15 min intervals in 3 hours). However, it

should not influence the relative comparison of the prediction

qualities of the discrete choice models and their correspond-

ing base models. The aggregate validation measures of this

comparison are presented below (Table III for LGA, and

Table IV for EWR). The results are partitioned for two

disjoint data segments, the first representing observations

from time periods that are not within 3 hours of a switch, and

the second representing time periods in the temporal vicinity

of (i.e., within 3 hours before or after) a switch. We present

results for the most frequently used configurations at each

airport. The validation tables show the aggregate probability

of a runway configuration being correctly predicted, both

near and away from configuration switches. We note that

the aggregate probabilities in the vicinity of a switch are

conditioned on the event of a switch. A perfect prediction

mechanism would have an aggregate probability equal to 1.

Outside temporal vicinity of switches

Correct prediction

Config Frequency Base Discrete-Choice

22|13 4403 0.81 0.95

22|31 3725 0.73 0.92

31| 4 2989 0.77 0.90

4|13 2339 0.74 0.91

31|31 1211 0.61 0.70

4|4 599 0.50 0.69

Within temporal vicinity of switches

Config Frequency Base Discrete-Choice

31|4 1103 0.48 0.71

22|31 1043 0.50 0.74

22|13 1024 0.55 0.76

4|13 569 0.47 0.58

31|31 403 0.31 0.57

4|4 135 0.31 0.44

TABLE III

VALIDATION RESULTS FOR LGA (AGGREGATE PROBABILITIES OF

CORRECT CONFIGURATION PREDICTION FOR 2007 DATASET). NO. OF

PARAMETERS IN BASE MODEL = 100; NO. OF PARAMETERS IN

DISCRETE-CHOICE MODEL = 36.

The validation results show that the predictions generated

by the discrete-choice model are significantly better than

those of the base model, in spite of the considerably smaller

number of parameters required by the discrete-choice model.

This result highlights the richer use of empirical information

achieved by the discrete choice model. The fact that the

improvement in prediction accuracy is consistent across the

two disparate sets of observations (near and away from

configuration switches) demonstrates the superiority of the

discrete-choice model in predicting the timing of configu-

ration switch as well as the continuation of the incumbent

configuration if the prevailing conditions don’t motivate a

switch. In general, the quality of prediction is lower in

the vicinity of configuration switches due to the inertia

term biasing predictions towards incumbent configurations.

Similarly, we note that the model performs relatively poorly

in predicting configurations that are used more infrequently.
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Outside temporal vicinity of switches

Correct prediction

Config Frequency Base Discrete-Choice

22L|22R 6583 0.88 0.87

4R|4L 4173 0.84 0.87

22L,11|22R 1686 0.77 0.94

4R,11|4L 1087 0.74 0.88

4R,29|4L 715 0.74 0.81

31|4 211 0.52 0.16

Within temporal vicinity of switches

Config Frequency Base Discrete-Choice

22L|22R 2073 0.70 0.73

4R|4L 1303 0.65 0.73

22L,11|22R 799 0.32 0.76

31|4 573 0.24 0.21

4R,11|4L 505 0.40 0.74

4R,29|4L 336 0.29 0.70

TABLE IV

VALIDATION RESULTS FOR EWR (AGGREGATE PROBABILITIES OF

CORRECT CONFIGURATION PREDICTION FOR 2007 DATASET). NO. OF

PARAMETERS IN BASE MODEL = 400; NO. OF PARAMETERS IN

DISCRETE-CHOICE MODEL = 57.

IV. CONCLUSIONS

Runways are a critical capacity bottleneck in the air

transportation system, and runway configuration selection is

a key driver of airport capacity. To the best of our knowledge,

this paper presented results of the first effort to learn models

of the configuration selection process using operational data.

The proposed approach estimated a maximum-likelihood

discrete-choice model of the configuration choice process.

The dependence of the configuration choice upon influencing

factors like weather, arrival and departure demand, noise

mitigation directives, coordination with neighboring, etc.

was identified and quantified. The proposed discrete-choice

modeling framework was applied to two major airports in

the NY metroplex system, LGA and EWR. The estimated

utility functions reinforced many of the a priori expectations

regarding the impact of the selected influencing factors. Val-

idation of the proposed model showed that the probability of

correct configuration choice prediction was more than 0.8 for

the more frequently used configurations, during time periods

away from configuration changes. For the most frequently

observed configuration at LGA, the probability of correct

prediction was 0.95. While the predictive performance dete-

riorated in the vicinity of switches, the probability of correct

prediction was more than 0.7 for the most frequently used

configurations at both airports. The validation also showed

that although the discrete-choice model required fewer pa-

rameters than a baseline Markovian model of configuration

change, the former had superior predictive capabilities. The

proposed models can be used for the simulation of airport

operations, as well as to design and evaluate the benefits of

configuration selection decision-support tools.
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