
  

  

Abstract— We present a hybrid cellular-tumor level model 
of brain tumor progression. The model describes tumor 
progression as the collective outcome of individual tumor cells, 
the behavior of which is governed by the interplay of 
intracellular signaling pathways (i.e., MAPK pathway) and the 
spatial-temporal distribution of key biochemical cues (e.g., 
oxygen, growth factors). The model is deployed to simulate the 
effect of different schedule-dose combinations of a 
chemotherapeutic agent (i.e., temozolomide) on tumor growth 
in murine orthotopic models of glioma. Simulation results are 
in good quantitative agreement with experimental 
measurements. In addition, the model is used to predict the 
outcome of alternative treatment strategies. Model simulations 
can be helpful for designing more efficient treatment strategies. 

I. INTRODUCTION 
rimary brain tumors are a varied group of intracranial 
neoplasms originating from different tissues of the 

central nervous system with different degrees of 
malignancy. The most common of these tumors are the 
gliomas, which account for nearly 50% of all cases [1]. A 
type of glioma, known as glioblastoma multiforme or just 
glioblastoma, is the most frequent and lethal of the brain 
tumors [2] and it is estimated that represents approximately 
80% of the malignant brain tumors [3]. Glioblastomas are 
characterized by a high rate of uncontrolled proliferation. In 
general they exhibit necrotic regions, marked angiogenesis, 
asymmetrical infiltrating invasiveness and they are highly 
refractory to radio/chemotherapy.  

Current glioblastoma treatments include supportive care 
to alleviate symptoms of the disease (e.g., cerebral edema, 
seizures, cognitive dysfunctions, etc.) and local and/or 
systemic therapies to ablate the tumor. Anti-tumor therapies 
traditionally involve surgical resection followed by 
radiotherapy and chemotherapy. However, almost all 
glioblastoma patients relapse after initial therapy and the 
median overall survival is about 15 months, only modestly 
improving over the last 25 years [4]. 

Temozolomide (TMZ) is a cytotoxic drug approved by 
the FDA for the treatment of anaplastic astrocytoma and 
glioblastoma [5]. Clinical trials documented a statistically 
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significant survival benefit of the use of temozolomide in 
combination with radiotherapy for the treatment of newly 
diagnosed glioblastomas [6]. However, the emergence of 
various resistant mechanisms have limited the efficacy in the 
management of high-grade gliomas. This has motivated a 
number of studies to increase the efficacy of the treatment. 
These studies reported that the efficacy of TMZ is highly 
schedule-dose dependent [7]. 

A major factor in treatment failure is the diffuse 
infiltration of highly invasive tumor cells into the 
surrounding tissue from the early stages of tumor 
development, generally resulting in recurrence just a few 
months after surgery [4, 8]. This has stirred considerable 
efforts to elucidate the underlying mechanisms of the 
perivascular migration of cancer cells at the molecular [9, 
10], cellular [11, 12] and tumor [13] levels. These studies 
have provided important insights about the tumor cell 
invasion process. However, the decryption of tumor 
invasiveness is still ongoing and it requires that tumor cell 
migration be investigated in concert with other biological 
processes such as cellular proliferation, necrosis, host vessel 
co-option and angiogenesis, and external factors such as 
treatments. 

Mathematical modeling of tumor progression has been an 
active area over the last years. A large number of models 
have been published with focus on varied aspects of the 
tumor progression and with different levels of detail. Some 
models consider only tumor growth while others incorporate 
other processes such as angiogenesis or the effect of a 
therapeutic agent. From the mathematical point of view, 
models can be classified according to the modeling approach 
they deploy. Two major categories are continuum based and 
discrete based models whereas their combination gives rise 
to an important third category of hybrid continuum-discrete 
models. A comprehensive review of the abundant literature 
in this field is out of the scope of this work. The reader may 
refer to reviews focused on modeling of tumor growth [14-
16], continuum based models [17], discrete based models 
[18], tumor-induced angiogenesis[19-22] , tumor therapy 
[23] and brain tumors [24-28] for more information.  

In this work, we develop a hybrid multi-scale agent based 
model to simulate the progression of a brain tumor (i.e., 
glioblastoma). We describe tumor progression as the 
outcome of the evolution in space and time of a collection of 
tumor cells that dynamically interact with their environment. 
The model integrates the dynamics of key biological 
processes occurring at the cellular and tumor levels. We 
deploy the model to investigate the effect of temozolomide 
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(a chemotherapeutic agent) dosing and scheduling in the 
progression of the tumor. First we validate the model against 
data from experiments with orthotopic models of glioma [7] 
and then we use the model to predict the outcome of 
alternative therapeutic strategies. 

II. MODEL DESCRIPTION 
The model consists of two interdependent components, 

which describe processes at the cellular and tumor levels, 
shown pictorially in Fig. 1. At the cellular level, the state of 
individual tumor cells is governed by a set of rules 
depending on their local environment (i.e., concentrations of 
oxygen, VEGF, and TGFα) and intracellular signaling 
pathways (i.e., MAPK signaling pathway). The tumor level 
component determines the spatio-temporal distribution of 
the key biochemical cues. The two components are 
connected through the interchange of information required 
to solve the whole model. Specifically, the local 
concentration of biochemical cues for every tumor cell is 
obtained from the solution of the tumor level component 
whereas the production and consumption terms for the 
tumor level component are determined by cellular level 
component. 

A. Tumor level model component  
The tumor level model captures the spatio-temporal 

distribution of extracellular species and tumor cells within 
the simulation domain. The profiles of the chemical species 
are described by a set of PDEs. Tumor cells are treated as 
discrete entities (i.e., agents). We follow a lattice-free 
approach to determine the location of the tumor cells. The 
simulation domain (Ω) is a cubic region of the white matter 
of dimension 12×12×12 mm3, which is chosen large enough 
to minimize the effect of the boundary conditions on 
chemical species concentrations. During the simulations, we 
record the spatio-temporal distribution of oxygen, TGFα, 
VEGF, and temozolomide as well as the state of every tumor 
cell. The state of each tumor cell is defined by its phenotype, 
location, cellular mass and the activation level of its MAPK 
pathway (i.e., phosphorylation level of ERK (ERKact)). 

The concentration of extracellular species is considered to 
be continuous fields described by a set of PDEs: 
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with boundary conditions:                      
 

Γ∈=∇⋅ iii CCD ,0)(n , (2) 
 

where for species i, iC  is its extracellular concentration, iD  
is its diffusion coefficient, i

TK  is its supply rate from the 
blood vessels, and ik  is its consumption rate constant 
(assuming first order process for all the species). The source 
term )(⋅iS  refers to the production of TGFα and VEGF by 
tumor cells and depends on the activation level of the 

MAPK pathway and the metabolic state of the tumor cells at 
the location z. Ω  is defined as the computational domain of 
the PDEs and Γ  is the boundary of Ω  while n is the normal 
vector to Γ . No-flux boundary conditions are assumed. The 
parameters of the tumor level model are collected from the 
open literature when available or estimated to approximate 
reported levels in the brain of the chemical species 
considered. 

The location of tumor cells is determined by solving the 
following optimization problem: 
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where Tiid , ijd , and ikd  are the distance between tumor cell i 
and its target position, tumor cell j and blood vessel k, 
respectively. cr  and vr  are the nominal radius of tumor cells 
and blood vessels, respectively. )(⋅u  is the step function and 

sw'  are constant weights. The target position for quiescent 
and proliferating cells is their current positions whereas the 
target position for the migrating cells is determined by their 
chemotaxis response and is computed as: 

 

iii
T
i a dxx += 0 , (4) 

 

where 0
ix  is the current position of migrating tumor cell i 

and id  is the direction (unit) vector and ia  migrating 
distance. The direction vector is computed from a weighted 
sum of the oxygen and VEGF (as a surrogate of a 
chemorepellent) gradients. The migrating distance is derived 
from the individual tumor cell velocity, which is sampled 
from a normal distribution in accordance with experimental 
observations [29]. 

B. Cellular level model component   
At the cellular level, tumor cell phenotype and migratory 
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Fig. 1.  Components of the model of brain tumor progression. 
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behavior is determined by its local environment. Tumor cells 
require a minimum level of nutrients to thrive whereas the 
transduction of signaling cues regulates their phenotype (i.e., 
migratory or proliferative). It has been observed that the 
growth factor-induced phosphorylation of a downstream 
component of the MAPK signaling pathway (i.e., ERK) 
correlates with the migratory and proliferative behavior of 
tumor cells [30]. The MAPK signaling pathway can be 
triggered by several different growth factors, including 
TGFα. The cellular level model consists of a set of rules 
governing the behavior of tumor cells (Fig. 2). In brief, 
tumor cell phenotype depends on the activation level of the 
MAPK pathway and the availability of nutrients, whereas 
the migration direction depends on the response of migrating 
cells to chemical gradients. Furthermore, we assume that the 
tumor cells do not sense the chemotactic gradients with 100 
% certainty. Thus we determine the migrating direction 
randomly from the half-space defined by the exact migrating 
direction and the perpendicular plane passing through the 
cell position as: 

 

i
e
ii pdd += , (5) 

vioi
e
i b ,, ggd += , (6) 

 

where e
id and id are the exact and actual migrating 

directions, ip is a random perturbation, oi,g and vi,g are the 
gradients of oxygen and VEGF at the location of migrating 
tumor cell i and b is a constant. 

C. Effect of temozolomide on tumor cells 
We use the data from the in vitro experiments of the 

effect of TMZ concentration on the proliferation of C6/lacZ 
cells [7] to estimate the killing rate as a function of the TMZ 
concentration. To determine the relation between TMZ 
concentration and the killing rate, we assume that the in 
vitro growth of both cell lines is described by the following 

system of ODEs [31]: 
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where p and q  are the number of proliferating and 
quiescent cells, respectively. 1k , 2k and )( TMZCβ  are the 
transition rate from quiescent to proliferative, the mitosis 
rate and the killing rate as a function of the TMZ 
concentration, respectively. We use this two population 
model instead of the total population model to take into 
account that TMZ only affects proliferating cells. The 
parameters 1k and 2k where estimated [31] by fitting the 
model to experimental data [32] assuming a constant ratio of 
the proliferative to quiescent cells [33]. )( TMZCβ  is assumed 
to be a sigmoidal function (Gompertz function). The model 
(Eq. 7) was fitted to the data of the effect of TMZ on tumor 
cell proliferation to estimate the parameters of )( TMZCβ .  

III. SIMULATION RESULTS 
Kim et al., [7] evaluated the antitumor effect of different 

schedule-dose combinations of TMZ through in vivo 
orthotopic rat models of glioma. C6/lacZ tumor cells, a 
tumor rat-derived cell line that shows infiltrative growth in 
the brain (attc.org), were injected in to the white matter of 
Sprague-Dawly rats. The implanted tumors were treated 
with different schedule-dose combinations and the volume 
of the tumors was reported. We use the model to simulate 
the effect of TMZ on the progression of orthotopic models 
of glioma. Subsequently, we deploy the model to predict the 
outcome of alternative treatment strategies. 

A. TMZ treatments of C6/lacZ tumors 
We simulate the effect of three different schedule-dose 

combinations on the growth of C6/lacZ tumors. The 
schedule-dose combinations are given in Table I. Fig. 3 
shows the experimental and predicted tumor volume at day 
17 after implantation. As can be seen, the model predictions 
are in good quantitative agreement with the experimental 
data. Most importantly, the model is able to capture the 
relative efficacy of the different treatment modalities. 
Moreover, the simulations provide insights regarding the 
progression of the tumors. 

Fig. 4 shows the time evolution of the treated tumors. At 
the early stages, the three treatments show a significant 

 
Fig. 2.  Phenotype transitions tumor cells. Dice indicate stochastic 
processes. 

TABLE I 
SIMULATED TMZ TREATMENTS 

Treatment Schedulea TMZ dose (mg/kg) 

A0 Control  
A1 1:16  1 
A2 1:16 2 
A3 7:11 7 

aInitial and last day of consecutive treatment since tumor 
implantation. 
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retardation of tumor growth. However, the ratio of the 
volume of treated tumors to the untreated one eventually 
stabilizes for treatments A1 and A2. This result has a 
noteworthy implication if this trend would continuo for 
longer time. A simplified analysis, based on the observation 
that the simulated tumors approximately follow an 
exponential growth, a constant ratio of the volume of the 
treated to the untreated tumor, implies the following 
relationship between the growth rate constants: 

 

a
tTMZ ln1

0 += μμ , (8) 

 
where TMZμ  and 0μ  are the growth rate constants of the 
treated and untreated tumors and a  is the constant volume 
ratio at later times. This relation (Eq. 8) suggests that as time 
increases the growth rate of the treated tumors approaches 
the growth rate of the untreated tumor regardless of the 
continuous administration of the drug at these 
concentrations. 

B. Simulation of alternative treatments of TMZ  
We deploy the model to simulate the outcome of 

alternative TMZ treatment strategies on C6/lacZ tumors. We 
test different schedule-dose combinations using the same 

amount of TMZ as treatment A3 and compare the tumor 
volume at day 17 from implantation. The test treatment 
strategies are given in Table II. The time progressions of the 
tumors under the different treatments are shown in Fig. 5. Of 
all the test treatments, C1 and C5 show a considerable 
improvement compared to treatment A3. Clearly, the main 
advantage of treatment C1 over A3 is the early 
administration of the drug. At early stages, tumor cells are 
exposed to higher concentrations of TMZ because the 
attraction to the vessels dominates the response to 
chemorepellent(s). Moreover, a larger fraction of the tumor 
cells are proliferating and therefore the tumor is more 
susceptible to TMZ. The effect of treatment C1 is a delay on 
the growth of the tumor. By day 17, the tumor under 
treatment C1 (Fig. 6) is very similar to the untreated tumor 
at day 12 (not shown). 

Treatments C2 and C3 produced tumors of similar volume 
than treatment A3. However, the morphology of the tumor 
under treatment C2 shows a different aspect (Fig. 6). The 
tumor has a decreased cellular density across the tumor rim 
expect at the inner side which is formed mainly by quiescent 
cells. However, the tumor probably would become similar to 
the tumor under A3 after the suspension of treatment. 

Treatment C4 corresponds to the same schedule-dose than 
treatment A3 assuming that angiogenesis is completely 
blocked. Interestingly, blocking angiogenesis results in the  

 
Fig. 3.  Experimental and predicted volume of C6/lacZ tumors treated 
with TMZ. Experimental values represent the mean and the standard 
error [7]. A0 to A3 are the different treatments. See Table I for 
specifics. 

 
Fig. 4.  Time progression of the C6/lacZ tumors treated with TMZ. 
The tumor volume is normalized with respect to the untreated tumor. 
See Table I for the specifics of treatments A1, A2 and A3. 

TABLE II 
SIMULATED TMZ TREATMENTS 

Treatment Schedulea TMZ dose (mg/kg) 

C1 1:5 7 
C2 12:16  7 
C3 3, 6, 9, 12, 15 7 
C4b 7:11 7 
C5c 7:11 3.5 
aInitial and last day of consecutive treatment since tumor 

implantation. 
bSimulation with no-angiogenesis. 
cTwo doses daily. 

 
Fig. 5.  Time progression of the C6/lacZ tumors treated with TMZ. 
The tumor volume is normalized with respect to the untreated tumor. 
See Table I for the specifics of treatment A3 and Table II for 
treatments C1 to C5. 
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largest volume of the test treatments. This is a consequence 
of the more marked chemotactic gradients pointing away 

from the tumor core, promoting the invasiveness of the 
tumor. In simulations where angiogenesis is allowed, newly 

 

 

 
Fig. 6.  Cross sections of C6/lacZ tumors under TMZ alternative treatments. Quiescent cells, migrating cells, pre-existing vessels and newly 
formed vessels are colored in blue, green, magenta and red respectively. Gray indicates the location where necrosis has occurred.
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formed vessels attenuate the gradients of oxygen pointing 
outward the core of the tumor, retarding the invasive tumor 
cells. 

IV. DISCUSSION   
Complementing standard procedures (i.e., surgery 

followed by radiotherapy) with TMZ treatment resulted in a 
statistically significant therapeutic benefit (an increase in 
median survival by 2.5 months) [6]. However, the overall 
outcome is still dismal. The limited effect of TMZ in tumor 
progression has been attributed in part to the development of 
tumor resistance to TMZ [7]. It is believed that several 
mechanisms may be responsible for tumor resistance to 
TMZ. One of the most accepted hypothesis proposes that the 
resistance is associated with increased levels of the enzyme 
O-6-methylguanin-DNA methyltransferase (MGMT), which 
repairs the DNA lesions induced by TMZ. Patients that had 
an increased level of inactivated MGMT had an 
improvement on the median survival of about 6 months [5]. 
Our simulation results suggest that the tumors may become 
resistant to TMZ by a different mechanism. 

In our simulations of treatments of daily administration of 
TMZ, we observed that the ratio of the volume of the treated 
tumors to the untreated tumor stabilizes around a constant 
value depending on the TMZ dose. This implies that the 
growth rate (in terms of the volume of the tumor) of the 
treated tumor approaches the growth rate of the untreated 
tumor as time increases despite the persistent administration 
of TMZ. The mechanism of the resistance observed in our 
simulations depends on the response of the tumor cells to the 
harsh environment created by the collapse of the 
vasculature. The collapse of the vasculature is accompanied 
by an increase of tumor cells dwelling under hypoxia. These 
cells secrete a chemorepellent(s) that signals the tumor cells 
to flee from the hypoxic regions accelerating the expansion 
of the tumor. The balance of the promoting and inhibiting 
factors of tumor invasion resulted in the observed 
progression profiles in the simulations. The rate at which the 
growth rate of the treated tumors approaches the rate of the 
untreated one depends on the specific activity of TMZ 
against tumor cells. This specific activity can be increased 
by treatments targeting MGMT. According to these 
simulations, this would dampen the acceleration of the 
treated tumor but nevertheless the tumors would exhibit 
resistance to TMZ. 

In attempts to increase the efficacy of TMZ, different 
treatment strategies are being explored. These studies are in 
general lengthy and resource consuming. Therefore, it is 
desirable to maximize the generation of insights from the 
results in order to design new studies. Mathematical 
modeling can be a powerful tool to improve the 
understanding of the complex interaction between the 
multiple factors affecting the outcome of the studies. Here 
we demonstrated that the proposed model of tumor 
progression is able to simulate the effect of different 

treatment strategies in orthotopic models of glioma tumors. 
Analysis of the simulations shed light on the possible 
mechanisms responsible for the observed experimental 
results and can help to design alternative treatment strategies 
and estimate the limitations of the treatment. 
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