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Abstract— Building heating and cooling systems have poten-
tial for energy savings by employing passive devices that exploit
thermal stratification and buoyancy. The resulting thermal-
fluid flow patterns from such systems tend to be sensitive
to disturbances, and advanced flow control techniques are
important to maintain occupant comfort. In this work, we
employ Eigensystems Realization Algorithm (ERA) to obtain
low-order models of airflow in buildings, which capture relevant
dynamics and are amenable for control design. We present an
alternative interpretation that allows one to obtain models using
ERA, without resorting to lifting, an approach that is typically
used to introduce boundary control and boundary disturbances
explicitly in the reduced-order model. Using this reduced-order
model we derive an optimal control law in closed form (which is
composed of a feedforward and a feedback term) for rejecting a
known disturbance, while minimizing a quadratic cost related to
occupant discomfort and energy consumption. We demonstrate
this approach using closed loop CFD simulations of airflow in a
room with a passively cooled radiant ceiling and a displacement
vent.

I. INTRODUCTION

Residential and commercial buildings consume 40% of
the energy in developed nations such as United States [1].
Enhancing building efficiency by low energy retrofits repre-
sents one of the most immediate and cost effective ways to
reduce energy consumption. Typically, the low energy com-
ponents/systems rely on functional integration between enve-
lope, lighting, and heating, ventilation and air-conditioning
(HVAC) systems to reduce energy consumption. Some ex-
ample implementations include displacement ventilation [2],
underfloor ventilation systems [3] and radiant cooling or
chilled ceilings [4]. Such approaches are known to improve
comfort and indoor air quality as well. While these strategies
are promising, there are several challenges that prevent their
broad application. In particular, the functional integration
leads to coupling of components via nonlinear thermo-fluid
interactions and dynamics at multiple spatial and temporal
scales. Substantial disturbances (such as solar and occupancy
heat gains) and their uncertain variation result in failure
modes that erode energy reduction gains from early design.
Studies [5] show losses of 10-20% in energy efficiency soon
after occupancy; further, the newer technologies are more
sensitive to these disturbances. For example, a passively
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ventilated building design will likely make use of low fan
power and/or buoyancy to drive ventilation. In this applica-
tion, buoyancy is the critical physics that ensures comfort and
ventilation requirements are met. However, buoyancy is in-
trinsically unstable and sensitive to uncertainty. Furthermore,
for newer HVAC systems, actuation authority is limited in
dynamic range and bandwidth and as a result, disturbances
are difficult to reject. Due to these fundamental differences
in how the low energy buildings function, the physics and
dynamics of the underlying phenomena are substantially
different from those encountered in conventional buildings.
Consequently, modeling and control of low energy buildings
pose new challenges.

In this paper, we focus on the control problem of distur-
bance rejection for robust operation of low energy passive
HVAC systems. Since the airflow in buildings is governed by
the Boussinesq partial differential equation (PDE), one of the
key challenges in model-based control design is the ability
to capture computationally and in simple representations,
the physics of the combined fluid and thermal system. The
standard approach in the buildings community for modeling
airflow is to use lumped models, typically based on energy
balance over a large control volume [6]. These models
essentially represent the air in a zone using a single node, and
hence are inadequate for resolving spatial inhomogeneity.
On the other extreme, high fidelity computational fluid
dynamic (CFD) simulations are too complex and intractable
for practical design, optimization or control.

We apply model reduction techniques to extract dynamics
at temporal and spatial scales suitable for accurate analysis
and control design of low-energy passive HVAC systems. In
particular, we use eigensystem realization algorithm (ERA)
to obtain input-output reduced models of the Boussinesq
equations linearized about nominal operating conditions;
see [7], [8]. Using this model, we design an optimal con-
troller for rejecting a disturbance, assumed to be known
over a future time horizon, by minimizing a quadratic cost
related to occupant discomfort and control effort. Through
closed-loop CFD simulations, we illustrate this approach
for rejecting occupant heat gain in a model room problem
equipped with displacement vent and passive chilled ceiling.

This paper is organized as follows: problem formulation
and control objectives are first described in section II. The
section also provides a brief review of model reduction
techniques, a description of ERA and an interpretation of
ERA using weak form, that allows model reduction of
systems with boundary inputs. An optimal control design
methodology in the discrete-time setting, to reject distur-
bances known over a future time-horizon, is provided in
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section III. The model reduction and control techniques are
illustrated in section IV, using a model problem of airflow in
a room with a displacement vent supplying conditioned air
at the occupant level and a passive chilled ceiling. Finally,
conclusions are provided in section V along with some future
directions.

II. PROBLEM STATEMENT AND FORMULATION

We consider dynamics of airflow in a room, shown
schematically in figure 1, with the domain of interest D
being the region defined by X ∈ [−2,2],Y ∈ [0,3],Z ∈ [−2,2].
The room is considered to be equipped with a displacement
vent that supplies air near the floor and a chilled ceiling,
that provides radiant and convective cooling. The vent is on
the boundary X =−2 and defined by the region Z ∈ [−2,2]
and Y ∈ [0,0.6]. As described in the introduction, such a
system relies on thermal stratification to provide occupant
comfort while reducing energy consumption. For airflows in
building applications, the coupled Navier-Stokes and energy
equations can be approximated by Boussinesq equations

∂v
∂ t

=−v ·∇v− 1
ρ0

∇p′−βT g+ν∇
2v, (1)

∂T
∂ t

=−v ·∇T +
κ

ρ0Cp
∇

2T, (2)

∇ ·v = 0, (3)

where, the unknowns are the velocity v = v(Z, t) , tempera-
ture T = T (Z, t), and pressure p′(Z, t), Z = (X ,Y,Z)T is the
spatial coordinate vector, g is acceleration due to gravity,
ρ0 is reference air density, β is its thermal coefficient of
expansion, ν is kinematic viscosity, Cp is thermal capacitance
and κ is the thermal conductivity. The boundary conditions
for (1-3) are as follows: 1) inlet velocity and temperature
are specified at the displacement vent, 2) chilled ceiling
is modeled as a cooling source with uniformly distributed
flux Qceil which can be controlled 3) the internal load due
to occupants and equipment is represented as a floor-mat
with a uniformly distributed heat flux Qd and represents the
disturbance and 4) the remaining boundary of D is assumed
to be adiabatic. For nominal values of these boundary
conditions (see section IV), the airflow in the room settles
to a steady state. The resulting temperature contours over
the central vertical slices through the room are shown in
figure 1. The problem of interest is that, given the knowledge
of the disturbance over a future time horizon, determine a
minimal control effort (i.e. flux through the chilled ceiling),
that maintains stable stratification. The assumption that the
disturbance is known in future is not unrealistic; for example,
it may be known a-priori that there is a meeting in the room
with an expected attendance. Furthermore, we assume that
localized temperature measurements are available at some
given locations on the walls (say, from thermostats), which
can be used in designing a control law for disturbance
rejection.

The problem described above can be more formally stated
as follows: for a known floor disturbance d(t),0 < t < Tf ,

chilled ceiling

floor load
window

exhaust vent

supply vent

Qceil = −20W/m2 + uk

Qd = 150W/m2 + dk
v = 0.1m/s
T = 19◦C

Fig. 1. Room equipped with a displacement vent, a chilled ceiling, and
an internal load modeled as a floor-mat, with the boundary conditions as
shown in the figure. The slices show contours of steady-state temperature
field and projected stream-lines, obtained from a Fluent simulation.

determine a control input u(t) that maintains the average
temperature in a specified region Do ⊂ D of the room at
a desired value Tavg while minimizing the control effort
or equivalently, energy consumption. This trade-off can be
represented as a quadratic cost functional:

J(u,T ) =
∫ Tf

0
q(T (t)−T avg)2 + ru2(t) dt, (4)

where q and r are given positive constants, and T represents
the average of T (Z) over the region Do. Here, we think
of T avg being the average temperature of the steady-state ob-
tained at nominal values of the boundary conditions. One ap-
proach to solving this optimal control problem is the design-
then-reduce paradigm [9], where for instance, the PDE (1,2)
linearized about nominal operating conditions is used to
formulate an infinite-dimensional linear quadratic regulator
(LQR) problem [10]. The feedback control gain operator is
then obtained as a solution of an infinite-dimensional Riccati
equation. This approach, while introduces approximations
only after control design, requires solution of an adjoint
system. Thus, it becomes difficult to apply this methodology
where one has to rely on use of commercial software for
numerical simulations, since such software in general do not
provide adjoint solvers. In this paper, we follow a reduce-
then-design paradigm, which can alleviate this difficulty. In
this approach, we first seek an appropriate reduced-order
model to capture essential dynamics of the full system, and
use that model for control design.

A. Model Reduction

As pointed out in the introduction, reduced-order lumped
nodal models, widely used in the buildings community, are
inadequate for capturing thermal stratification. We seek a
data-driven model reduction approach which extracts dy-
namics relevant to the problem. One of the most popu-
lar methods has been the proper orthogonal decomposition
(POD) and Galerkin projection [11]. In this method, a low-
dimensional approximation of the original system is obtained
by an orthogonal projection onto a set of an energetically
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optimal basis functions determined from empirical data. In
the context of building airflows, this method has been applied
for real-time estimation of airflows in buildings [12], [10].
The standard POD-Galerkin approach suffers from several
limitations: it is sensitive to the choice of inner product
[13], and models near stable equilibrium points can even
be unstable [14]. An alternate snapshot-based approach,
inspired from control theory, is the approximate balanced
truncation [14]; it is particularly suitable for control design
since it accurately captures input-ouput dynamics of the full
system. This method is applicable to stable linear input-
output systems, and results in balanced models, with guar-
anteed error bounds. The resulting models are superior as
compared to POD/Galerkin, in the sense that they preserve
stability of the original system and fewer modes are required
to capture the original dynamics. However, compared to
POD, this approach is only applicable to linear systems and
requires solution of the associated adjoint system. Recently, it
was shown that for a discrete-time input-output system, a sys-
tem identification method known as eigensystem realization
algorithm (ERA) is equivalent to balanced POD [7], [8]. The
advantage of ERA is that it has a significantly lower compu-
tational cost, and it does not require adjoint simulations, thus
making it applicable for model reduction using experimental
data and simulation data from commercial software. In this
work, we use ERA to obtain reduced-order model of the
Boussinesq equations linearized about a steady state obtained
using nominal values for the boundary conditions.

B. Model reduction using the Eigensystem Realization Algo-
rithm (ERA)

ERA is a method for model reduction of discrete-time,
stable, linear time-invariant systems of the form

xk+1 = Axk +Buk (5)
yk = Cxk, (6)

where, xk ∈ Rn,yk ∈ Rm. In the context of the paper, one
can think of (5, 6) as being obtained from a spatio-temporal
discretization of the linearized Boussinesq equations. The
discretization timestep ∆t is assumed to be a constant,
and the index k is used to represent time t = k∆t. ERA
begins by computing the impulse response of (5, 6), and
the resulting outputs yk can be compactly described by the
Markov parameters as yk = CAkB, where yk ∈ Rq×p is a
matrix with elements yi j which represent the ith output from
an impulse on the jth input. The Markov parameters are
sampled every timestep:(

y0 y1 y2 . . . ymc+mo

)
(7)

=
(
CB CAB CA2B . . . CAmc+moB

)
, (8)

and these outputs are used to assemble the Hankel matrix H
as follows:

H =


y0 y1 . . . ymc

y1 y2 . . . ymc+1
...

...
. . .

...
ymo ymo+1 . . . ymc+mo

 (9)

The reduced-order model is obtained by computing the SVD
of H = UΣV ∗. Let Ur and Vr be the leading columns of U
and V , and Σr ∈Rr×r contain the leading rows and columns
of Σ, then the reduced model of (5, 6) is given by

ak+1 = Arak +Bruk, (10)
yk = Crak (11)

where, Ar = (Σ−
1
2

r U∗r )H1 (VrΣ
− 1

2
r ), Br = (Σ−

1
2

r U∗r ) Colfirst(H),

and Cr = Rowfirst(H)(VrΣ
− 1

2
r ), where Colfirst(H) and

Rowfirst(H) represent the first block column and row of H
(9) respectively, and

H1 =


y1 y2 . . . ymc+1
y2 y3 . . . ymc+2
...

...
. . .

...
ymo+1 ymo+2 . . . ymc+mo+1

 . (12)

C. ERA for systems with boundary control

Model reduction using ERA assumes that the given system
is in the state-space form (5, 6), i.e. the inputs appears
explicitly on the right hand side. In our model problem, the
inputs (both, control and disturbance) appear as boundary
conditions. For such systems, a lifting method can be used
to transform the system into the standard form (5, 6);
see [15]. We briefly describe this method here, point out the
main difficulty in using it for boundary control problem and
propose an alternative view-point based on the weak form of
the PDE that alleviates this problem.

1) Lifting: We describe the lifting approach using the
following linear PDE:

φ̇ = L φ , φ = φ(Z, t), Z ∈Ω (13)
φ(Z, t) = u(t), Z ∈ δΩ, (14)

where L is a linear operator defined over the domain Ω

with boundary given by δΩ, and u(t) is the control. In
this approach, the state φ(Z, t) is expressed as a sum of a
homogenous part and a particular part:

φ(Z, t) = φh(Z, t)+φp(Z)u(t) (15)

where, the particular solution φp(Z) is obtained by solving:

L φp = 0, with φp(Z, t) = 1, Z ∈ δΩ. (16)

Substituting (15) in the original equation (13) results in a
homogenous PDE for φh,

φ̇h = L φh−φpu̇, with φh(Z, t) = 0, Z ∈ δΩ, (17)

where, now the time derivative of the control input u(t)
appears explicitly in the equations. Numerical discretiza-
tion of (17) would result in an input-output system of the
form (5), suitable for model reduction using ERA. The main
disadvantage of the lifting approach is that, while using
similar procedure for the boundary disturbance d(t), one
obtains homogeneous PDE of the form

φ̇h = L φh +Bu̇+G ḋ, (18)
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where, similar to that for control, a time derivative of dis-
turbance appears on the right-hand-side. The above equation
is not in a standard input-output form, making the control
design and implementation cumbersome.

2) Interpretation using weak form: We now provide an
alternative approach to deal with boundary inputs, that result
in equations in which, instead of their time-derivatives, the
control inputs explicitly appear in the linearized dynamics.
This approach involves the weak form [16] of the original
PDE (13,14). Define the space of weighting functions w(Z):

W = {w(Z) ∈ H(Ω), |w(Z) = 0,∀Z ∈ δΩ}, (19)

where H(Ω) is an appropriate Hilbert space endowed with
an inner-product 〈·, ·〉. The weak form of (13, 14) seeks to
find φ(Z, t) such that,

〈w, φ̇ −L φ〉= 0, ∀w ∈W . (20)

Integrating (20) by parts (which may have to be carried out
multiple times) results in a weak form,

〈w, φ̇〉= 〈L ∗w,φ〉+Bu(t)+G d(t). (21)

where L ∗ is the adjoint of L , and B and G are operators
that represent the boundary control and disturbance, respec-
tively. The explicit forms of these operators depend on the
type of the PDE and the nature of boundary conditions. Their
derivation is however not required for model reduction, since
typically, numerical PDE solvers obtain discretized system of
equations from an appropriate weak form (21). Hence, one
can assume that the equations solved by a PDE solver are
already in the form (5). By choosing appropriate outputs yk
from the simulations, one naturally obtains the system in the
form (5,6) suitable for model reduction using ERA.

III. OPTIMAL CONTROL DESIGN FOR DISCRETE-TIME
SYSTEMS WITH KNOWN DISTURBANCE

In this section, we consider an inhomogeneous LQR prob-
lem, for rejection of a disturbance known over a future time-
horizon. Consider the following linear system obtained, for
instance, by numerical discretization of the weak form (21):

xk+1 = Axk +Buk +Ddk, (22)
sk = C1xk, (23)
zk = C2xk, (24)

where the index k represents the time-instant tk = k∆t. The
outputs sk are considered to be the outputs that represent
sensor measurements, while the outputs zk are considered to
be the outputs that represent quantities of interest for control,
such as the average temperature in the occupied region of a
room, and are used to define a cost function. The objective
is to find a control law uk such that the output zk tracks
a reference trajectory rk, while minimizing a quadratic cost
function of the form:

J(zk,uk) =
1
2
[N−1

∑
k=0

((zk− rk)T Q(zk− rk)+uT
k Ruk)

+(zN− rN)T Q(zN− rN)
]
, (25)

where, Q > 0,R > 0 are positive-definite weighing matrices.
Note that due to the disturbance term dk appearing in (22),
this is not a standard LQR problem [17]. The solution to this
problem in continuous time setting has been considered, for
instance, in [18]. We are not aware of any known solution
approach in literature for the discrete-time setting considered
here. We solve this problem below using the method of
constrained Lagrangian.

Using Lagrange multipliers λk for the constraints (22), the
Lagrangian can be expressed as

L(xk,uk) = J(xk,uk)+
N−1

∑
k=0

λ
T
k+1(Axk +Buk +Ddk− xk+1),

leading to following Kuhn-Tucker optimality conditions

λk = AT
λk+1−CT

2 Q(rk−C2xk) (26)

uk =−R−1BT
λk+1, (27)

for k = 0,1, . . . ,N − 1, with λN = −CT
2 Q(rN −C2xN). To

obtain the control uk in closed form, we use the notion of
backward sweeping to express the Lagrange multipliers as

λk = Pkxk +nk, k = 0,1, . . . ,N−1. (28)

Further manipulations (details not included here) result in
the following recursion relations for Pk and nk:

Pk = AT Pk+1A−AT Pk+1B(R+BT Pk+1B)−1BT Pk+1A+CT
2 QC2

nk =−AT Pk+1B(R+BT Pk+1B)−1BT (Pk+1Ddk +nk+1)

+AT Pk+1Ddk +AT nk+1−CT
2 Qrk

with the terminal conditions, PN = 0 and nN = 0. If the
disturbance dk is known over the horizon k = 0,1, . . . ,N, the
above recursions can be solved for Pk,nk,k = 0, · · · ,N − 1
and the control law computed using

uk =−R−1BT (Pkxk +nk) = K f b
k xk +u f f

k , (29)

where, K f b
k = −R−1BT Pk is the feedback gain and u f f

k =
−R−1BT nk is the feedforward term incorporating the knowl-
edge of the disturbance dk. Note that, when the entire state xk
is not accessible for control, but only sensor measurements sk
given by (23) are available, one can design an observer for
the system (22, 23) to obtain an estimate x̂k to be used in
place of xk in the expression (29).

IV. APPLICATION TO CONTROL OF BUILDING SYSTEM
ENVIRONMENT

In this section we apply the reduced order based control
design for the room problem described in section II. For
CFD simulations we use ANSYS R© FLUENT, a commer-
cially available software. The maximum grid size is limited
to 0.2m, 0.15m and 0.2m along the X , Y and Z axes
respectively, leading to 66,205 mesh points in the domain D
comprising the room. A constant integration time-step of
2 seconds is used for all the simulations. To obtain nominal
operating conditions for the room, we use constant heat
flux values for the boundary conditions, obtained by simple
energy balance calculation, so that the chilled ceiling can

2086



compensate for roughly 50% of the heat input through the
floor-mat. Under these conditions, the flow settles to a steady
state, as shown in the figure 1.

A. Reduced-order model

We apply ERA to compute the reduced-order model of the
airflow linearized about the above computed steady state. The
outputs considered are as follows:

1) Sensed outputs sk, are the temperatures averaged over
two regions on the walls Z =−2 and Z = 2 (the walls to
the left and right of the supply vent), bounded by Z =
[−0.25,0.25] and Y = [0.25,0.75]. This output is used
for feedback control.

2) Controlled output zk is the volume average of the tem-
perature T (Z, t) field over the occupied region Do ≡
[−1.5,1.5]× [0.25,1.25]× [−1.5,1.5]. This output is
used in the cost function (25).

The control input uk is the chilled ceiling flux, perturbed
about its steady-state value of −20W/m2, while the distur-
bance dk is the floormat flux, perturbed about its steady-state
value of 150W/m2. Similarly, the outputs defined in (6) are
the perturbations from their steady states.

Recall from section II-B, that ERA based model reduc-
tion requires computation of the impulse response of the
system (5, 6) to obtain the Markov parameters (8). Reduced-
order representations of both C1 and C2, defined in (23, 24)
are obtained by lumping the two outputs together: that is,
we define yk ≡

(
sk zk

)T =
(
C1 C2

)T xk ≡Cxk. Since it is
difficult to numerically subject a black-box simulator like
FLUENT to an impulsive input, we alternatively compute
the step response. The step response is obtained by gradually
changing the boundary inputs (fluxes at chilled ceiling and
floor-mat) from their nominal value linearly to a perturbed
value over 30 time-steps (i.e., 1 minute of simulation time).
If the step-response of (5, 6) is denoted by ystep

k , the
Markov parameters can be obtained by simply computing the
differences yk = ystep

k+1− ystep
k . We then assemble the Hankel

matrix (9), compute its SVD, and use the singular values
and eigenvectors to compute the reduced-order model (10,
11). The performance of the model is tested against the data
from the original step-responses. A comparison is shown in
figure 2, which shows that the model accurately predicts the
controlled output zk.

B. Controller design and performance

The reduced model derived using ERA is used to develop
a controller that rejects a floor disturbance known over a time
horizon (0,Tf ). The floor disturbance is considered to be of
the form shown in figure 4. In the absence of the control,
the average temperature in the room rises by about 4◦C, as
shown in the resulting flow-field in the figure 4. The control
design approach described in section III is used to develop
a controller that suppresses the deviations of the averaged
temperature from its steady-state value. We define Q = qI
(where I is the identity) in the cost function (25) and consider
different values of q, while fixing R = 1. We use Kalman filter
as a reduced-order observer for state estimation based on the

0 200 400 600 800 1000 1200
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−0.4

−0.3

−0.2

−0.1

0

0.1
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z

Fig. 2. Response of the full system (black, solid line) and a 10-mode
reduced-order model (red, dashed line, crosses) to a −10W/m2 step in
the chilled ceiling flux. Plots compare the controlled outputs zk , that
is, perturbations from the steady state of temperature averaged over the
occupied region Do.

Boussinesq
approximation

Observer based
on ROM

Control
gain

disturbance, dk

control, uk

(ceiling flux)

outputs yk

(wall measurements)

output zk (volume
averaged temperature)

Fig. 3. Schematic of controller implementation in the full simulation.

two temperature measurements to compute the feedback term
in the control law (29). The observer gains are computed
by assuming a Gaussian noise in the actuator inputs and
sensor measurements. The resulting observer-based control
is implemented in FLUENT using user-defined functions
(UDFs) to test its performance in the full CFD simulation;
a schematic is shown in figure 3. The results are shown
in 5 for q = 5 and q = 50, where it is evident that the
controller suppresses the deviation of the temperature from
its steady value, thus maintaining occupant comfort. For the
larger value of q = 50, the controller completely suppresses
the effect of the disturbance, but the required control effort
is almost twice as large as that required using q = 5.
The figure also shows the performance of the controller,
with an imperfect knowledge of the disturbance, when the
actual disturbance is twice that assumed in control design.
The controller still suppresses the temperature rise, due to
feedback, but the performance deteriorates.

Fig. 4. Flow-field when the disturbance reaches its maximum value.
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Fig. 5. (a) Disturbance input (floor heat flux, in W/m2) as a function of time. (b) The controlled outputs zk (temperature, averaged over the occupied
zone), under this disturbance, for different control gains obtained using q = 5,50. Also shown is the response when the control is off. The response of the
full simulation (black, solid line) is compared with the observer reconstruction (red, dashed line). The green dash-dotted line shows the response of the
full system, using a controller with imperfect knowledge of the future disturbance, assuming half the actual value. (c) Control inputs (chilled ceiling flux
in W/m2) for the two control gains.

V. CONCLUSIONS

We presented a method for developing controller, based
on reduced-order airflow model, to maintain comfort in an
indoor building environment under boundary disturbances.
The reduced order model was obtained by applying ERA
to the linearized Boussinesq equations. We presented an
interpretation of ERA using the weak form of the PDE, that
circumvents the use of lifting, an approach commonly used to
introduce control and disturbances explicitly in the reduced
model. Using the constrained Lagrangian approach, we de-
rived a control law for discrete time state-space systems that
reject a disturbance known over a future time horizon, while
maintaining occupant comfort, and minimizing the control
effort. The model reduction and control design techniques
were demonstrated on a model room problem, equipped
with displacement vent and chilled ceiling. Through closed
loop CFD simulation, it was demonstrated that the resulting
controller is capable of rejecting a known floor disturbance,
and suppresses the undesirable temperature rise within the
room, while minimizing the control effort.

Several challenges remain to be addressed. The approach
outlined in the paper needs to be evaluated in more realistic
building applications and experimentally validated. In the
room problem considered in the paper, the nominal airflow
pattern turned out be steady. In general, the nominal behavior
can be time-periodic or exhibit general time dependence, in
which case the linearized dynamics will not be time invariant.
Recently, ERA has been extended to time periodic linear
systems [19]; it would be useful to extend the approach
developed here to this more general setting. The control
law we derived assumed that the disturbance is known or
can be predicted over a future time horizon. We are cur-
rently considering a robust control design under worst case
disturbance conditions, and will compare the robust control
performance with that derived in this paper to evaluate the
value of disturbance prediction.
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