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Abstract: In this paper, a non-conservative robust nonlinear model predictive control scheme
that can guarantee satisfaction of the constraints and optimal expected performance under
uncertainty is introduced. The proposed control scheme is evaluated by simulations using a
well known benchmark problem where the operation of a semi-batch polymerization reactors
is optimized under very tight temperature tolerance limits. The simulation results show that
the proposed scheme is capable of optimizing the process operation and, at the same time, it
ensures robust operation within the whole range of uncertainties.
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1. INTRODUCTION

Model predictive control (MPC) is a control strategy
that is widely used in process engineering mainly because
of its ability to treat multi-input multi-output plants
and to deal with constraints. In addition, it offers the
possibility to optimize the plant performance by using an
economic criterion in the cost function instead of using
a classical set-point tracking formulation. MPC solves an
open-loop optimization problem over a finite horizon at
each sampling time, and feedback information enters only
by the re-initialization of the calculation based on the
available information. Therefore, one of the main problems
is the fact that the performance and stability of the control
loop relies strongly on the accuracy of the model that is
used in the optimization.

The importance of this problem has attracted the atten-
tion of both the industrial and the research community
to the field of robust model predictive control. However,
there is still no approach that simultaneously handles
nonlinear systems, is real-time implementable, guarantees
robust constraint satisfaction and shows a low degree of
conservatism.

Most robust approaches are based on a min-max formu-
lation, firstly introduced in [Campo and Morari, 1987]
where the cost of the worst-case realization over all pos-
sible values of the uncertainty is minimized. Min-max
controllers can be classified into open-loop and closed-
loop approaches, see [Lee and Yu, 1997]. The first ones are
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the European Union Seventh Framework Programme FP7/2007-2013
under grant agreement number FP7-ICT-2009-4 248940 and from the
Deutsche Forschungsgemeinschaft (DFG, German Research Council)
in the context of the research cluster: Optimization-based control of
uncertain systems.

known to provide conservative solutions and they lead eas-
ily to infeasibilities during the optimization, as illustrated
in [Scokaert and Mayne, 1998]. In contrast, closed-loop
approaches take the presence of feedback directly into ac-
count by optimizing over different control policies, however
in general this is a very difficult problem to solve. It can
be simplified by formulating it as an optimization over a
restricted type of control policies (e.g. affine policies), but
this results in suboptimality, which can be bounded for
linear time-varying systems [Hadjiyiannis et al., 2011].

In our approach we consider the two-stage robust MPC
formulation proposed in [Dadhe and Engell, 2008] and
[Engell, 2009]. The uncertainty is modeled as a scenario
tree, as in [Scokaert and Mayne, 1998], and feedback
information is taken explicitly into account by assuming
that new information about the true state of the plant will
become available at each sampling instant and that the
future control inputs (also called recourse variables) can be
adapted to the evolution of the uncertainties and hence,
the conservativeness of the approach is largely reduced.
Similar approaches have been used in [Muñoz de la Peña
et al., 2005], and [Bernardini and Bemporad, 2009] for
linear systems. Assuming that the scenario tree describes
the uncertainty perfectly, this approach represents exactly
the real-time decision problem and therefore is the best
possible solution. However, it results in a problem the size
of which grows exponentially with the prediction horizon
and with the number of uncertainties and uncertainty
levels.

In this work we apply this approach to a well-known bench-
mark problem on temperature control of semi-batch reac-
tors that was presented by [Chylla and Haase, 1993]. This
control problem is also known as the CHBR (Chylla-Haase
Benchmark Reactor). Although several advanced control
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Fig. 1. Scenario tree representation of the uncertainty
evolution

schemes that can considerably improve the performance of
the temperature control of the CHBR have been already
reported (see [Graichen et al., 2006] for a review), there is
still no scheme that can guarantee robustness under the
whole range of uncertainties.

After this introductory section, this paper is organized as
follows. The proposed robust NMPC scheme is introduced
in Section 2 and some additional information about its
implementation are given in Section 3. In section 4, the
CHBR is briefly revisited. In Section 5, simulation results
are discussed. The paper is then concluded in Section 6.

2. MULTI-STAGE NMPC

In the multi-stage robust NMPC approach the uncertainty
is modeled by a tree of discrete scenarios (see Fig. 1)
where the uncertainty is resolved at each node and the
control inputs are separated into stages. Each path from
the root node x0 until the leaf nodes is called a scenario.
In this manner, at each node of the tree, a decision is
computed based on the information up to that time,
taking into account explicitly the uncertainty about the
future evolutions from this node, as well as the future
decisions on these branches. In order to model the real-
time decision problem correctly, decisions based upon the
same information must be equal. This is imposed by the so-
called non-anticipativity constraints. They force all control
inputs that branch at one node to be the same (i.e., in
Fig. 1 u1

0 = u2
0 = u3

0, u
1
1 = u2

1 = u3
1, ...). We consider a

discrete-time formulation of an uncertain nonlinear system
described by:

xj
k+1

= f(xk, uk, dk), (1)

where xj
k ∈ X ⊆ R

n, uj
k ∈ U ⊆ R

m are the j-th state and

control vectors at stage k, and dlk describes the uncertainty
at stage k. It can include parametric uncertainties or
unknown disturbances within known bounds. It is assumed
that the evolution of the uncertainty can be represented

by a tree of discrete realizations. The state at stage k, xj
k,

depends on the values of the previous stage, denoted as
(xk, uk, dk), following the structure of the tree depicted
in Fig. 1. For simplicity, the uncertainty and therefore
the scenario tree are assumed to be uniform, i.e., it has
the same number of branches at all nodes, given by dlk ∈
{d1k, d

2
k...d

s
k} at stage k for s different possible values of

the uncertainty. For ease of notation, the vector of nodes is
defined as x̃ = [x0, x

1
1, x

2
1, ..., x

N
Np

], and the vector of control

inputs as ũ = [u1
1, u

2
1, ..., u

N
Np

], where N is the number of

scenarios (or leaf nodes) and Np is the prediction horizon.
These vectors contain all states and controls in the scenario
tree. Finally, we define the scenario vector Si that contains
all states and controls belonging to the scenario i.

Then, the optimization problem is formulated as:

min
ũ

N
∑

i=1

ωiJi

s.t. xj
k+1

= f(xk, uk, dk),

xj
k ∈ X , ∀ xj

k ∈ x̃,

uj
k ∈ U , ∀ uj

k ∈ ũ,

ũ ∈ T,

(2)

where T is the set of all possible vectors of control inputs
that satisfy the non-anticipativity constraints, ωi is the
probability of each scenario and Ji is the cost of each
scenario, defined by:

Ji =

Np−1
∑

k=0

L(xj
k+1

, uj
k), ∀ xj

k+1
, uj

k ∈ Si, (3)

where L(xj
k+1

, uj
k) is the stage cost. This formulation

includes a closed-loop min-max approach if the summation
in (2) is substituted by the max operator.

2.1 Dealing with the problem size

The main drawback of this approach is the size of the
resulting optimization problem. It grows exponentially
with the number of uncertainties, with the number of
uncertainty levels, and with the prediction horizon. How-
ever, there exist some techniques that allow to control
the growth of the tree or approximate it by using only
representative scenarios [Römisch, 2009].

A simple strategy to control the size of the tree is to
consider the branching of the tree only up to a certain
stage (called the robust horizon) and then to consider the
uncertainty to be constant until the end of the prediction
horizon. A similar idea has been applied in the contexts
of scheduling [Cui and Engell, 2010] and linear min-max
MPC in [Muñoz de la Peña et al., 2006].

Different strategies have been studied for the approxima-
tion of scenario trees based for example on machine learn-
ing techniques [Defouny et al., 2011], or others reviewed
in [Römisch, 2009].

3. IMPLEMENTATION

The formulation presented in the previous section assumes
a discrete nonlinear model. However, most chemical pro-
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cesses are modeled using ordinary differential equations,
that can be written as follows:

ẋ = Φ(x, u, d). (4)

It is possible to formulate the multi-stage NMPC problem
with first principles models as a big but very structured
Nonlinear Programming Problem (NLP) in the standard
form. A very simple direct collocation method is applied
here for the discretization of the differential equations.
Using the implicit Euler’s discretization, the discretized
system can be written as:

xk+1 = xk +∆T (Φ(xk+1, uk, dk)). (5)

An implicit method is chosen because since a simultaneous
method is used for the solution of the optimal control
problem, both the states (x) and the control inputs (u) are
optimization variables. Therefore, the discretized model
equations are added as nonlinear constraints to the NLP
and the computation complexity is similar to the one using
explicit methods, but with the advantages of the implicit
ones.

The formulation of the NLP is:

min
xopt

xopt′Qxopt (6a)

s.t. xl ≤xopt ≤ xu, (6b)

bl ≤Axopt ≤ bu, (6c)

cl ≤c(xopt) ≤ cu, (6d)

where xopt is the augmented optimization vector. It in-
cludes all the states (nodes) and control inputs as indicated
in Fig. 1. That is, xopt = [x0, x

1
1, x

2
1, ..., x

N
Np

, u1
1, u

2
1, ..., u

N
Np

].

The matrix Q in the objective function (6a) is a big and
sparse matrix that includes all the penalty weights in the
correct order and structure to create an objective function
in the form of (2). The constraints in (6b) express the
bounds on the optimization variables, that is, the state
and control constraints imposed on the real system. It is
also necessary to include the non-anticipativity constraints
in the linear constraints (6c). Finally, in (6d), the discrete
model described in (5) is introduced for all the nodes in the
tree. Therefore, the Jacobian of the nonlinear constraints
is a sparse and highly structured matrix.

The fact that the problem is sparse and very structured,
allows for an explicit exploitation of the structure that
could lead to a fast solution despite of the size of the
problem [Steinbach, 2000], but this issue is not addressed
in this paper. The problem is solved here using the
sparse nonlinear solver SNOPT (see [Gill et al., 2008]) via
MATLAB/TOMLAB.

4. DESCRIPTION OF THE BENCHMARK PROBLEM

The Chylla-Haase Reactor, which is described in detail in
[Chylla and Haase, 1993], consists of a stirred tank reactor
where an emulsion polymerization reaction takes place and
a heat exchanger system with a jacket and a recirculation
loop. The heat exchanger can be used either to heat
the reactor or to cool it. In the heating mode, a steam
valve that manipulates the injection of medium-pressure
steam into the recirculation water is activated, and in
the cooling mode, a dumping valve that manipulates the
amount of cold water that enters the recirculation loop
is actuated. The reactor is used to produce different

products which are obtained from different recipes. The
different recipes consist of a sequence of charging, heating,
feeding and holding steps that may or not be repeated. A
detailed description of the individual steps can be found
in [Graichen et al., 2006]. As the end-use properties of
the product mainly depend on the temperature at which
the polymerization takes place, a very precise temperature
control is required. According to [Chylla and Haase, 1993]
the reactor temperature must stay within a very tight
range of 0.6 K around the specified reaction temperature
in order to guarantee that the final product will have
acceptable quality. 1

In the original version of the Chylla-Haase problem the
monomer is dosed into the reactor with a constant flow
rate and there is almost no degree of freedom for process
optimization. In [Finkler et al., 2012], a modified version of
the CHBR in which variable monomer inlet flow rates can
be employed has been proposed. This turns the CHBR
into a much more challenging problem that involves si-
multaneous optimization of monomer dosage and cooling
usage along the semi-batch run. As the goal of this work
is to investigate robust optimizing NMPC, this modified
version of the CHBR is considered here.

4.1 Modeling of the Process

In [Chylla and Haase, 1993], an experimentally validated
model that describes the system behavior is given. This
model has been extensively investigated by the process
control community and several mistakes in its formulation
have been identified and corrected. For brevity, these
corrections issues are not covered here and the reader
is directed to [Graichen et al., 2006] for more detailed
discussion. The corrected model used in this investigation
consists of a set of ODE’s given by equations (7) to (11),
which are written as:

ṁM = ṁin
M − rP , (7)

ṁP = rP , (8)

ṁT =
ṁMCp,M (Tamb − T ) + UA(T̄J − T )

mMCp,M +mPCp,P +mWCp,W

+
UAloss(Tamb − T ) + rP∆HP

mMCp,M +mPCp,P +mWCp,W
,

(9)

Ṫ out
j =

ṁCCp,W (T in
j (t− θ1)− T out

j ) + UA(T − T̄j)

mCCp,W
,

(10)

Ṫ in
j = Ṫ out

j (t− θ2) +
T out
j (t− θ2)

τp
+

Kp(c)

τp
, (11)

where mM , mP , and mW are the holdups of monomer,
polymer, and water inside the reactor, T , T out

J , T in
J , Tamb

are the inner reactor temperature, the water temperature

1 Although such a tight tolerance may be questioned from a practical
point of view, e.g. because of the limited accuracy of the temperature
sensors, we stick to it here. This is important in order to compare
the performance of the proposed scheme with other control solutions
for this problem.
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at the jacket outlet, the water temperature at the jacket
inlet, and the ambient temperature, rP is the polymeriza-
tion rate, ∆HP is the reaction heat, U is the overall heat
transfer coefficient, A is the heat transfer area, ṁin

M is the
monomer inlet flow, ṁC is the flow rate of water across the
jacket, mC is the mass of water inside the jacket, Cp,M ,
Cp,P , and Cp,W are the thermal capacities of monomer,
polymer, and water, respectively, θ1 and θ2 are time delays,
τP is the jacket time constant; the heating/cooling usage
c is a control command that can vary from 0 to 100%, and
the heating/cooling function Kp is a function of c with
the split-range characteristic given by (12), with Tinlet

and Tsteam being the cold water and the medium-pressure
steam temperatures:

Kp(c) =







0.8× 30−c/50(Tinlet − T in
j ), c < 50%

0, c = 50%

0.15× 30c/50−2(Tsteam − T in
j ), c > 50%.

(12)

The empirical relations for the computation of rP and U
can be written as:

rP = ikmM (13)

U =
1

h−1 + hf−1
(14)

where i is the purity factor, k is the first order kinetic
constant, 1/h is the film heat transfer coefficient and 1/hf
is the fouling factor which depends on the batch number.
Other variables and parameters that appear in the model
equations, can be easily found in the literature on the
CHBR. The readers can consult [Graichen et al., 2006]
for more information.

4.2 Modeling of the Uncertainties

In [Chylla and Haase, 1993], the main uncertainties and
disturbances that affect the process are condensed in three
variables, the purity factor i, the fouling factor 1/hf and
the ambient temperature Tamb. The purity factor i, which
varies from 0.8 to 1.2 and describes the fluctuations in the
reaction rate caused by impurities in the row-materials.
It is constant during one batch, but it changes randomly
from batch to batch. The fouling factor 1/hf varies from
0 to 0.704 m2KkW−1 in order to simulate the decrease in
U due to the formation of a polymer film on the reactor
wall during the successive batches. Finally, the ambient
temperature, which affects the monomer inlet feed and
the initial conditions, can vary from 280 to 350 K from
winter to summer. In, [Chylla and Haase, 1993] it is also
suggested that the time delays θ1 and θ2 may vary by 25%
when compared to the nominal values. For simplicity, these
time delays are neglected here. Finally, although data for
two different products, A and B, is given in [Chylla and
Haase, 1993], this work is restricted to product A only.

5. ECONOMIC ROBUST NMPC OF THE
CHYLLA-HAASE REACTOR

The robust model predictive control approach presented
above has been applied to the CHBR. The method was im-
plemented as explained in Section 3. We use an economic
cost function in which the monomer feed is maximized in

order to minimize the batch time, that is, the objective
function is:

J =

N
∑

i=1

ωi

Np−1
∑

k=0

(ṁin,j
M,k − ṁmax

M )2 , ∀ ṁin,j
M,k ∈ Si, (15)

where ṁmax
M is the maximum allowed feeding rate, as

explained in [Finkler et al., 2012]. Since the reactor is
cleaned every 5 batches, the fouling factor can be eas-
ily guessed. Moreover, the ambient temperature can be
measured and therefore only the impurity factor is con-
sidered as an uncertainty here. With this configuration,
the scenario tree is quite simple and the problem can
be solved faster than real time. A prediction horizon of
Np = 4 time steps with Tstep = 20 s has been chosen. The
probabilities of the different values of the uncertainty are
chosen to be the same, that is, all scenarios have the same
probability to occur. In this section, the proposed robust
NMPC scheme is first compared with the standard NMPC
solution assuming that full state feedback measurement
is available. Furthermore, the robust NMPC scheme is
evaluated in the situation where only noisy temperature
measurements are available and a state estimator has to
be used to reconstruct the state vector in order to initialize
the controller.

5.1 Standard NMPC

The problem has been solved with the standard nominal
NMPC formulation for the different values of the purity,
i.e., 0.8, 1.0, and 1.2 respectively. To be fair in the
comparison with the robust approach, the three different
values have also been used in the model of the optimizer,
so, nine different simulations were carried out. For most of
the cases where the model of the optimizer is not exactly
the same as the model of the real plant, the temperature
constraints along the batch are not satisfied. A simulation
where the purities used in both the optimizer model and
the simulated plant are equal to 0.8 is presented in Fig.
2. An example of the violations of the constraints can be
seen in Fig. 3 where the purity used in the optimizer is 1.2
and the purity of the real plant is 0.8.
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Fig. 2. Reactor temperature, valve position and monomer
feed for standard NMPC, controller purity = plant
purity = 0.8

5.2 Robust NMPC

The problem is formulated as a big NLP, including the
non-anticipative constraints in the first stage. The results
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Fig. 3. Reactor temperature, valve position and monomer
feed for standard NMPC, controller purity = 1.2,
plant purity = 0.8

show that the controller is capable of maintaining the
reactor temperature between the specified bounds for all
values of the uncertainty. An example of the behavior
can be seen in Fig. 4. The use of robust horizon RH =
1 and RH = 2 is compared and since in this case
using RH = 1 gives a satisfactory performance with a
lower computational cost, RH = 1 will be used in the
remainder of the paper. A comparison of the performance
of standard, multi-stage and min-max NMPC approaches
is summarized in Table 1. The min-max approach is
implemented by using the max operator instead of the
summation in (2). When compared to the nominal NMPC
cases, the performance losses of the robust multi-stage
approach are minimal and it is never worse than the min-
max case.
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Fig. 4. Reactor temperature, valve position and monomer
feed for multi-stage NMPC, plant purity = 0.8

With respect to computation speed, each iteration of the
multi-stage NMPC controller takes around 0.59 s. (RH =
1) and 3.25 s. (RH = 2); the time is of 0.70 s. in the case of
min-max NMPC with RH = 1 while the sampling time is
20 s. Therefore, this non-conservative approach can handle
nonlinear systems with robust constraint satisfaction and
is real-time implementable. It is important to note that
the performance of the NMPC controller for intermediate
values of the uncertainty, between the ones considered in
scenario tree design is also satisfactory, as can be seen in
Fig. 5. The different monomer feed trajectories, and the
resulting batch durations are shown in Fig. 6.

Feeding time in minutes

Plant Impurity Standard Multi-stage Min-max

imp. controller NMPC NMPC NMPC

0.8 26.33
0.8 1.0 infeasible 28.67 29.33

1.2 infeasible

0.8 infeasible
1.0 1.0 25.67 25.67 26.00

1.2 infeasible

0.8 infeasible
1.2 1.0 25.67 25.67 25.67

1.2 25.67

Table 1. Performance comparison between
standard, multi-stage (RH = 1) , and min-

max (RH = 1) NMPC.
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Fig. 5. Reactor temperature for different values of the
purity factor in the plant for multi-stage NMPC
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Fig. 6. Monomer feed trajectories for different values of
the purity factor in the plant for multi-stage NMPC

5.3 Robust NMPC with Extended Kalman Filter

In this subsection it is assumed that only noisy tempera-
ture measurements with a standard deviation σ = 0.05 K
are available, as it is the case in the real process. Therefore,
the other states have to be estimated in order to initialize
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the NMPC controller along the batch. In this work, an
Extended Kalman Filter (EKF) which uses the nominal
model of the plant is used for this task. The results of a
simulation where the robust NMPC scheme is combined
with the EKF are presented in Fig. 7. In this case a sam-
pling time Tstep = 40 s is used. Because of the estimation
error, it is not possible to strictly guarantee robust con-
straint satisfaction and the temperature tolerance bounds
are violated slightly during the reaction period. It can be
observed that the noise of the measurements is propagated
and it results in small oscillations in the control inputs.
This issue, as well as the small constraint violations, could
be avoided if the measurement and estimation errors are
taken explicitly into account in the design of the scenario
tree. Nevertheless, the results show that the performance
of the robust NMPC is still good and that the small
constraint violations are negligible from the practical point
of view.
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Fig. 7. Reactor temperature, valve position and monomer
feed for multi-stage NMPC with EKF, plant purity =
0.8

6. CONCLUSION

In this paper, a robust nonlinear model predictive control
approach has been presented. The uncertainty is taken
into account explicitly by considering discrete disturbances
that are represented as a scenario tree. The problem
is formulated as a structured NLP that can be solved
fast enough for real-time applications. The approach has
been applied to the Chylla-Haase problem, which is a
well-known case study for polymerization reactor control.
Promising results are obtained with the combination of
multi-stage NMPC and an economic cost function. The
control scheme fulfills the temperature requirements for all
values of the uncertain parameter and robustly minimizes
the batch time.

Future work will include the stability analysis and problem
formulations that guarantee closed-loop stability, as well
as an analysis of the influence on the performance of the
robust horizon and the different discretization methods
that are used. Furthermore, scenario reduction techniques
and decomposition approaches will be investigated for the
consideration of more uncertainties and disturbances.
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