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Abstract: A method to detect input/output (IO) combinations with no-model or poor model
in the transfer matrix of a closed-loop MIMO system is proposed. Traditional approaches to
IO selection are not adequate when used to detect no-model IO combination of a closed-
loop identification process. The feedback effect, controller action and the characteristics of
the excitation signal employed during the pre-identification stage cause this limitation. In this
proposal the detection of no-model or poor model IO combinations is made based on regularity
of low values of polynomial coefficients of parametric identification models. This information is
gathered during the pre-identification stage. Improvement in model estimation is obtained once
these ”null” combinations are zeroed, before the identification process takes place. A study case
involving identification of a 2× 2 MIMO system is discussed.
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1. INTRODUCTION

The key to Model Predictive Control (MPC) success is
a good process model (Zhu, 2006). Thus, accurate model
identification is crucial in MPC applications. Issues such as
IO selection, system order and time delay estimation are
critical for the process modeling quality (Lennox et al.,
2001). Similarly, lack of previous information of non-
existent model for specific IO combinations affects the
quality of the process modeling.

System identification packages focused on industrial pro-
cess system applications, such as TaiJi, developed by Y.
Zhu (Gao, 2008) and Profit Stepper (User’s-Guide, 2007)
acquire initial IO no-model information from the knowl-
edge of the plant operation personnel. These approaches
stems from the operator experience and technological
plant information. If a change occurs, because of techno-
logical variation, plant or equipment malfunction, or any
other reason, and it is not properly updated, the identifi-
cation process could be affected. This kind of model-plant
mismatch should be avoided.

IO no-model information allows setting zeros in the i -j th
positions of the transfer matrix, where no model or a very
poor one could be found. Improvements on estimation of
MISO parameters involving no-model IO combinations of
the transfer matrix are found when null IO combinations
are zeroed. Additionally, general computational effort re-
quired to estimate model process properties is decreased.
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In the closed-loop identification of a linear MIMO pro-
cess, no-model detection using correlation analysis is not
well suited if used during the pre-identification or pre-
test stage. One reason is because during this stage only
small series of positive and negative pulses are employed
as excitation signal. This kind of signal does not allow
performing confident statistical procedures. Similarly, pro-
cedures based on open-loop steady-state gain matrix can
fail when applied to closed-loop systems, mainly because
of the feedback effect and the controller action.

In this paper a method to detect no-model IO combina-
tions in a closed-loop MIMO transfer matrix is proposed.
Detection is made from the analysis of parametric model
coefficient values obtained during the pre-test stage. Re-
peatability of this behaviour is proven through a Monte
Carlo simulation (MCS). The method is intended to be
employed in closed-loop identification.

Although this method could also be implemented during
identification experiments, it is an advantage to do it dur-
ing the pre-identification stage. That is because informa-
tion related to no-model IO combination, as well as those
others acquired during the pre-test, such as process gains,
time constants and time delays, allow fixing conditions and
eventually improving the succeeding identification process.

The paper is organized as follows, Section 2: input selection
methods and their limitations for no-model detection in
MIMO closed-loop identification are reviewed; Section 3:
numerical results of some methods applied to IO no-model
detection are discussed, Shell Benchmark plant (Cott,
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1995a) is employed for simulations; Section 4: the proposed
method is presented and its results for the same plant are
discussed. Finally, conclusions are drawn in Section 5.

2. IO MODEL SELECTION METHODS

Cao (1997) introduced the Single-Input Effectiveness (SIE)
method to select inputs to be included in a control scheme.
SIE considers G(s) an mxm matrix, which represents an
open-loop MIMO linear system with frequency response
matrix G(iω) and steady-state gain matrix K. The output
vector y can be derived as

y = Ku (1)

where u is the input vector.

The method defines two indexes. The first is the Input
Effectiveness (IE), η, which is the ratio of the norm of un
and u.

η =
‖un‖2
‖u‖2

(2)

where un is the projection of input vector u in Kn (null
space of K ).

The second index is the Input Ineffectiveness (IIE), ζ. This
is the ratio of the norm of uc and the norm of u.

ζ =
‖uc‖2
‖u‖2

(3)

where uc is the un complement.

Single-IE (SIE), ηi, for the ith input vector (ui) can be
computed considering an ith unitary natural vector ei.

ηi = ‖K+Kei‖2, 0 ≤ ηi ≤ 1 (4)

where K+ is the pseudo or generalized inverse of K .

Single-IIE, ζi, for the ith input vector (ui) is obtained as:

ζi =
√

1− η2i , 0 ≤ ζi ≤ 1 (5)

Consider that K can be represented by a set of linear
MISO systems. For each one of these systems, values of ηi
close to 0 means low effectiveness of the ith input over the
output y, whereas values near 1 indicate significant effec-
tiveness. This criterion is usually to be properly employed
to include or exclude input on a control scheme for the
system represented by K.

On the other hand, values of ηi and consequently ζi,
can also be derived using Singular Value Decomposition
(SVD), (Cao, 1997), since K can be factorized as:

K = UΣVH (6)

where VH is the conjugate transpose of V .

Then, ηi can be computed as:

ηi = ‖K+Kei‖2 =

√
eTi V 1V

H
1 ei (7)

where V 1 are the first k columns of V , being k the rank
of K.

Thus, using SVD could yield the same estimate of effec-
tiveness, ηi, for every ith input over an output y of K .

Principal Component Analysis (PCA) is a multivariate
analysis tool which can also use SVD to factorize a
K matrix. This factorization allows identifying relevant
inputs and representing them in a new axis system. A
consequent reduction of data dimensionality is achieved
through the covariance analysis of the different elements
(vectors) of the system.

In (Perreault and Westwick, 2005) an algorithm based on
PCA was developed for selecting optimal inputs to be used
in the identification of a linear MISO plant. In this case,
the algorithm employed QR factorization.

PCA was also the tool employed in (Zamprogna, 2005) to
develop a methodology to select inputs to be used in a soft
sensor for a batch distillation unit. Once again, variables of
the process were analysed to obtain those with significant
gains with respect to an output variable. Those with very
low or close to zero steady-state gain are discarded, which
implies that poor or no-model is going to be found for that
IO combination.

Relative Gain Array (RGA) was first introduced by Bristol
(1966) for steady-state as a measure of process interac-
tions. Skogestad and Morari (1987) and Sokgestad and
Postlethwaite (1996) established that RGA is mostly a
measure of achievable control quality in a much wider
sense, more than just a tool for pairing controlled and
manipulated variables. Waller and Waller (1995) related
RGA and SVD as measures to estimate the effect of inputs
over outputs in a 2 × 2 MIMO system. Employment of
this tool as both a measure of process interactions as well
as a measure of effectiveness for pairing of controlled and
manipulated variables was also shown in (Seborg et al.,
2004). Extensions of the method for process dynamics
conditions were also stated in that work. Relative Gain
Array method, in general (even for non square systems)
and for steady-state conditions can be defined as:

RGA = ∧ = K × (K+)T (8)

More conceptually ∧ can be understood as:

RGA = ∧ = [λij ]m×m (9)

where λij are the ratios of kij , gain of the i -j th model of
K with all the loops open and k∗ij , gain of the i -j th with
only ith loop open.

λij = [
gij
g∗ij

] (10)

The equivalence between λij and η2j was proved in (Cao,
1997).

The cross correlation function, rij , presented in (11) is
an immediate tool to measure a significant association
between an output, yi, and an input signal, ui.

rij = E[ui(t)yi(t+ τ)] (11)

This tool was employed in (Aguirre, 2007) and (Jeronimo,
2004). In this last work a procedure to select relevant
variables to be used as inputs in a MIMO control system
was proposed. The procedure was implemented in open-
loop configuration.

Limitations of cross-correlation methods when employed
to detect input/output effect in closed-loop have been
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stated in (Box and McGregor, 1974). However, good
results can be obtained if input signal is dithered. In
(Webber and Gupta, 2008) a closed-loop cross-correlation
method is employed for detecting model mismatch in
MIMO model-based controllers. In this proposal IO subset
pairings of a linear MIMO system which demand re-
identification are detected. The method is based on the
comparison of correlation between the prediction error and
input u. A dithering in the set-point (u) is required to use
this signal as excitation.

The aforementioned approaches mostly consider a steady-
state gain matrix K, which contains every i-j th gain
obtained with the system in open-loop configuration. In
MPC configurations where a regulatory layer with PID
is maintained (Van Lith, 2009), for example loops with
potentially unmeasured disturbances such as distillation
column top (Conneally et al., 1999), open or closed-loop
means to open or close the MPC level, but regulatory
loops remain closed (Xie, 2004). Therefore, in this MPC
configuration, K as an open-loop steady-state gain matrix
is not frequently available. Economics and safety issues can
also make regulatory layer open loop an almost prohibitive
alternative. All these facts limit the application of some
of the previous methods as a tool to detect no-model IO
combinations in a closed-loop MIMO system.

Besides, the detection of no-model IO combination in
closed-loop MIMO systems employing the above men-
tioned approaches could also fail because of the controller
action. A properly designed and tuned controller will lead
the direct steady-state gains (main diagonal) close to unity
and secondary diagonal steady-state gains close to zero
(decoupling). Thus, secondary diagonal IO combinations
will have their closed-loop steady-state gains approxi-
mately equal to zero and equal each other, in spite of
having or no a model. Ill-conditioned plants are beyond
the scope of this work, therefore RGA and SVD values
will be analyzed only in the context of a well-conditioned
plant.

Finally, the spectral approach provides effective criterion
for detection of no-model IO combination. TaiJi (Gao,
2008) implements this approach during the identification
stage. In this application, an upper error bound (superior
error limit) on frequency response estimation is defined.
During each identification loop this limit is compared
with the error obtained for the estimated model. Models
(and consequently their IO combinations) with error in
frequency response estimation, higher than the superior
error limit are discarded. This procedure is accomplished
during the identification stage, when a wider range of
frequencies of input signals can be used to excite the
process. The method proposed in this paper is intended
to be implemented during the pre-test stage, due to
the impact of IO no-model information in succeeding
identification stages.

3. APPLICATION OF IO SELECTION METHODS
FOR IO NO-MODEL DETECTION

IO selection methods previously reviewed are employed in
order to detect no-model or poor model IO combination
during the pre-test stage.

3.1 Plant used in process simulations

The plant employed in the simulations was the distilla-
tion column described in (Cott, 1995a), (Cott, 1995b). A
simplified diagram of this 2× 2 plant is shown in Fig. 1.
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Condenser duty

Fig. 1. Diagram of the distillation column (Cott, 1995a).

The plant discrete time transfer matrix is shown in (12).

G(q) =
−0.61 + 0.40q−1

1− 1.53q−1 + 0.57q−2

−0.11 + 0.092q−1

1− 1.53q−1 + 0.57q−2

0 0.076
5× 105

q−7 − 1500
+ 0.9235q−1


(12)

The system inputs are overhead vapor flow MV-1 (D), and
reboiler flow MV-2 (Q) and the outputs are top pressure
CV-1 (P) and reboiler outlet composition CV-2 (X), Fig. 1.

3.2 Results of some of the previous approaches used to
detect no-model IO combinations

For all the results shown next, K is the steady-state gain
matrix determined in regulatory closed-loop.

Single-Input Effectiveness (SIE) method: vectors η2I1
and η2I2 contain values of indexes obtained when the IE
method is applied separately, considering K (2×2) as two
MISO systems. Vector ηI1 represents combination CV-1;
MV-1 and CV-1; MV-2.

η2I1 = [ 0.999718 0.000281 ]

the second vector ηI2 represents combination CV-2; MV-1
and CV-2; MV-2.

η2I2 = [ 0.000148 0.999851 ]

Values of 0.000281 and 0.000148 shown above correspond
to IO combinations CV-1; MV-2 and CV-2; MV-1. Both
are in the same order of magnitude, although between
CV-1; MV-2 there is a model, but IO combination CV-
2; MV-1 has no model. Thus, there is no strong numerical
evidence about whether or not a model exists for those
IO combinations. The reason for this ambiguity is due to
the action of the controller. The behaviour of the system
with closed-loop regulatory control implies that numerical
difference between η2I1 and η2I2 values will hardly exist,
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regardless of the existence or no of model between these
IO combinations. Values of η2I1 and η2I2 do not allow
identifying such a radical difference.

Relative Gain Array method: the values obtained were
expected, once the relative gain array was calculated
using (8) with the closed-loop steady-state gain matrix:

∧ =

[
0.999905662 0.000094338
0.000094338 0.999905662

]
∧ calculated shows a good measure of decoupling guar-
anteed by the controller action. Values of λi,j imply that
the IO of the inverted diagonal are decoupled. Regulatory
control closed-loop condition ”hides” information about
IO combinations with no-model.

Cross correlation functions were not implemented in this
work, considering that during the plant excitation for
pre-test stage, only small series of positive and negative
impulses were used as excitation signal.

Results obtained by using the SVD method according
to (6) and (7) were equivalent to SIE results using (4).
For the sake of brevity these are not discussed.

PCA method was not implemented considering the small
dimensionality of the simulated plant (2× 2).

4. CLOSED-LOOP IO NO-MODEL DETECTION:
PROPOSED METHOD

The proposed method is based on values and regularity of
coefficients of the model structures employed during pre-
test. Input excitation signals employed were two pulses
(positive and negative). Pulse duration corresponded to
two settling time (ts). Similar signals, but separated each
other one ts, were applied to each input. Because of the
spectral characteristic of this excitation signal, results
obtained are related to low frequency system response.

The main idea of this proposal is to gather the IO no-model
information from this stage, where a minimum impact on
the process must be guaranteed (Seborg et al., 2004) and,
on the other hand, to use this information not only to
plan identification data acquisition but also to maximize
improvements of this process with this information.

It was assumed that the 2× 2 MIMO system represented
by (12) can be modelled by two 2 × 1 MISO models.
An autoregressive with exogenous input (ARX) model
structure was employed to obtain a first approach to the
process model information. The choice of this structure
was based on its simplicity to obtain the system response.

The MISO ARX model structure has the form:

A(q)y(k) =

m∑
i=1

Bi(q)ui(k) + e(k) (13)

where y(k) is the process output at time k. ui(k) are the m
process inputs and e(k) is white noise. Polynomials A(q)
and B(q) are defined as:

A(q) = 1 + a1q
−1 + ...+ anaq

−na (14)

Bi(q) = bi1q
−1 + bi2q

−2 + ...+ bnbi
q−nbi (15)

na is the autoregressive order, nb is the order with respect
to exogenous input(s) and q−1 is the backward shift
operator.

Simulations were performed employing normalized input
and output vectors. White noise (filtered according to
(Cott, 1995b) for eP (k) and eX(k)) and unmeasured
disturbances were added. Random seeds for stochastic
signal generation were used for every realization. Signal
to Noise Ratio (SNR), specified as the ratio of output and
noise variances, was set to 27.

Average values for a first set of 20 realizations pre-
identifying the model are shown in Table 1.

Table 1. A(q) and Bi(q) polynomial coefficient
averages for 20 realizations for MISO models.

Model a1 b1 b2
CV-1;MV-1 0.7370 0.2381 0.0265

;MV-2 -0.0624 0.0594

CV-2;MV-1 0.9442 −4.514× 10−4 7.687× 10−4

;MV-2 0.0417 0.0148

The regularity found in the order of magnitude of poly-
nomial B of the ARX model for CV-2; MV-1 (no-model
IO combination) marked a difference when compared to
the other bi coefficients of the obtained model. Those very
low values of bi (10−4) obtained for CV-2; MV-1 indicates
that there is no energy transfer between this input and
this output. Consequently, contribution of MV-1 to CV-2
will be affected by these very low value coefficients. This
is consistent with the model shown in (12).

4.1 Repeatability of Bi(q) coefficient values for no-model
IO combination

In order to evaluate the method results for a large amount
of repetitions a Monte Carlo simulation (MCS) was con-
ducted. For this test, input and output vectors of the simu-
lated plant generated along 100 realizations were collected.
Signal to Noise Ratio (SNR) was also kept at 27 (ratio of
variances, dimensionless).

Neglecting variations for A(q) coefficients in the 100 real-
izations were found. Mean values and standard deviation
of A(q) are shown in Table 2 for both MISO models.

Table 2. Mean value and standard deviation of
A(q) for 100 realizations for MISO models.

Model mean value (a1) stdev (a1)

CV-1;MV-1 -0.7367 1.344× 10−4

;MV-2

CV-2;MV-1 -0.9442 6.260× 10−5

;MV-2

Values of parameters Bi(q) followed the same behavior
detected for a small amount of realizations.

Figure 2 shows histograms of Bi coefficients for both
MISO models, with respect to output CV-1 (left) and
to output CV-2 (right). An evident difference is again
observed in b1 and b2 for the IO combination CV-2; MV-
1 (no-model). While the rest of combinations kept its
mean values between -0.06150 and 0.2380, bi coefficients
for no-model IO combination fall to a range of 10−4, see
Table 3. These values dispersion was computed using its
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Fig. 2. Values of b1 and b2 of Bi(q) along 100 realizations, for MISO models with respect to output CV-1 (left) and with
respect to output CV-2 (right), considering na=1, nb=[2 2] nk=[1 1] and na=1, nb=[2 2] nk=[1 8], respectively.

Fig. 3. Distribution of b1 for Bi(q) along 100 realizations for MISO models with respect to output CV-1 (up) and with
respect to output CV-2 (down), considering na=1, nb=[1 1] nk=[1 1], and na=1, nb=[1 1] nk=[1 8], respectively.

standard deviation (stdev in Table 3) but no significant
differences were noticed between the sets of bi coefficients.
Mean values of Bi(q) for CV-2; MV-1 did not change when
the number of realizations was increased to 100. Standard
deviation also maintained its low values.

Two additional runs of 100 realizations of pre-identification
were conducted to check the influence of small changes in
the order of the ARX model structure employed. The order
of polynomial Bi was set to 1 and 3. The order of Ai was
maintained fixed. The first run (nb = 1) was conducted
with SNR reduced to 10, a more severe noise condition.

Figure 3 shows the results obtained for nb=[1 1]. Coloured
bars show the values of Bi coefficient for models CV-
1; MV-1 and CV-1; MV-2. Black bars show the values
of Bi coefficient for the CV-2; MV-1 and CV-2; MV-2.
Each bar represents one realization. The mean value for b1
coefficient for the no model combination CV-2; MV-1 was
1.131× 10−4 and its standard deviation was 1.589× 10−4.

The differences and the size order results of Bi polynomial
coefficients for this no model IO combination were also
repeatable after changes of the system order and SNR
values. It can be concluded that this difference of order of
magnitude in coefficients of the Bi(q) of the ARX model
obtained during the pre-test, can be taken as an indicator
of no-model IO combination for the tested conditions.

For identification in industrial context where repeatability
tests can not be implement through an MCS, this analysis

can be performed using routine operating data available on
DCS. Recent theoretical and practical considerations have
been proposed in (Shardt and Huang, 2011) for using these
data for closed-loop identification.

Consequently, the method tests should be extended to
other different conditions, such as the use of operational
data, several model plants and model dimension, higher
uncertainties and eventually different model structures,
before generalizing this result.

4.2 Influence of zeroing no-model IO combination on
system identification quality and computational effort

FIT index was the criterion chosen to measure the identi-
fication process quality, before and after the IO null model
was zeroed. Values obtained not only for identification
using ARX model structure, but also using ARMAX and
BJ, are shown in Table 4. These values correspond only
to the MISO model related to CV-2.

Table 4. FIT for models involving CV2, before
and after zeroing no-model IO combination.

Model FIT [%] before zeroing FIT [%] after zeroing

ARX 77.31 81.93

ARMAX 81.95 83.56

BJ 79.45 81.15

Values of FIT improved up to 4.63%, once zero was
assigned to the no model position in the transfer matrix.
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Table 3. Bi(q) coefficient averages for 100 realizations for MISO models.

Model b1 stdev b1 b2 stdev b2
CV-1;MV-1 0.238 2.536× 10−4 0.026 3.082× 10−4

;MV-2 -0.061 1.789× 10−4 0.058 1.786× 10−4

CV-2;MV-1 3.236× 10−4 3.908× 10−4 8.527× 10−4 5.286× 10−4

;MV-2 0.041 3.878× 10−4 0.0147 5.465× 10−4

Considering the original FIT values, an improvement of
4.63% can be taken as valuable. Computational effort in a
succeeding identification process was also quantified. The
most remarkable time saving was obtained in the order
selection procedure. The method employed was to look for
the system order with the higher FIT. The spent time was
reduced by up to 22%.

Additionally, MPC can also be favoured in terms of
computational effort, once no-model IO combinations are
unconsidered, even though benefits will vary for each
particular system configuration. These improvements will
be much more noticeable for large systems where more
than one existing no-model IO combinations are detected.

5. CONCLUSION

IO selection methods employed were not able to identify
no-model IO combinations in a transfer matrix of a closed-
loop MIMO process. Controller action generally leads to a
decoupled condition which hides information about model
existence for IO combinations. In MPC applications with
PID layer, this regulatory loop usually remains closed, so
methods which employ K defined as an open-loop (reg-
ulatory loop) steady-state gain matrix are not suitable.
Regularity of Bi(q) coefficients found in parametric model
structures, ARX in this case, resulted in a clear indica-
tion of no-model IO combination. Repeatability of this
result was verified through a Monte Carlo simulation. The
previous knowledge of no-model IO combination resulted
in a decrease of computational effort for the succeeding
identification steps. The application of this knowledge also
improved the identification performance index employed.
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