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Abstract: Predictor that is built from the plant model, plays an important role in model pre-
dictive control system. The predictor should be updated timely to maintain certain calculation
accuracy and performance optimality. In order to avoid unnecessary interruptions to production,
however, updating should only be done when serious mismatch between the process and model
appears. A novel method based on subspace approach is proposed to detect the mismatches
using closed-loop operation data. The channels with mismatches in multi input multi output
system are isolated. And some combinations of the mismatched parameters that have physical
significance can be detected. These results provide useful information for the maintenance of
model predictive control system. Simulations on a distillation process demonstrate the efficacy
of the methodology.
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1. INTRODUCTION

Model predictive control (MPC) system can be found in
numerous industrial applications, covering petroleum re-
finery, metal processing, aerospace and so on [1]. Predictor
that is built from the plant model by first principles or
system identification, is an essential part of MPC. It esti-
mates the future plant outputs over a finite period. At one
control interval, control actions over the finite horizon are
calculated based on the current states and measurements
and by minimizing some cost functions. But only the first
calculated control action is implemented on the process
in the following interval while the others are abandoned.
Then the calculation and implementation procedure re-
peats which is known as receding horizon control. As an
advanced control technology, MPC can move the outputs
to the optimal values and prevent excessive movements of
the manipulated variables. Output variation is drastically
reduced.. Therefore, the performance of MPC depends on
the accuracy of the plant model very much.

Mismatch detection and isolation is critical for the main-
tenance of MPC system. MPC has certain robustness to
the mismatch. Usually the accuracy of the control model
is good enough for designing a controller that achieves
satisfying control performance. But the process is always
changing over time such as mechanical wear in valves
and scale formation in containers. Sometimes the changes
get beyond the ability of the MPC and degrades the
control performance a lot. Therefore re-identification is
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substantial in maintenance of the MPC system. But it’s
quite a demanding one because of long time plant tests
and interruptions to the production [2]. As the scale of
the modern plant grows larger, there may be hundreds of
control loops to be taken care of in just one system. When
the accuracy of the predictor deteriorates, it’s always due
to mismatches taking place in only partial input output
channels [3]. Thus a full scale identification over hundreds
of loops is obviously wasting. If the engineers know which
channels the mismatches are located, precise identification
can be done to cut the cost. In addition, the physical
significance of the mismatch is informative and desired
during the maintenance. For example, if a mismatch that
happens on a chemical container is found to be related to
the time constant, maybe it’s caused by the scale formation
which slows down the thermal conduction. This provides
useful information to the engineers for checking the loops
before the identification starts.

Mismatch in model based control loops has been a broad
concern in recent years. Several methods have been pro-
posed to detect the mismatch. Both partial correlation
approach [5] and stepwise method [4] based on routine
operation data are used to isolate the specific channels
where the the mismatch appears. The former needs to
identify several intermediate models while the latter uses
indirect variable selection instead of exact identification.
Three signatures relating to the state space matrices are
utilized to detect model plant mismatch in multivariate
systems in [6]. In [7] plant model ratio in the frequency
domain is developed to identify the mismatch in cor-
responding components of a single input single output
transfer function model. This method has the advantage of
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Fig. 1. Model based control loop structure.

relating the mismatch to those parameters with physical
significance. But some extensions are needed to deal with
multivariate systems.

In this paper a procedure dealing with model plant mis-
match is developed to improve the maintenance for MPC
systems. Firstly the Markov parameters of the plant can
be obtained by subspace approach in the context of closed-
loop. Then the input output channels which encounter
changes can be isolated and some specific parametric
combinations are diagnosed without calculating the exact
values of these parameters.

The structure of the paper is organized as follows. Section
2 formulates the problem on mismatch. Section 3 gives
a preliminary description about Markov parameters and
subspace approach. The scheme of detection and isolation
is presented in Section 4. A simulation study is demon-
strated in Section 5 on a distillation plant followed by some
remarks in Section 6. Section 7 makes the conclusion.

2. PROBLEM FORMULATION

In the following work, a model based control structure
in Fig.1 is used to demonstrate the methodology. As it’s
shown in Fig.1, P 0(s) is the transfer function matrix of
control model that is used to design the controller. P (s)
is the transfer function matrix of the current plant. C(s)
is the controller and D(s) is the transfer function matrix
of unmeasured disturbance model. r ∈ Rn, u ∈ Rm,
v ∈ Rl, y ∈ Rn and ym ∈ Rn are the setpoint, controller
output, white noise, plant output and predicted output
respectively wherem, n and l are the numbers of controller
outputs, plant outputs and disturbance inputs.

Accordingly there are n × m input output channels in
the plant and corresponding n × m sub-models in both
P 0(s) and P (s). Unmeasured disturbance channels are
not considered here as identification is not done in those
channels. Denote the sub-model in the jth input and ith

output channel as p0ij(s) and pij(s) in P 0(s) and P (s)
respectively. When the plant changes significantly, there
are serious mismatches between P 0(s) and P (s). Then to
keep high performance of the control loop, re-identification
is supposed to be done for updating the models timely.
Generally, many plant tests should be carried out for
each input output channel and thus normal production is
frequently interrupted. Sometimes it takes several weeks
to complete the work which is really a huge cost for the
industry. Actually serious mismatch usually appears only
in a few channels at a time for most of the cases, e.g.
the first input and first output channel and the second
input and first output channel in a 10 × 10 system. And

identification is only necessary for these sub-models to
update, e.g. p11(s) and p12(s), instead of one hundred
channels. Hence isolation of these significantly mismatched
channels is desired.

First order plus time delay (FOTD) is one of the most typ-
ical model structures. It can approximate many physical
systems in process industries. Assume the sub-model can
be written in the form of FOTD as:

pij(s) =
Kij

Tijs+ 1
e−τijs (1)

where Kij , Tij and τij are the gain, time constant and
time delay of the sub-model. These parameters may be
attached with physical significance such as mass, thermal
resistance or the friction factors in pipes. Suppose the mod-
el structures are fixed. The mismatches are thus caused
by the changes of these parameters. For the maintenance
engineers, physical parameters should be traced to figured
out the reasons of changes in the field. It is of great
importance to relating the mismatches to the physical
parameters. Additionally these targets should be reached
under closed-loop.

3. PRELIMINARY

3.1 Markov parameters

State space equation, transfer function and Markov pa-
rameters describe this plant in three different ways, but
they can be transformed to each other accurately. Consider
a time invariant stable plant P (s) written in an innovation
form as: {

xk+1 = Axk +Buk +Kvk

yk = Cxk +Duk + vk
(2)

where x ∈ Rγ is the state variables and K ∈ Rγ×l is
the Kalman filter gain. A, B, C and D are the system
matrices in the state space equation with appropriate
dimensions. For the state space description in Eq.(2), let
x(0) = 0 and v(k) = 0. When the inputs are set to impulse
signals, the Markov parameters matrices can be derived as:

Hn =

{
D, n = 1

CAn−1B, n > 1
(3)

And Eq.(1) can also be written in Markov parameter or
impulse response as follows:

pij(q
−1) =

∞∑
k=0

hij, kq
−k (4)

For a stable plant, a sufficient large number N can be

selected that hij, k
k>N≈ 0. Then a truncated form can be

used to describe the sub-model:

pij(q
−1) =

N∑
k=1

hij, kq
−k (5)

where hij, k is the kth element in Markov parameter vector
hij .

Assuming the sampling time is Ts, we can discretize Eq.(1)
as:

pij(z
−1) =

Kijz
−τij/Ts

Tij

(
1− e−Ts/Tijz−1

) (6)
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By series expansion the corresponding coefficients can be
derived as:

hij, k =

0 if 0 ≤ k ≤ θij
Kij

Tij
e−(k−θij−1)Ts/Tij otherwise

(7)

where θ = τij/Ts. Here θ is time delay with the unit of
the sampling time and thus is reasonable to round the
delay into integers. Then Eqs.(5) and (7) can be utilized
to identify the corresponding changes in the parameters of
FOTD.

3.2 Subspace Approach

Subspace approach has been intensively used to identify
plant models and design controllers such as MPC in the
past few decades. By proper iterations, extensions and
ensembles, a subspace equation can be derived:

Yf = LWWp +LuUf +LvVf

Lu =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
...

CAN−2B CAN−3B CAN−4B · · · D



Lv =


I 0 0 · · · 0

CK I 0 · · · 0
CAB CK I · · · 0

...
...

...
...

CAN−2K CAN−3K CAN−4K · · · I


Wp =

(
Yp

Up

)
(8)

where subscripts p and f indicate the data of the past and
future respectively; Y , U and V are the block Hankel
matrices of plant output, controller output and white
noise; LW , Lu and Lv are the coefficient matrices with
corresponding dimensions; N is the number of blocks in
the subspace matrices as same as the selected order above.

Assume C(s) is the linear time invariant controller in the
closed-loop, the controller output can be described by:

ut = C(s)(rt − yt) (9)

The state apace equation form of Eq.(9) can be written
as: {

xc
k+1 = Acxc

k +Bc(rk − yk)
uk = Ccxc

k +Dc(rk − yk)
(10)

where superscript c denotes the controller and Ac, Bc, Cc

and Dc are coefficient matrices with appropriate dimen-
sions. Then another subspace equation is also derived in
the same way as Eq.(8):

Uf = Lc
WW c

p +Lc
rRf −Lc

yYf (11)

Combining Eq.(8) with Eq.(11) an equation can be formu-
lated as:

Yf = LwWp +Lu(L
c
wW

c
p +Lc

rRf −Lc
yYf) +LvVf (12)

Two regression equations can be decomposed from Eq.(12)
as: {

Yf = LCL
y WCL

p +LCL
yr Rf +LCL

yv Vf

Uf = LCL
u WCL

p +LCL
ur Rf +LCL

uv Vf
(13)

where R is the block Hankel matrix for setpoint and
superscript CL indicates the closed-loop with W c

p =

(
Y T
p UT

p RT
p

)T
. ApparentlyRf and Vf are not correlated

so that the closed-loop problem are decomposed into two
open-loop problems in Eq.(13). The coefficient matrices
LCL

y , LCL
yr , L

CL
u and LCL

ur can be calculated by least squares
method. The block Hankel matrix for Markov parameters
of plant model is derived as:

Lu = LCL
yr (L

CL
ur )

−1 (14)

The Markov parameter vectors in each channel of the plant
model can be extracted as hij from Lu. Step by step
derivations and explanations are saved duo to space limit,
please see more in [8].

4. DETECTION AND ISOLATION PROCEDURE

Nowadays there are plenty of routine operation data in the
database from industry that are unused. These data are
generated from daily operations such as setpoint changes
and load changes, instead of being designed for system-
atic identification from numerous intrusive tests. But if
we select those have enough changes, they can provide
sufficient information that can be used to detect the mis-
matches. Here the subspace approach is adopted to obtain
the Markov parameters matrices from these informative
routine operation data. Then the Markov parameter vector
of each input output channel can be extracted, based on
which the channels contain mismatches are isolated. After
that, the combinations of the gain, time constant and time
delay in FOTD are detected and physical explanations on
the mismatches can be given to aid the maintenance.

4.1 Mismatched Channel Detection

As presented above, the Markov parameter vector of each
sub-model in the current plant can be obtained, e.g.
hij in the jth input and ith output channel. Let the
corresponding Markov parameter vector of the control
model be h0

ij . Then the mismatch can be described as:

∆ij = hij − h0
ij (15)

An area measure [9] is used to quantify the Markov
parameter vector as:

ΩMPM ij =
N∑

k=1

|∆ij, k| (16)

Ωp0
ij
=

N∑
k=1

∣∣h0
ij, k

∣∣ (17)

where ∆ij, k and h0
ij, k are the kth elements in ∆ij and

hij respectively. ΩMPM ij and Ωp0
ij

are the corresponding

area measures of mismatch and control model. Then a
scaled index ηij is developed to asses the significance of
the mismatch in this channel:

ηij =
ΩMPM ij

Ωp0
ij

(18)

It has the following properties:
(P1) 0 ≤ ηij ;
(P2) ηij = 0 if and only if ∆

ij
= 0;

(P3) The greater ηij is, the more significant the mismatch
is.
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Proposition 1. Assume N is selected satisfying: ∀ ϵ > 0,
|hij, N+1| < ϵ. The submodel in the jth input and ith

output channel of the plant is mismatched if and only if
ηij > 0.

4.2 Mismatched Parameter Isolation

To identify the specified mismatched parameters of the
FOTD model, three signatures are developed. Assume the
signs of the parameters are not changed. First we check the
situation of time delay. Denote the time index of the first
nonzero element in h0

ij and hij as λ0
ij and λij . Therefore

the time delay shift can be identified by the difference of
λ0
ij and λij as σij = λij − λ0

ij .

Proposition 2. The time delay in FOTD model is mis-
matched if and only if σij ̸= 0. A positive σij indicates
an increase of time delay while a negative one indicates
decrease.

Then we eliminate the influences of time delay mismatch
for other parametric mismatch isolation. h0

ij and hij are
modified into new vectors so that their first element are
all nonzero. Let ζij = max {λ0

ij , λij} and κij = N − ζij .
Only their first (κij + 1) nonzero elements are kept. Two

corresponding new vectors are obtained as h̃0
ij = h0

ij(λ
0
ij :

(κij + λ0
ij)) (this operation means that elements from the

(λ0
ij)

th to the (κij + λ0
ij)

th in h0
ij are extracted to form

a new vector h̃0
ij ) and h̃ij = hij(λij : (κij + λij)).

Linear regression is done to check the slope (αij + 1) and

intercept βij where h̃ij = (αij + 1)h̃0
ij + βijIN×1. When

βij = 0, the time constant isn’t mismatched. If αij = 0,
the gain remains the same; if αij > 0 the gain increases; if
−1 < αij < 0 the gain decreases. When βij ̸= 0 the time
constant is mismatched. Here we can’t tell if the gain is
mismatched or not without calculating the exact value.

Proposition 3. The time constant in FOTD model is mis-
matched if and only if βij ̸= 0.

Proposition 4. When βij = 0 and αij = 0, the gain in
FOTD model is not mismatched; When βij = 0 and
αij ̸= 0, the gain is mismatched; When βij ̸= 0, more
information is needed to judge if the gain is mismatched
or not.

4.3 Practical Modification

In practice, mismatches are very common due to error
from noise and limited samples. The criterions given above
should be loosen to deal with this situation. That is to im-
prove the robustness of the proposed method by changing
the thresh values. For example, as only those significant
mismatches are our concern, thresh values η0ij other than
zero can be chosen to separate significant mismatches from
non-significant mismatches. Usually it’s selected based
on maintenance requirements. Smaller thresh values are
more sensitive to the noises. For similar purpose, interval
∥βij∥ ≤ β0

ij replaces βij = 0 while ∥βij∥ > β0
ij replaces

βij ̸= 0 for time constant mismatch isolation. Nonzero
valueα0 should be used instead of zero. In this paper α0

ij

and β0
ij are chosen based on the calculated values from

normal case.

Normalized indices are established:

Ixij =
xij − x0

ij

xij + x0
ij

(19)

where x represents η , α or β and 0 ≤ Ixij ≤ 1.
These normalized ones can be used as significance level
indicators where monitored case is compared with nominal
case. Bigger positive values of Ixij indicate more significant
changes in monitored case while negative ones indicate less
significant. Thresh values for significance I1ij , I

2
ij and I3ij

can also be chosen based on the maintenance requirements,
instead of the nominal case.

In other words, ηij , αij , βij and σij are absolute indicators
while Ixij is a relative indicator. The latter can tell the
significance level comparing with nominal case or mainte-
nance requirement.

5. SIMULATION STUDY: DISTILLATION PROCESS

A pilot scale binary distillation column for a methanol wa-
ter mixture developed by Wood and Berry [10] is slightly
modified to demonstrate the efficacy of the method. This
plant has two controlled variables yT and yB, two manipu-
lated variables R and S and one unmeasured disturbance
variable F . The transfer function matrix for control model
is:[
yT
yB

]
=

 12.8e−s

16.7s+ 1

−18.9e−3s

21.0s+ 1
6.6e−7s

10.9s+ 1

−19.4e−3s

14.4s+ 1

[
R
S

]
+

 −3.8e−8s

14.9s+ 1
4.9e−3s

13.2s+ 1

F

(20)
where yT, yB, R, S and F are the top composition, bottom
composition, reflux flow rate, steam flow rate and feed flow
rate respectively. MPC is used to control the plant and the
sampling time is 1 minute. The setpoints for yT and yB
are changed to simulate the real industrial situations. F
is set to be unmeasured disturbance. The deviated input
signals which are changed based on the operating points
are plotted in Fig.2. p11, p12, p21 and p22 are the channels
of R−yT, S−yT, R−yB and S−yB respectively. TC and
TD indicate time constant and time delay correspondingly
in the tables. The standard deviation of the noise is 0.032.

5.1 Nominal Case

The plant model is identified by subspace approach as
shown in Fig.3. As we can see, the identified results are
very consistent with the plant dynamics.

In Table 1 the signatures are calculated under normal
conditions. There are differences when comparing with the
theoretical results which should all be zeroes. But with
limited samples of routine operation data, these errors
are tolerable and the following analysis will take this
circumstance into account. For example, η021 = 0.2188 in
p21 is significant in absolute value. That’s why we analyze
the following results with significance level too. η0ij , α0 and
β0 are selected as thresh values for different channels. The
values with significant changes comparing with Table 1 are
in bold front in the other tables. Several combinations of
parametric mismatch are set to test the method.

8th IFAC Symposium on Advanced Control of Chemical Processes
Furama Riverfront, Singapore, July 10-13, 2012

157



0 500 1000 1500 2000 2500 3000
0

0.5

1

 t

 ∆
 y

T

0 500 1000 1500 2000 2500 3000
0

0.5

1

 t

 ∆
 y

D

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

 t

 ∆
 F

Fig. 2. Setpoint and white noise signals.
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Fig. 3. Comparison of Markov parameters: true plant (solid
line) and identified results (dashed line).

Table 1. No mismatch scenario

Types p11 p12 p21 p22
Mismatch 0% 0% 0% 0%

η0ij 0.0793 0.0747 0.2188 0.1277

σ0
ij 0 0 0 0

α0
ij -0.0234 -0.0292 -0.0555 -0.0389

β0
ij -0.0075 0.0053 -0.0105 0.0133

Table 2. Gain mismatch scenario

Types p11 p12 p21 p22
Gain mismatch 20% 5% 50% 2%

ηij 0.1456 0.0647 0.4315 0.1118
σij 0 0 0 0
αij 0.1615 0.0233 0.3912 -0.0180
βij -0.0067 0.0075 -0.0074 0.0153

5.2 Gain Mismatch Case

Different magnitudes of gain mismatch are set to the four
input output channels of the plant. The settings are shown
in Table 2. Comparing the index ηij with those in Table 1,
it can be found that channels p11 and p12 have significant
mismatches as Iη11 = 29% and Iη21 = 33%. For σij and βij

there are no big differences, which means no time delay or
time constant mismatch appears. Obvious changes for αij

in channels p11 and p12 indicates that gain mismatches
exist in both channels with Iα11 = 75% and Iα21 = 75%.
This is consistent with the settings.

Table 3. Time constant mismatch scenario

Types p11 p12 p21 p22
TC mismatch 5% 50% 5% 5%

ηij 0.0897 0.2622 0.2272 0.1396
σij 0 0 0 0
αij -0.0642 -0.3720 -0.0965 -0.0742
βij -0.0011 -0.0637 -0.0066 0.0044

Table 4. Time delay mismatch scenario

Types p11 p12 p21 p22
TD mismatch 0% 33.33% 0% 0%

ηij 0.0771 0.1113 0.2111 0.1235
σij 0 1 0 0
αij -0.0318 -0.0198 -0.0713 -0.0295
βij -0.0045 0.0079 -0.0063 0.0166

Table 5. Gain and time constant mismatch
scenario

Types p11 p12 p21 p22
Gain mismatch 20% 5% 50% 2%
TC mismatch 5% 50% 5% 5%

ηij 0.1284 0.2371 0.4122 0.1203
σij 0 0 0 0
αij 0.1159 -0.3346 0.3441 -0.0507
βij 0.0002 -0.0653 -0.0036 0.0069

5.3 Time Constant Mismatch Case

The mismatches and the detection results for time con-
stant mismatch scenario are shown in Table 3. η12 is
changed significantly by 56% indicating that mismatch ap-
pears in channel p12. The corresponding σ12 is 0 while α12

and β12 have both big variations by 85%. A time constant
mismatch is included with possible gain mismatch.

5.4 Time Delay Mismatch Case

The simulation data for time delay mismatch are presented
in Table 4. Channel p12 is accurately isolated as significant-
ly time delay mismatched since η12 is changed obviously
by 20% and the corresponding σ12 is 1.

5.5 Gain and Time Constant Mismatch Case

Scenario of gain and time constant mismatch gives re-
sults in Table 5. Three channels are isolated as evidently
mismatched ones. p11 and p21 are diagnosed with gain
mismatch while p12 with time constant mismatch and
possible gain mismatch according to Iη12 = 52%, Iα12 = 84%

and Iβ12 = 85% .

5.6 Gain and Time Delay Mismatch Case

The data for gain and time delay mismatch are demon-
strated in Table 6. Channel p12 is accurately isolated as
significantly time delay mismatched since η12 is changed
obviously from 0.0747 to 0.1317 and the corresponding σ12

is 1. Both p11 and p21 are diagnosed as mismatches in gain.

5.7 Time Constant and Time Delay Mismatch Case

As shown in Table 7, the detection procedure accurately
isolate the seriously mismatched channel p12. For the
parametric mismatch, results suggest that time constant
mismatch and time delay mismatch appear in channel p12.
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Table 6. Gain and time delay mismatch sce-
nario

Types p11 p12 p21 p22
Gain mismatch 20% 5% 50% 2%
TD mismatch 0% 33.33% 0% 0%

ηij 0.1418 0.1317 0.4252 0.1111
σij 0 1 0 0
αij 0.1630 0.0277 0.3899 -0.0119
βij -0.0082 0.0081 -0.0091 0.0165

Table 7. Time constant and time delay mis-
match scenario

Types p11 p12 p21 p22
TC mismatch 5% 50% 5% 5%
TD mismatch 0% 33.33% 0% 0%

ηij 0.0926 0.2797 0.2370 0.1374
σij 0 1 0 0
αij -0.0635 -0.3703 -0.0975 -0.0700
βij -0.0022 -0.0647 -0.0079 0.0043

Table 8. Gain, time constant and time delay
mismatch scenario

Types p11 p12 p21 p22
Gain mismatch 20% 5% 50% 2%
TC mismatch 5% 50% 5% 5%
TD mismatch 0% 33.33% 0% 0%

ηij 0.1267 0.2602 0.4114 0.1195
σij 0 1 0 0
αij 0.1164 -0.3347 0.3442 -0.0479
βij -0.0003 -0.0662 -0.0042 0.0071

5.8 Gain, Time Constant and Time Delay Mismatch Case

When the three parameters change at the same time,
mismatch index can isolate the seriously mismatched chan-
nels accurately. Both p11 and p21 are found to have gain
mismatch while p12 is definitely with time delay and time
constant mismatch.

6. REMARKS

Though this methodology focuses on MPC system, it can
deal with other model-based multivariate control system
too. Some aspects related are discussed in brief.

6.1 Index Usage

Due to space limit, the specified significance levels are not
shown here. The four measures ηij , σij , αij and βij and
the corresponding significance levels Ixij should together
be used for explanation of the results. Monte carlo can be
used to show the efficacy of the method too.

6.2 Signal Check

Sufficient excitation is critical for the success of all mis-
match detection problems. The focus in this paper is to
utilize the untouched data for guiding the maintenance.
And the sufficiency should be concerned during the proce-
dure. One method is to check the rank of the closed-loop
matrices in Eq.(14) [8]. And for those MPCs which re-
ceive setpoints from upper optimization level, this method
should be carefully used for possible correlation between
setpoint and disturbance.

6.3 Measured Disturbance

Measured disturbance channels can also be handled by
this methodology. After extending the subspace equations,
subspace approach can estimate the corresponding Markov
parameters. But for the routine operation data, these
channels may have limited excitation. This needs to collect
sufficiently excited data to ensure the efficacy of this
procedure.

7. CONCLUSION

In this paper a method mining the potential of plenty of
unused data in industry is developed. Subspace approach
can estimate the Markov parameter vector of each sub-
model. Then we can detect the significantly mismatched
input output channels based on the area index. The corre-
sponding contributing parameters of FOTD sub-models in
MPC system are isolated by three signatures too. Signifi-
cance levels provide more practical guidelines for industrial
usages. These are of great help to improve the efficiency
of system maintenance.
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