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Abstract: Process connectivity is a key information that is sought in a diverse set of applications
ranging from design to fault diagnosis of engineering and biological processes. The present
work develops a methodology for reconstruction of plant connectivity from dynamic data using
directional spectral analysis, a novel adaptation of ideas from neurosciences and econometrics.
The method is based on the concept of Granger causality while the procedure rests on the
directional decomposition of power spectrum into direct and indirect energy transfers. The
quantification of effective connectivity is obtained using a structural vector auto-regressive
(SVAR) representation of the process. Results from simulation studies demonstrate the potential
of the proposed method.
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1. INTRODUCTION

Chemical processes are characterized by interconnected
unit operations involving large flow of materials, pumping,
mixing, heating and cooling with and without chemical
reactions. The numerous interconnections and recycles in
process plants, coupled with heat integration operations
add to the complexity of plant topology. The knowledge
of plant connectivity is crucial in several applications,
particularly in performance monitoring and fault diag-
nosis. The process flow diagram (PFD) depicts the pip-
ings and connections among the major equipments of the
plant. Incorporation of PFD information in the analysis
of multivariable data requires conversion of the diagram
to a form of connectivity matrix. Several methods have
been proposed to diagnose and isolate root cause of fault
propagation. Construction of signed digraph (SDG) [Mau-
rya et al., 2003a,b], computer aided engineering exchange
(CAEX) software [Sim et al., 2006] and adjacency matrix
[Jiang et al., 2009] are a few of them. Practical applica-
tion of such methods can be quite complicated owing to
the time-consuming nature and the magnitude of human
intervention that is required. Furthermore, a process flow
diagram can only provide the structural information but
not the strength of the connectivities. It is not uncommon
that the flow diagram shows the existence of physical
connectivity between two units, while the actual amount
of material/energy transfer may be weak to nil. Such
ambiguities can only be resolved through a careful analy-
sis of measurements. The connectivity strengths can also
change with the operating conditions which is once again
not provided by the PFD. Thus, from both automation
and practical viewpoints there exists a strong need for
? Correspondence concerning this work should be addressed to Arun
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reconstructing pathways from process data. Needless to
state, inferences from data should be corroborated with
information available through process flow diagrams.

Reconstructing pathways from data is closely related to
the causality analysis of a process. The problem of deter-
mining causality from observed data dates back to the pre-
liminary efforts by Wiener [1956]. Granger [1969] adopted
Wiener’s ideas to give rise to a practically implementable
definition of causality, now known as Granger causality
[Granger, 1969]. The idea is based on temporal effects. A
variable X is said to Granger-cause another variable Y
if the prediction of Y is improved with the incorporation
of the past of X. If the reverse relationship exists i.e., if
the inclusion of past values of Y improves the prediction
of X, there exists a feedback relation between X and Y ,
also known as bi-directional causality. Granger causality
does not include instantaneous causality. If the inclusion
of present value of X into the prediction of Y results in
improved values, there exists an instantaneous causality
from X to Y . Instantaneous causality is harder to detect
from data in the sense that it is unresolvable when it exists
in both directions. Fortunately in process systems, mostly
the instantaneous causality is uni-directional, i.e., it exists
only in the feedback path.

Connectivity analysis using Granger causality [Granger,
1969] has emerged as a major tool for examining infor-
mation flow between brain regions [Smith et al., 2011,
Baccala and Sameshima, 2001]. Over the last decade, a
few powerful methods have emerged Hlavackova-Schindler
et al. [2007] in neuroscience for detection of connectivities.
Notable among such methods are the concepts of directed
transfer function (DTF) and partial directed coherence
(PDC). A good review of the related methods appears in
Blinowska [2011].
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Granger’s concept of causality in its original form did
not rest on any particular model for prediction. How-
ever, the presentation recommended the use of the vector-
autoregressive (VAR) representation of the multivariable
process due to its ease of estimation and implementa-
tion. Frequency-domain extensions of these concepts were
largely propelled by the works of Geweke [1982] and
Geweke [1984]. In neurosciences, the problem of determin-
ing causal relationships in frequency domain spectral fac-
torization were brought forth by the works of Saito and Ha-
rashima [1981], Kaminski and Blinowska [1991] which gave
birth to the concept of directed transfer function (DTF).
The DTF measures how much a white-noise source ej [k]
(in a variable xj [k]) affects a variable xi[k]. Baccala and
Sameshima [2001] showed that the DTF measures the total
influence, which includes influences on both direct and
indirect pathways and therefore is not suited for structure
determination; instead they proposed an alternative mea-
sure known as the partial directed coherence (PDC). PDC
measures the direct influence between two variables and
is therefore suited for structure determination. However,
PDC and its variants [Baccala et al., 2007, Astolfi et al.,
2006, Schelter et al., 2009] aid in structure determination
but do not quantify the strength of connectivities in the
sense of energy transfers as shown in the work by Gigi and
Tangirala [2010]. The authors [Gigi and Tangirala, 2010]
present exact expressions for the connectivity strengths
in terms of energy transfers in the frequency domain by
showing that the total energy (variance) transfer at any
frequency between two variables in a multivariable process
consists of direct, indirect and interference terms at that
frequency.

The methods outlined in the foregoing discussion rest on
the linear representations. Non-linear measures of causal
dependence have also been reported in the literature
[Hlavackova-Schindler et al., 2007]. Development of causal
maps from plant data is reported in Bauer et al. [2007]
where the authors detect the directionality of disturbance
propagation using transfer entropy. The success of the
method is demonstrated on two industrial case studies;
however its implementation can be fairly cumbersome for
large process and sensitive to the parameters of the al-
gorithm. The estimation of transfer entropy is based on
probability distribution function (PDF), which generally
is considered as rigorous to estimate. Moreover, transfer
entropy is a bivariate measure. As in several other applica-
tions, linear measures are preferable because of their ease
of implementation and robustness to noise despite their
restricted ability in handling highly non-linear processes
[Blinowska, 2011]. The present work makes use of linear
measures, specifically those mentioned above.

The main contributions of this work are, (i) an automated
method to detect process connectivity under open-loop
and closed-loop conditions and (ii) a measure of connec-
tivity strength in the sense of energy transfer.

The remainder of this article is organized as follows. Sec-
tion 2 provides the theoretical background of the develop-
ments in this work and a brief review of the concepts of
DTF and PDC. Expressions for quantitative energy trans-
fers and connectivity strengths are presented in Section 3.
Simulation results are presented in Section 4. The article
concludes with Section 5.

2. THEORETICAL BACKGROUND

2.1 Spectral Factorization Theorem

The basis for the proposed method of analysis for plant
topology is the well-known spectral factorization theorem
[Gevers and Anderson, 1981]. The cross power spectral
density matrix of a jointly (stationary) process Φ(ω) can
be factored as

Φ(ω) = H(ω)ΣeH∗(ω) (1)

where Σe is the covariance matrix of the innovations (white
noise) driving the multivariate process. The term

H(ω) =


h11(ω) h12(ω) . . . h1m(ω)
h21(ω) h22(ω) . . . h2m(ω)

...
...

. . .
...

hm1(ω) hm2(ω) . . . hmm(ω)

 (2)

is the transfer function matrix in the frequency domain.
The superscript (.)∗ denotes the Hermitian conjugate of a
matrix. The factorization giving rise to H(ω) is the key
in determining the directionality of the energy transfer
leading to topology construction. The spectral factor H(ω)
forms the vector moving average (VMA) model coefficient
matrix, the calculation of which is achieved through time
series vector auto-regressive (VAR) modelling.

2.2 VAR / VMA Models

Consider a multivariate process with m measurements
denoted by the vector x = [ x1 x2 · · · xm ]T . Each variable
is treated as an input as well as an output simultaneously.
The idea is to express the evolution of the jth random
variable, xj as a result of two components (i) a (fictitious)
random input ej and (ii) the linear influence of its own
past as well as the past states of the other variables. Math-
ematically, the representation of VAR model [Lutkepohl,
2005] is

x[k] =
p∑
r=1

Ar x[k − r] + e[k] (3)

where Ar is the matrix of auto-regressive coefficients at
lag r and e[k] is an m-dimensional vector of white noise
sequences. An important feature of the VAR model to
be estimated is the model order (p). The optimum model
order is determined using standard theoretic information
criteria such as the Akaike Information Criterion (AIC)
and the Schwarz information criteria (SIC).

In VMA model the present value of the variable is ex-
pressed purely in terms of past and present shocks. AnM th

order VMA process [Shumway and Stoffer, 2000, Priestley,
1981] is represented as,

x[k] =
M∑
r=1

Hre[k − r] + e[k] (4)

where Hr is the VMA coefficient matrix. The estimation
of H(ω) is done from its relationship with VAR model in
frequency domain, represented as

H(ω) = Ā−1(ω) where (5)
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Ā(ω) =I − A(ω) and (6)

A(ω) =
p∑
r=1

Arz
−r|z=ejω (7)

is the Fourier transform [Smith, 1997] of the VAR coeffi-
cients, Ar.

The model in (3) represents a strictly causal one i.e., it
does not account for instantaneous causality. In feedback
control systems, the instantaneous causality is inevitable
due to the presence of controller with proportional action.
To account for instantaneous causality and correlated
innovations, a structural VAR (SVAR) model given by,

A0x[k] =
p∑
r=1

Ãr x[k − r] + Bw[k] (8)

is appropriate. The matrix A0 contains the instantaneous
relationships between the variables. The quantity w[k] is
an m-dimensional vector of white noise sequences, with
covariance matrix Σw = Im×m. The SVAR model form is
not unique since the multiplication by any positive definite
matrix will give a mathematically valid model. This model
can be converted to a unique reduced form as:

x[k] =
p∑
r=1

A−1
0 Ãr x[k − r] + A−1

0 Bw[k]

=
p∑
r=1

Ar x[k − r] + e[k] (9)

From (3) and (8), with Σw = Im×m we get

Σe = A−1BBTA−T (10)
The model is generally evaluated in the reduced form
and then converted to the structural form using suitable
techniques [Lutkepohl, 2005, Pfaffe and Taunus, 2008,
Tsay, 2010].

The quantities H(ω) and Ā(ω) are used in estimating the
linear relationships among the variables of the process.

2.3 DTF and PDC

The estimation of DTF and PDC is carried out by VAR
modelling of the joint stationary representation of the
process. The basic quantity required for estimating DTF
and PDC is the white noise transfer function matrix H(ω).
The DTF, γij(ω) from xj to xi is calculated as

γij(ω) =
hij(ω)√∑m
j=1 |hij(ω)|2

(11)

where m is the dimensionality of the multivariate time-
series. The DTF, being a decomposition of coherence
provides the total (i.e., the sum of direct and indirect)
directional influence of variables.

The PDC is defined as

πij(ω) =
āij(ω)√

ā∗.j(ω)ā.j(ω)
=

āij(ω)√∑m
i=1 |āij(ω)|2

(12)

It is a directional decomposition of partial coherence
indicating the direct exchange of information.

Due to the normalization used, the sum of squared PDC
values in a column at each frequency is unity. The same

is applicable to the sum of squared DTF values at each
frequency in a row. The normalization in the definition
of DTF and PDC is a major difference between the two
analysis techniques. The DTF is a quantitative measure of
the net energy transfer [Eichler, 2006] whereas PDC is only
a qualitative measure of direct energy transfer [Gigi and
Tangirala, 2010]. Thus PDC can be used to determine the
structure of the process. Even if a normalization similar
to DTF as suggested in Schelter et al. [2009] is used for
PDC, the magnitude of direct and indirect energy transfers
cannot be obtained from a comparison of DTF and PDC
values. The following section provides the methodology to
arrive at the quantification of direct and indirect effects.

3. QUANTIFICATION OF CONNECTIVITY
STRENGTHS

Reconstruction of connectivity from data requires three
steps namely (i) detecting directed connectivity (ii) quan-
tification of the strength of the connectivity and (iii)
representation in suitable form.

3.1 Quantification of energy transfers

The quantification of direct and indirect influences in
terms of energy transfer is obtained by developing the
corresponding direct/indirect transfer functions. In order
to derive the expressions for transfer functions, Gigi and
Tangirala [2010] use a method based on signal-flow graph
representation of the process as VAR/VMA models sup-
ported by the mathematical derivations of the associated
spectral relationships. The results are presented here with
essential descriptions.

Total transfer function,

hij(ω) =
(adj(Ā(ω)))ij

det(Ā(ω))
(13)

Direct transfer function,

hD,ij(ω) =
−āij(ω)det(M̄ji(ω))

det(Ā(ω))
for i 6= j (14)

= hij(ω) for i = j

Indirect transfer function,
hI,ij(ω) = hij(ω)−hD,ij(ω) (15)

where M̄ij(ω) is the minor of the matrix Ā(ω) and of size
(m − 2) × (m − 2), obtained by eliminating both ith and
jth row and column from Ā(ω).

The magnitudes of energy transfers occuring directly and
indirectly (through another variable) are obtained from
the transfer functions. When there exists both direct and
indirect transfer functions, there will be an interference
term in the energy transfers, occuring due to the phase
difference between the direct and indirect transfer func-
tions [Gigi and Tangirala, 2010]. Hence, we have the total
energy transferred from xj to xi, given by
|hij(ω)|2 =(hD,ij(ω) + hI,ij(ω))(hD,ij(ω) + hI,ij(ω))∗

=|hD,ij(ω)|2 + |hI,ij(ω)|2 + 2<(hD,ij(ω)h∗I,ij(ω))

=|hD,ij(ω)|2 + |hI,ij(ω)|2 + hIF,ij(ω) (16)

=⇒Total energy transfer = Direct energy transfer
+ Indirect energy transfer + Interference effect
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where φD and φI represents the phase of direct and
indirect transfer functions respectively and hIF,ij(ω) =
2|hD,ij(ω)||hI,ij(ω)|cos(φD−φI). The direct energy trans-
fer serves as a tool for structure determination of the
process.

The direct energy transfer serves also as a tool for the de-
termination of plant connectivity along with the strength.
As mentioned in Section 2.2 in a joint representation of
the process, each signal xj is assumed to be driven by a
distinct white noise driving force ej . The source ej affects
xj directly. Also the effect can be through some other
signal(s) (e.g. ej → xi → xj) termed as indirect effect. In
addition, ej affects signal other than xj through direct and
indirect paths. Once the information of direct connectivity
is developed, the indirect pathways can be deduced.

3.2 Connectivity Strengths

The strength of a directed connectivity is quantified in
terms of the direct energy transfer. In general, connectivi-
ties can be measured and quantified using other measures
as discussed extensively in Muskulus et al. [2009]. However,
variance (second-order measures) is a popular choice, both
from physical interpretation as well as implementation
viewpoints.

To facilitate the comparison of strengths, an index βi,j
representing the strength of connection from source in xj
and sink in xi is defined as

βi,j =

∫ π

0

|hD,ij
(ω)|2 dω

max

(
1,

(∫ π

0

|hD,ij
(ω)|2 dω)

)
max,i 6=j

) (17)

The index is zero if and only if the connectivity is zero.
It provides a relative strength of links within the process.
In order to prevent small values of strength causing an
abnormal rise of the index, (e.g., in a diagonal system,
all the off-diagonals will have small insignificant values for
the numerator term

∫ π
0
|hD,ij

(ω)|2 dω due to estimation
errors) the minimum value of the denominator term is
chosen as 1.

Detection of connectivity requires a significance limit on
the index. A statistical development of significance limit
is beyond the scope of this work. Hence, a threshold
limit for the strength of the connectivity as 0.015 is esti-
mated through Monte Carlo simulations. A low value, say,
strength < 0.015 indicates the connection is weak enough
to be treated as insignificant. The strength estimated is
always positive and represents the effective strength of con-
nectivity under the prevailing operating conditions. The
effective connectivity permits one to allow due weighting
to strong connections. The calculated values stored in a
matrix form is suited for automated analysis. On the other
hand, a graphical representation aids in easier understand-
ing of the process nature.

3.3 Estimation

The developed model can be considered essentially as
constituting of two parts, the coefficients representing the
plant model i.e., H matrix, and the innovation covariance

matrix, Σe denoting the noise model. There can be three
different situations.
(i) A0 = I and Σe diagonal. In this case the plant model
and the noise model are uniquely identifiable.
(ii) A0 6= I and Σe diagonal. This situations arises due
to the presence of instantaneous relationships among the
variables. If the positions of instantaneous causality are
known, both plant and noise models are identifiable. In
essence, the identifiability is provisional.
(iii) A0 6= I and Σe 6= I. This condition arises due to
correlated innovations with or without the presence of in-
stantaneous causality. There are identifiability constraints
when the effects of instantaneous causality and correlated
noise coincide. The direction of the causal relationships in
the noise model can be resolved only if process knowledge
is available. Also, it is not possible to distinguish between
the effects due to instantaneous causality and noise corre-
lation.

The instantaneous causality is basically an integral part
of the plant model. Incorporation of instantaneous causal-
ity into the plant model is achieved by converting the
RVAR model (3) to SVAR (8) form. A worthwhile point
with reference to control systems is that, instantaneous
causality can exist exclusively due to feedback control and
recycle streams. As the feedback loops (due to propor-
tional controller, which acts as a gain element) and recycle
streams are known, the corresponding knowledge on the
instantaneous causalities are available.

Once the instantaneous causality information, A0 is ex-
tracted, the revised noise covariance matrix is calculated
as Σ̃e = A0ΣeA′0 where Σe is the innovation covariance
matrix of the RVAR model. The significance of off-diagonal
terms in Σ̃e provides the information on correlated inno-
vations. If the correlated innovations are present, a further
scaling of the SVAR model with the inverse of the Cholesky
factor of Σ̃e ( i.e., B matrix) is used to account for them.
This corresponds to the AB form of SVAR model.

The approach adopted in this work assumes that, the data
has sufficient excitation. Under this condition, irrespective
of the noise model, the plant model and noise model are
estimated correctly. This means that the predictable part
is captured well by the model. Hence, once the effects
of instantaneous causality are accounted for, the model
can be considered as one with a unit variance white
noise driving force in all channels. This implies that the
diagonals of both A and B matrices in SVAR model can
be assigned as unity.

4. SIMULATION RESULTS

The example below shows an open loop VAR model.[
x1[k]
x2[k]
x3[k]

]
=−

[0.5 0 0
0.2 0.3 0
0.1 0.3 0.4

][
x1[k − 1]
x2[k − 1]
x3[k − 1]

]

−

[0.3 0 0
0 0.2 0

0.2 0 0.4

][
x1[k − 2]
x2[k − 2]
x3[k − 2]

]
+

[
e1[k]
e2[k]
e3[k]

]
(18)

The direct effects for the process are calculated from the
data of the process and is represented in figure 1. The
direct energy transfer plots reflect the structure of the pro-
cess. The strength of the connectivities are estimated. The
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Fig. 1. Direct energy transfer among signals for example 1
x-axis: Frequency (0 to π); y-axis: Magnitude of direct energy

transfer

topology reconstructed is shown along with the relative
strength of connectivities (within the process) in Figure
2. The connectivities matches with the structure of the
process. The values shown are normalized to provide a
comparitive value within the process.

!! !" !#
0.5927 1

0.3512

Fig. 2. Connectivity strength for example 1

Example 2

Now, the process in example 1 is modified to give a mutual
lagged relationship between x1 and x2. This gives a VAR
process with closed loop structure given by[

x1[k]
x2[k]
x3[k]

]
=−

[0.5 0.3 0
0.2 0.3 0
0.1 0.3 0.4

][
x1[k − 1]
x2[k − 1]
x3[k − 1]

]

−

[0.3 0 0
0 0.2 0

0.2 0 0.4

][
x1[k − 2]
x2[k − 2]
x3[k − 2]

]
+

[
e1[k]
e2[k]
e3[k]

]
(19)

The relative strength of connectivities are shown in Figure
3. The results show the connection form x2 to x1 and the
topology corresponds to the structure of the process.

!! !" !#
0.5669 1

0.2739

0.5671

Fig. 3. Connectivity strength for example 2

Example 3

As a third example for topology reconstruction the data
generated from a discrete domain multivariable non-VAR
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0.8958

1

0.9032

Fig. 4. Connectivity strength for example 3

process shown in Table 1 is used. The process has three
inputs uj and four outputs yi. The pairs (y1, u1) and
(y2, u2) have feedback relationships with instantaneous
causality. The nature of the transfer function in the
feedback loop (proportional integral controller) introduces
instantaneous causality from output to input (due to
the proportional action.) The process is simulated in
SIMULINK/MATLAB to create the data. The data is
represented as

x = [ y1 y2 y3 y4 u1 u2 u3 ]T

The index is calculated by (17). The relative connectivity
strengths are shown in Figure 4. The connectivity values
reflects the transfer function relationships.

This process has instantaneous causality from y1 → u1

and y2 → u2. If the connectivities are estimated from the
RVAR model (strictly causal), without accounting for the
instantaneous causality in A0 matrix, these connections
will remain undetected in the analysis. The results are not
shown due to space constraints.

5. CONCLUSIONS

This work presents a topology reconstruction method
based on causality analysis in frequency domain. The sig-
nal flow path is determined from a quantification of energy
transfer into direct and indirect contributions among the
signals. The direction and relative strength of the con-
nectivity are derived from the magnitude of direct energy
transfer. The methodology relies on spectral factorization
result, while the estimation of the spectral factor uses a
VAR modelling approach. The method is fairly robust to
the order of the model, which is a desirable feature.

Simulation results demonstrate the promise that this
method holds in reconstructing and quantifying plant con-
nectivities from data in an automated manner. Future
works include extensive testing of the proposed method to
industrial processes and refinements of the quantification
of connectivity strengths. A refinement of the threshold for
connectivity through surrogate data analysis should pro-
vide better results. In conclusion, it may also be remarked
that the methodology rests on second-order measures of
connectivity. Therefore, extensions using other distance
measures is also envisaged.
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