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Abstract: Process control should aim at not only ensuring that controlled variables to best
follow their set points, but also requiring the optimal control for the operation of the whole
plant to make the operational indices (e.g. quality, efficiency and consumptions during the
production phase) into their targeted ranges. It also requires that operational indices for
quality and efficiency should be enhanced as high as possible, whilst the indices related to
consumptions are kept at their lowest possible level. Based upon a survey on the existing
operational optimization and control methodologies, this paper presents a data-driven hybrid
intelligent optimal operational control for complex industrial processes and a hybrid simulation
system. Simulations and industrial applications to a roasting process for the hematite ore mineral
processing industry are used to demonstrate the effectiveness of the proposed method. Issues for
future research on the optimal operational control for complex industrial processes are outlined
in the final section.

1. INTRODUCTION

In general, under the assumption that the set points for
controllers are known, research into conventional process
control has been focused on how the controller can be
designed so that the closed loop system is stable and
then the controlled variables can follow these set points
as closely as possible. The fact that optimal operation
of systems cannot be achieved by feedback control when
the actual set points deviate from their desired values is
ignored.

The development of modern process industries and the
increasingly fierce competition of the world market have
inevitably led to new demand on process control from
various industrial sectors. Not only the outputs of the
controlled plant are required to best follow their set points,
but also the operation of the whole industrial plant is re-
quired to be well controlled so that the operational indices
(i.e. the production quality, efficiency and consumptions
during production phase) are well controlled into their
targeted ranges. Moreover, the quality and the efficiency
indices are enhanced as much as possible whilst the con-
sumption indices are reduced to their lowest possible level.
This means that the optimal operation control for indus-
trial processes can be realized. The fast developments of
computer and communication technologies have provided
an implementation platform for the optimal operational
control for industrial processes.

The operational optimization and control for industrial
process are of increasing importance in industries and have
attracted attentions of many researchers (Engell [2007],
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Darby et al. [2011], Scattolini [2009], Mehmet et al. [2008],
Hasikos et al. [2009], Jaschke et al. [2011], Tatjewski [2008],
Adetola et al [2010], Alvarez [2010], Wu et al [2009]).
In as early as late 1950s, the first use of computers to
calculate an on-line economic optimal operating point for a
process unit appears to have taken place. At the same time,
computer control system could realize real-time control
and optimization in American chemical companies such as
Texaco and Union Carbide (Bischoff [2001]). For industrial
processes whose mathematical models can be established
such as chemical processes, model based operational op-
timization and control methods were established. In this
context, self-optimizing control uses traditional feedback
regulation to realize optimal operation. Such methods
would select the set points of the controlled variables which
correspond to economically optimal steady state for indus-
trial processes. By adjusting relevant control variables to
follow these set points, the whole process can be made
to operate near the economically optimal steady state in
the presence of disturbances (Skogestad [2000]). However,
for some industrial processes, the selection of appropriate
set points for controlled variables is difficult to perform.
Moreover, when the system is subjected to unexpected
disturbances, there is no guarantee that the process will
operate near its economically steady state even if the con-
trolled variables can follow their set points. To solve this
problem, the well-known real-time optimization (RTO)
combines the regulatory control with the optimization of
the process operation, where a two-layered structure has
been employed. The top layer optimizes relevant economi-
cal functions using a nonlinear steady state model so as to
produce proper set points for the low layer control loops.
The later realizes the tracking of the controlled variables
to these set points so that the process can operate near its
economically optimal state (Findeisen et al [1980], Marlin
et al [1997]). However, since RTO uses static models, it can
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only re-optimize the process once the system reaches its
new steady state after the occurrence of disturbances. This
leads to a delayed optimization effect where RTO method
cannot cope with the variation of operational condition.
As such, effort has been made by combining steady state
optimization with model predictive control (MPC), where
three-level structure (i.e. RTO, MPC and regulation con-
trol) has been adopted to solve the issues of inconsistence
that the period of RTO is too long and that the running
period of the control loops is too fast (Adetola et al [2010],
Nath et al [2000], Hartmann [1998]). In addition, since
RTO uses open loop optimization under steady state, it
lacks robustness in response to model uncertainties and
disturbances. As such, a direct online optimal control is
employed (Engell [2007], Bartusiak [2005]). By including
an economical function as an extra term in the perfor-
mance function of nonlinear MPC, it is optimized in a
finite horizon (Qin et al [2003]). On the other hand, the
work reported in Adetola et al [2010] proposed a controller
design for uncertain nonlinear systems by integrating real-
time optimization with MPC under the assumption that
the economic function is a known function of the con-
strained system’s state. The above approaches generally
require that the industrial process can be described by
mathematical models.

The dynamic model of the controlled processes for the op-
timal operational control consists of two types of models,
namely, models for concerned control loops and models of
operational processes between the operational indices and
the controlled variables. In this regard, the operational
indices are of a multiple nature that constitutes the qual-
ity, efficiency, energy and material consumptions during
the production phase. In general, for complex industrial
processes such as metallurgical industry, the dynamical
characteristics between operational indices and the con-
trolled variables in control loops exhibit hybrid complexity
in terms of strong nonlinearity and multivariable coupling,
uncertainties and difficulties in establishing mathematical
model due to non-clear mechanism. Moreover, these dy-
namics have different characteristics for different industrial
sectors Operational indices usually cannot be measured
online. Thus, at present there is no unified optimal op-
erational control approach that can be widely applied to
complex industrial processes. Their operational control has
been realized via case-by-case approaches.

Indeed, the metallurgical industry generally firstly pre-
process the production boundary conditions, and then
employ either production specification models or empirical
models to produce set points for control loops in an open
loop setting, where the controlled variables can be made
to follow these set points to realize operation control. As
for China, since raw material resources and production
conditions vary frequently (for example the composition
of raw ores are subject to large variations and their grades
are low), it is difficult to use the above methods to perform
open loop settings for control loops. In Li et al [2001], a
supervisory control strategy for a hot-rolled strip laminar
cooling process has been proposed by combining tradi-
tional control method with intelligent control techniques
so as to improve the performance of the final products.
In Wang et al [2004], an optimal setting control method
for a six-zone walking beam re-heating furnace has been

developed to improve its heating efficiency. As reported in
Yang et al [2009], for the raw slurry preparing of alumina
sintering production a quality prediction model is pre-
sented by combining a first principle with neural networks
and then a multi-objective hierarchical expert reasoning
strategy is proposed to determine the optimized set points
for raw slurry proportioning. Moreover, in Wu et al [2009]
an intelligent integrated optimization and control method
has been developed for lead-zinc sintering process based on
a model for predicting quantity and quality of products.

Indeed, although the Chinese production output of pro-
cess industries such as steel making, aluminium, mineral
processing, papermaking and cement productions etc is in
the top position in the world, there are some problems in
terms of high energy consumption, large resources usage
and low product quality. These are many energy intensive
plant in operation for these processes industries such as
shaft furnace, rotary kiln and ball mill, etc. Since their dy-
namic mathematical models are difficult to be built using
first principle analysis, their operational indices cannot be
measured online and their production boundary conditions
vary frequently in term of the raw material composition
and low grades etc, it is difficult to use the above op-
erational optimization and control method. As a result,
manual operation has been widely used to select set points
for control loops in an open loop way. In this context,
on-site operators determine the required set points and
then loop controllers would enforce controlled variables to
follow these set points so as to realize operational control.
However, when the operating conditions fluctuate, these
set points cannot be tuned timely and accurately. As a
result, the plant always operates under a non-optimized
economic status, leading to high energy consumption and
even fault operating conditions. For example, the hematite
mineral processing industry in China widely use shaft
furnace to transfer low grade and weak magnetic ore into
high magnetic ore. However, the operational indices (i.e.
the magnetic tube recovery rate) that reflect the metal
recovery rate cannot be measured online. Moreover, this
operational index is affected by a number of controlled
variables, namely the heating zone temperature, gas flow
rate and ore discharging time. The relevant dynamics
would therefore exhibit integrated complexity in terms of
heavy nonlinearity, strong coupling and variations along
with the frequent changes of operational conditions. Such
complexities cannot be expressed by mathematical models.
As a result, only manual operation can be employed, where
on-site operators would firstly observe the combusting sta-
tus inside the combustion chamber using visual inspection
and then determine the set points of control loops based on
their operational experiences. When the size of ore, their
grades and composition are subjected to large and frequent
variations, these on-site operators cannot accurately and
timely tune these set points so that the operational indices
can be kept inside their targeted ranges. Such manual
based operations would generally lead to various faults
operating conditions such as fire-emitting, ore-melting,
flame-out, under- and over-deoxidizing. When these faults
occur, on-site operators would normally diagnose the fault
operating condition using visual inspection and their ex-
perience, and then adjust the set points of the control
loops for the combustion chamber temperature, gas flow
rate and ore discharging time, so that the operation of
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shaft furnace can be gradually moved far away from these
fault operating conditions. Since on-site operators cannot
correctly and timely diagnose the operating conditions and
tune these set points, the operational performance of shaft
furnace will get worse and even result in the break down
of the production (Chai et al [2007b]). Therefore, it can
be concluded that the operational control for industrial
processes not only influence the product quality, produc-
tion efficiency, energy and resource consumptions, but also
have significant impact on the reliable and safe operation.

Green manufacturing and automation for process indus-
tries have been emphasized in the national strategic plan
for medium and long term science and technology develop-
ment of China. Specifically, optimal operational control for
complex industrial processes has been regarded as one of
the encouraged future research areas in the state industrial
automation field in China.

By reviewing the existing operational optimization and
control methodologies, this paper presents data driven
hybrid intelligent optimal operational control and a hy-
brid simulation system for operational control in order to
speed up the application of proposed operational control
methods to real industrial processes supported by Chi-
nese national fundamental research program. Using the
shaft furnace in hematite mineral processing as a bench-
mark, the simulation results and real application to 22
shaft furnace systems in the largest mineral processing
in China are given by adopting the proposed operational
control method. Issues for future research on the optimal
operational control for complex industrial processes are
outlined.

2. DESCRIPTION OF OPTIMAL OPERATIONAL
CONTROL FOR COMPLEX INDUSTRIAL

PROCESSES

2.1 Operational Control Process for Complex Industrial
Processes

w: variations of production condition
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Fig. 1. The operational control for industrial processes

Fig. 1 shows the operational control process for complex
plant, where the targeted values of the operational indices
r∗i (i = 1, 2, 3) are obtained from planning and scheduling.
r∗1 (i = 1) represents the quality index, r∗2 (i = 2) stands
for the efficiency index and r∗3 (i = 3) denotes consumption
index. Operational indices ri(t) satisfy rimin < ri(t) <
rimax, where rimin and rimax are the lower and upper
limits. The technical engineers use the above targeted

values and their ranges of indices to determine set point y∗j
(j = 1, 2, . . . , n) based on their experience. The controllers
would produce the required inputs uj(t) (j = 1, 2, . . . , n)
to the plant to make their outputs yj(t) (j = 1, 2, . . . , n)
follow these set points y∗j so that the operational indices
ri(t) are controlled into their targeted ranges, namely
rimin < r(t) < rimax.

2.2 Problem Statement of Optimal Operational Control

Under the assurance of safe operation, the optimal oper-
ational control for industrial processes aims at controlling
the actual operational indices into their targeted ranges,
i.e.

rimin < ri(t) < rimax, i = 1, 2, 3. (1)

At the same time the operational indices that reflect the
quality and efficiency are enhanced as high as possible by
performing the following optimization

max r1(t), max r2(t).

In addition, the index that reflects the consumption is
reduced as low as possible, i.e.

max r3(t).

In this regards, the dynamic model of the optimal opera-
tional control consists of the dynamical models in the op-
erational layer and in the loop control layer. The dynamic
model in the operational layer can be expressed as

ṙ(t) = g(r(t), y(t), dr(t)) (2)
where g(·) is a unknown nonlinear function represents the
disturbances of the variations of the raw materials and
wear and tear of the equipment, etc.

As for the dynamic model in the loop control layer, it can
be expressed as follows

ẏ(t) = f(y(t), u(t), dy(t)) (3)
where dy is the unknown yet bounded disturbance caused
by measurement noises etc.

For actual control of industrial processes, the input and
output and their rates of changes are subjected to the
following constraints,

y∗min ≤ y(t) ≤ y∗max,∆y∗min ≤ y(t)− y(t− 1) ≤ ∆y∗max,
(4)

umin ≤ u(t) ≤ umax,∆umin ≤ u(t)− u(t− 1) ≤ ∆umax.
(5)

Also, the decision variables of the optimal operational
control are the desired set points y∗(t) for the control loops
and control law u(t) = p(y∗(t) − y(t)), where p represent
the control law. As a result, the problem of optimal
operational control can be mathematically described as
follows:

Control objective:
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rimin < ri(t) < rimax, i = 1, 2, 3. (6)
max r1(t), max r2(t), max r3(t). (7)

Constraints:
ṙ(t) = g(r(t), y(t), dr(t)) (8)
ẏ(t) = f(y(t), u(t), dy(t)) (9)

y∗min ≤ y(t) ≤ y∗max,∆y∗min ≤ y(t)− y(t− 1) ≤ ∆y∗max,
(10)

umin ≤ u(t) ≤ umax,∆umin ≤ u(t)− u(t− 1) ≤ ∆umax.
(11)

Disturbances: dr, dy.

Output of optimal operational control:

y∗(t) and u(t) = p(y∗(t)− y(t)). (12)

From the above problem description, it can be seen that
optimal operational control involves multi-objective opti-
mization. The dynamic model of plant to be controlled
consists of two layers, described by (9) and (10) together
with relevant constraints in (11). The former (i.e. (9))
are related to knowledge of the relevant industries and
exhibit hybrid complexity in terms of nonlinearity, multi-
variable nature, so that it is difficult to be described
mathematically. Moreover, the disturbances of operational
process are also difficult to be modelled mathematically.
In addition, optimal operational control not only needs
to produce the required control laws for the loop control
layer, but also needs to produce appropriate set points
for control loops. Therefore it is difficult to directly use
the existing control and optimization technologies to solve
the above problem. The following part of this paper will
indicate that an operational control strategy combining
optimization, prediction, feedforward and feedback would
solve the above mentioned problem of multi-objective dy-
namic optimization.

3. DATA DRIVEN HYBRID INTELLIGENT
OPTIMAL OPERATIONAL CONTROL STRATEGY

For engineering implementation, optimal operational con-
trol has employed two layered structure, namely the loop
control layer and the setting control layer. Indeed, existing
controller design methods can be used for loop controller.
Mathematical model based controller design method select
the controller structure based on the model of the plant
to be controlled, and then obtains the parameters of the
controller. However, since operational process is difficult to
be modelled mathematically, operational controller design
can only be carried out using process data. The idea of
data driven controller design is to pre-specify the structure
of the operational controller and then use process data
to formulate each part of the controller. Since the opera-
tional dynamics of the above mentioned industrial plant
are generally unknown and are subjected to uncertain
disturbances, and they often operate under a dynamic
environment, the optimal operational control should be
robust. Therefore, the closed-loop dynamic optimization
strategy should be realized by combining feedback with
optimization. Since the optimal decision making for the
set points of the control loops can only be achieved using
either approximated models or intelligent methods such

as case-based reasoning or rule -based reasoning. The
obtained set points from the operational experience of
experts often drift away from the optimized set points.
This indicates that prediction and tuning of the opera-
tional indices should be utilized. In order to avoid the
fault operating conditions caused by the inappropriate
set points, the fault diagnoses and self-recovery control
strategy should be used to tune the control loop set points
so that the concerned industrial plant operates far away
from the faulty operation conditions.

A hybrid data driven intelligent optimal operational con-
trol structure has been proposed as shown in Fig. 2.
This control strategy integrates modeling with control and
optimization with feedback. It also combines prediction
with feedforward and links case-based reasoning and rule-
based reasoning with intelligent computing. This proposed
operational control structure therefore consists of pre-
setting module for control loops, module for operational
indices prediction, feed-forward and feedback compensa-
tion together with diagnosis of fault operating conditions
and self-recovery control modules. In the following these
modules will be described respectively.

Control loop pre-setting module: This module generates a
set of pre-setting points ỹ(t) for the control loops using the
targeted values of the operational indices r∗i (i = 1, 2, 3)
and their targeted ranges [rimin, rimax]. The outputs of the
loop controls y(t) and the boundary conditions B, such as
the variations of type and composition of raw material, are
also taken into account.

Prediction module of operational indices: This module
produces the predicted value r̄(t) for the operational
indices using the pre-setting value ỹ(t) for the control loops
at time instant t.

Feed-forward compensator: Using the difference between
the targeted operational indices r∗i and their predicted
values r̄i(t), namely ∆riF (t) = r∗i − r̄i(t) , this module
produces the compensated value of the set points ∆ỹF (t),
which is then used to obtain the control loop set points
y∗(t) = ȳF (t) = ỹ(t)−∆ỹF (t) at the time instant t.

Feedback compensator: This module produces the set
points y∗(t) = ȳB(T ) = ȳF (t) + ∆ỹB(T ) at sample time
T using the tuning value for set points ∆ỹB(T ) based on
the errors ∆riB(T ) = r∗i − ri(T ), where ri(T ) is the actual
value with T = nt, where t is the sampling interval and n
is an integer.

The principle of the feed-forward and feedback compensa-
tions can be described as follows: When the operational
indices ri(t) (i = 1, 2) (which reflect the quality and
efficiency) is less than r∗i and exceeds its threshold a
(i.e. either ∆riF (t) ≥ a or ∆riB(t) ≥ a), the required
compensation will be performed. On the other hand, when
the operational index ri(t) (i = 3) (which reflects the
consumption) is larger than its targeted value and exceeds
its threshold a (i.e. either ∆riF (t) < 0 with |∆riF (t)| > a
or ∆riB(t) < 0 with |∆riB(t)| > a ), the proposed com-
pensation will also take place.

Diagnosis of fault operating condition: When fault either
occurs or will imminently occur for the production op-
erating conditions, this diagnostic module produces the
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Fig. 2. The structure of the optimal operational control for industrial processes

fault diagnosis results of fault operating condition S using
the targeted value of operational indices r∗i , the predicted
value r̄i(T ) and the actual value ri(T ). The control loop
output y(T ) and its rate of changes ∆y(T ) together with
the control input u(T ) are also used in the diagnosis
together with process variable P (T ) , its rate of changes
∆P (T ) and boundary conditions B.

Self-recovery control module: This module generates the
adjusted incremental value ∆ȳ(T ) of the set points using
the diagnosed fault operating condition S, the control loop
output y(T ) and the control input u(T ) together with the
tracking error of the control loop e(T ) = y∗(T ) − y(T ),
where process variable P and the production boundary
conditions B will also be used for this purpose.

Therefore the newly obtained control loop set points
y∗(T ) = ȳB(T ) + ∆ȳ(T ) can be finally formulated which
will be tracked by the relevant controlled variables so
that the system can be gradually moved away from the
fault operating condition caused by inappropriate set point
selection. In this phase there is no need to replace and
change hardware of equipment. This self-recovery control
scheme would realize the required control objectives given
in (7)-(9) (for details please refer to Chai et al [2008]).

Indeed, the actual design of each module of the above
optimal operational control strategy varies along with
different dynamic characteristics of different industrial
processes. Control loop pre-setting module adopts case-
based reasoning (Chai et al [2007a],Chai et al [2011a])
or data-based approximate model and quadratic program-
ming (Zhou et al [2012]). Prediction model of operational
indices uses a method that combines fuzzy logic based
reasoning and neural network (Wu et al [2010],Chai et al
[2011a]). Feedforward and feedback compensators employ
fuzzy logic based reasoning (Zhou et al [2009]) or case
reasoning driven self-tuning PI control (Chai et al [2011a]).
Diagnosis of fault operating condition and self-recovering
control module adopts case-based reasoning and rule-
based reasoning (Chai et al [2007b],Chai et al [2011a]).

4. HYBRID SIMULATION SYSTEM FOR
OPERATIONAL CONTROL

Since the dynamics of complex plant differs from each
other to a large extend, the operational control can only
be designed using various process data. The operational
control exhibits mismatch with respect to the actual

model for the operational processes. This means that
experimental based research should be adopted so as
to validate and improve the design methodologies for
operational controller. To ensure the safe operation of
the industrial plant and avoid costly operational control
testing on real industrial plant, simulated experiment
should be carried out first. As a result, in order to apply
the proposed operational control method to real industrial
plants, a hybrid simulation system has been developed.

The hardware structure of the proposed hybrid simulation
system is composed of the implementation platform of con-
trol systems operated under real industrial environment,
the virtual equipments for actuators and sensors and the
simulation computers for industrial plant.

In this context, the software system consists of the opera-
tional control software, DCS based configuration software,
simulation software of actuators and sensors as well as the
simulation software for actual industrial plant. This soft-
ware system has the platform function and configuration
ability which can be defined and extended based upon
user’s needs without re-programming and re-compiling.
This flexibility allows the implementation of various opti-
mal operational control algorithms and can easily be used
to simulate different kinds of actuators and sensors. For
complex industrial plant, we only need to establish models
for each component and then use the flexible configuration
ability of the simulation software to simulate the charac-
teristics of dynamical models in the operational layer and
the loop control layer.

5. CASE STUDY ON THE OPERATIONAL
CONTROL OF SHAFT FURNACE SYSTEM

5.1 Problem Statement of Optimal Operational Control

Although China has rich hematite ore resources, the grade
of useful ore is relatively low, making their separation dif-
ficult. Consequently the roasting process of shaft furnace
is adopted to carry out the high-temperature-reduction
roasting in order to enhance the magnetism to obtain the
concentrated iron ore that can be used for the follow-up
magnetic separation procedures. As shown in Fig. 3, the
basic roasting process of a shaft furnace consists of ore
feeding, ore preheating, heating, reduction, cooling and
discharging phases. Detailed operation of each of these
production phases (as shown in Fig. 3) is described as
follows.
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Fig. 3. Technical process and current control of the shaft
furnace

Ore feeding: The raw hematite ores are fed into the furnace
from an ore-store slot and a square funnel at its top.

Preheating: In the preheating zone those ores interact with
the ascending hot gas so that their temperature rises to
100∼150◦C.

Heating: In the heating zone, the ores temperature is
increased to 700∼850◦C when they are attained the heat
produced by the inflammation of air-mixed heat gas in the
combustion chamber.

Deoxidizing: In this phase, the hot low magnetic ores flow
down into the deoxidizing zone and are deoxidized to high
magnetic ones.

Cooling and ore discharging: This is the final processing
where the ores are laid down into the water-sealed pool by
two ore ejection rollers. The ores are cooled down and are
moved out of the furnace by two carrier machines which
operate synchronously with their corresponding rollers.

The operational indices that reflect the quality and the
efficiency of the shaft furnace, namely the magnetic tube
recovery rate r(t) , are related to the combustion temper-
ature y1(t), the ore discharging time y2(t) and the coal
gas flow rate y3(t) . Since r(t) cannot be measured online
and its dynamical relationship with {y1(t), y2(t), y3(t)} is
subjected to heavy nonlinearity and strong coupling, and
such a relationship is difficult to be modelled and varies
along with the operating conditions, only on-site operators
can be employed to obtain the set points {y∗1 , y∗2 , y∗3} for
these three control loops using their operational experience
together with the targeted magnetic tube recovery rate
r∗ and its assayed value r(T ) in the on-site laboratory.
Once these set pints are obtained, they are tracked by
these three control loops of combustion temperature, the
ore discharging time and the gas flow rate so as to realize
the control of r(t), ensuing that it is within its targeted
range.

When the sizes, grades and composition of the raw ore vary
frequently, on-site operators cannot adjust the required set
points in time and it is therefore generally difficult to con-
trol the index well inside its targeted range, leading to the
following fault operating conditions (FOCs) denoted by S

which stands for Fire-emitting (FE), Flame-out (FO), Ore-
melting (OM), Under-reduction (UD) and Over-reduction
(OD), respectively. The definitions of these fault operating
conditions as given as follows:

Fire-emitting (S1): This stands for the fire emit out of the
combustion chamber.

Flame-out (S2): This means that the flames reach out of
the top of the furnace.

Ore-melting (S3): This represents the fault that the iron
ores stick inside the furnace so that further entry of ores
is difficult.

Under-reduction (S4): This denotes the fault of under
deoxidization.

Over-reduction (S5): This stands for the fault of over
deoxidization.

Over a long period of time, these fault operating conditions
could only be diagnosed by the visual inspection of the
surface status of the shaft furnace, where assessment was
made by experienced operators who would adjust the set-
points of the control loops on trial and error basis to avoid
some fault operating conditions, which have occurred
frequently for the improperness and delay of some manual
operations. Therefore, the quality and efficiency of the
production are severely affected and even personnel safety
is also in danger.

5.2 Hybrid Simulation Tests

The purpose of optimal operational control of shaft furnace
is to ensure that the magnetic tube recovery rate is
controlled inside its targeted range [rmin, 1] for r∗ so that
r(t) is made as larger as possible than r∗. In this case we
have selected r∗=0.82 and rmin=0.79.

Using the proposed structure of operational process con-
trol and considering the features of the shaft furnace
system, a hybrid intelligent optimal operational control
algorithm has been developed as described in Chai et al
[2011a], where cascaded control and PI control are used
for the control loops of the combustion temperature, the
gas flow rate and the ore discharging time (Yan et al
[2006]). For this proposed optimal operational control, the
case based reasoning has been used for the control loop
setting module whilst the cased based reasoning of a PI
structure has been used for the feed-forward and feedback
compensation (Chai et al [2011a]). Moreover, a hybrid
intelligent modelling method that integrates fuzzy system
and RBF neural networks is established for the predictive
model of the magnetic tube recovery rate (Wu et al [2010]).
As for the diagnosis of fault operating conditions and
self-recovery control, case based reasoning and rule based
reasoning have been used respectively (Chai et al [2007b]).

Using the above algorithm, the operational control soft-
ware for the shaft furnace is developed via the use of
configuration function of the operational control software.
Adopting the above loop control algorithm, the monitoring
and control software of the shaft furnace is developed
using the DCS configuration software. Moreover, using
the real process data, the models of the pre-heating, the
heating, the combustion, the deoxidizing, ore discharging
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time and the magnetic tube recovery rate have been ob-
tained through the proposed hybrid intelligent modelling
techniques (Wu et al [2010]). The simulation experiments
are then carried out adopting the hybrid simulation sys-
tem. The simulation results show that the magnetic tube
recovery rate can be controlled well inside its targeted
range.

5.3 Industrial Application

Fig. 4. The shaft furnaces

For the 22 shaft furnaces of a hematite ore mineral process-
ing production plant in China (as shown in Fig.4), an op-
erational control system has been developed adopting the
proposed operational control method for the shaft furnace.
The responses of the combustion chamber temperature,
the gas flow rate and the ore discharging time are shown
in Fig.5 for the operation period from 7:00am to 12:00pm,
where from these responses it can be seen that when the
particle size of ore (B3) changes from ”large” to ”medium”
and when the variations take place for negative pressure
(P2) inside the furnace, the coal gas heating value (P3), the
heating air pressure (P4) and the rate of changes of the hot
coal gas flow (P6), the proposed operational control system
can adaptively tune the set points of combustion chamber
temperature, the coal gas flow rate and the ore discharging
time so that these controlled variables are be made to best
follow these set points ensuing that the magnetic tube
recovery rate can be controlled well inside its targeted
range [0.79,1].

The operational control system has been in operation
for three years, its operation has clearly shown that the
proposed system can effectively provide appropriate set-
points for the control loops in time under the variation
of operating points or fault of conditions (FOCs). The
application results of the proposed system can be obtained
from Tables 1 that the total frequency of FOCs is reduced
by over 50%, the production rate per furnace is increased
by 0.7 T/h from previous 24.9 T/h to the current 25.62
T/h. Moreover, the magnetic tube recovery rate has been
increased by 2% and the equipment usage rate is enhanced
by 2.98%. As such, the metal recovery ratio is improved
by 2.01% and the concentrate grade raised by 0.57% (see
Chai et al [2011a]).

To illustrate the steady operation of the roasting process,
the monthly averages of magnetic tube recovery rate of

three years are shown in Fig. 6, which demonstrates that
the system runs steadily and reliable.

6. OPEN ISSUES

For complex industrial processes which are difficult to
establish mathematical models, data driven operational
control is an effective approach. Further investigations are
also needed so as to obtain industrially applicable design
method of the data driven operational controller. In terms
of methodologies to be used for such research, analytical
methods should be effectively combined with experimen-
tal approach. The operational controller design method
should be studied and then the simulation models should
be established that reflect the dynamic characteristics of
the plant to be controlled. The simulation experiments for
proposed method applied to the simulated models of the
industrial plant and the industrially experiments should
be carried out so as to validate and improve the design
methods for operational controller. The following open
issues should be addressed in the future research.

6.1 Predictive Model for Operational Indices

For model based operational optimization and control
methods, their performance indices can be represented by
the mathematical model of controlled variables. However,
in practical industrial processes the operational indices
(i.e. quality, efficiency and consumption indices) of many
industrial plants cannot be represented by mathematical
models of controlled variables. Moreover, they are diffi-
cult to be measured online. To achieve the operational
optimization for these plants, it is necessary to establish
predictive models for operational indices. Since it is gener-
ally difficult to use first principles techniques to establish
the dynamical models between the operational indices and
the controlled variables and these dynamical models are of
different forms for different industrial sectors, we need to
investigate novel hybrid intelligent modelling approaches
using first principles analysis, data and knowledge, statis-
tics analysis and intelligent computing. For example, Ding
et al [2011] used least square vector support machine LS-
SVM and the probability density function of the modelling
error to obtain the predictive model for the concentrated
grade of the hematite ore mineral processing. This method
adopts the data of the shaft furnace, grinding and mag-
netic mineral processing such as the magnetic tube recov-
ery rate, particle size, strong and weak concentrated grades
etc.

6.2 Data Driven Controller Design

For those industrial processes where their mathematic
model are difficult to obtain, the selection of control loop
set points can only be achieved using either approximated
mathematical model or the intelligent methods such as
case based, rule based and fuzzy logical reasoning etc.
based on the operational experience. However, such a
selection of the control loop set points may be deviated
from their optimal values. Therefore, it is necessary to
determine the compensated values for the set points using
the error of the targeted and actual values of the opera-
tional indices. This is in fact a controller design problem
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Temperature set-point of combustion chamber             flow rate set-point of deoxidization gas 

Output of temperature control loop of combustion chamber   Output of flow control loop of deoxidization gas 

(a) Temperature trend of combustion chamber      (b) Flow rate trend of deoxidization gas 

Moving time set-point                                   Prediction of MTRR 

Practical value of moving time                            Practical value of MTRR 

(c) Trend of moving time                         (d) Trend of MTRR 

Fig.11 Operational control effects of the shaft furnace’s roasting process 
Fig. 5. Operational control effects of the shaft furnace’s roasting process

Table 1. Comparison of the performance of the shaft furnace

Before the system installed After the system installed

Average MTRR (%) 80 82

Average production rate per furnace (t/h) 24.9 25.62

Average equipment usage rate (%) 92.5 95.48

Average frequency of fault (times/month) 6.5 3.2

Average metal recovery ratio (%) 74 76.01

Average concentrate grade (%) 52.1 52.67

where the operational process is taken as the process to
be controlled, the operational indices and their targeted
values are regarded as the output and the reference in-
put, and finally the compensated values for set points
are taken as the control inputs. Since such a dynamics
is often structurally unknown and nonlinear, the existing
model based controller design would be difficult to use.
Therefore, it is necessary to investigate data driven design
method of controller to perform the operational controller
and compensator design, where process data is used in
combination with knowledge retrieving techniques and
intelligent methods. For example, the work reported in
Ding et al [2012] used the operational data of the whole
mineral processing line to establish a feedback compen-
sation method for the set points selection of control loops
using the cause-and-effect rule mining via rough set theory.
Also, for nonlinear multivariable systems that cannot be
modelled mathematically virtual un-modelled dynamics
and data driven method can be used to design controller
(Chai et al [2011b]).

6.3 Fault Prediction, Diagnosis and Self-Recovery Control
for Fault Operating Conditions

In the operation of industrial plants, although the con-
trollers, actuators and sensors are healthy, fault operating
conditions would still occur if inappropriate setting control
takes place. The fault operating conditions affect directly

Fig. 6. Trend of monthly average MTRR for three years

the operational indices and can lead to severe deterioration
of product quality, efficiency and increase consumptions.
They can also lead to the break down of production and
even cause severe personnel injuries. Therefore, research
into the prediction and diagnosis of fault operating con-
ditions and self- recovery control to remove the faults
so as to ensure the safe operation of industrial plant is
of paramount importance. Fault operating conditions are
different from the faults of the actuators and sensors in
the sense that they relate to a number of factors such as
plant parameters, the input and output of control loops
and production boundary conditions, etc. Moreover, the
dynamics of fault operating conditions vary along with
different industrial plant. In this context, existing methods
on fault diagnosis and tolerant control are difficult to
be used. In this regard, it is a challenging to study the
prediction and diagnosis of fault operating condition as
well as self-recovery control. For this purpose, the first
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principle analysis should be combined with data-driven,
operational knowledge and intelligent methods should be
used. For example, a novel tension fault diagnosis method
for cold rolling continuous annealing processes has been
reported in Liu et al [2011] by using the process data,
where first principle analysis has been effectively combined
with the well-known principal component analysis.

6.4 Multi-Objective Optimal Decision-making for Operational
Indices

The objective of optimal operational control of industrial
processes is to make the actual operational indices as close
as possible to their optimized values. This means that
the decision-making of the targeted values of operational
indices is very important. These operational indices are
closely linked to the production indices, namely the prod-
uct quality, product quantity and production cost of the
whole production line. The dynamic model between the
operational indices and the production indices is generally
difficult to be established using first principle analysis.
Such model exhibits different characteristics for different
industrial sectors and are also subjected to frequent vari-
ations of production conditions in terms of the changes in
raw material composition and wear and tear of relevant
production equipment. Therefore, the optimal decision
making for operational indices is in fact a multi-objective
and dynamical optimization problem for systems which
is difficult to be modelled mathematically. This requires
research on multi-objective intelligent optimization. For
instant, a multi-objective evolutionary computing algo-
rithm (Yu et al [2011]) has been combined with gradient
approach so as to obtain the performance indices for min-
eral processing plant in terms of its concentrated grade,
composition of raw materials and resources and product
quantity of the concentrated grades.

6.5 Operational Closed-loop Feedback Control Under Hybrid
Networking Environment

To ensure the reliability of the operational control for
industrial plants, its operational optimization and control
are realized by a two-layered structure, namely the control
loops layer and the setting control layer. The input and
output signals of the control loops are transmitted via
device networks and the signals for setting control layer
are transmitted using industrial Ethernet. Although there
exist data transmission delay and package drop-off for Eth-
ernet, this effect caused by such networking environment
can be ignored when performing open loop optimal oper-
ation and control. For example, RTO method uses open-
loop mode to produce control loop set points for chemical
processes. However, to overcome the hybrid complexity for
industrial plant, the optimal operational control should be
realized in a closed loop format. Therefore, it is necessary
to consider the impact of data transmission delay and
package drop-off. In Chai et at [2012], integrated network
based model predictive control for set point compensation
in industrial processes has been preliminarily studied. In-
deed, the operational closed loop feedback control under
integrated network will constitute a new direction of re-
search.

6.6 Dynamic and Static Performance Analysis for the
Operational Control

Operational control not only makes the operational indices
inside their targeted ranges finally, but also keeps these
indices always inside the targeted range. This requires
both the stability and the desired dynamic performance
of the optimal operational control system. Since RTO
adopts an open loop optimization, it does not affect the
stability of the system. However, for optimal operational
control system for complex industrial processes, since it
uses closed loop feedback optimization the stability of
the system needs to be considered. The stability of the
system should also consider the effect of the tracking errors
between the controlled variables and their set points of
control loops. Since the dynamics of such a system cannot
be modeled mathematically, existing tools on stability
analysis cannot be readily used. Therefore, it is necessary
to develop a novel kind of instrument for the analysis of the
dynamic and static characteristics for operational control
systems, where analytical methods should be combined
with experimental approaches. This constitutes one of
the possible approaches to validate the dynamic and
static characteristics for the proposed optimal operational
control system adopting experimental research method.

7. CONCLUSIONS

In response to the fast development of process indus-
tries and the requirements of industrial informatization
in China, the objective of process control is not only
ensuring that controlled variables to track their set points
as closely as possible, but also requiring the optimal op-
erational control of industrial plant. Under the national
funded fundamental research program in China, a research
project has been carried out to realize closed loop opti-
mal operational control for complex industrial processes
whose mathematical models are difficult to be established.
The operational control strategy proposed in this project
combines optimization with feedback, operational indices
prediction with self-tuning, and the diagnosis of fault
operating conditions with self-recovery control. Moreover,
for specific industrial plants, relevant design methods have
been proposed using data driven and intelligent method-
ologies. By taking the shaft furnace as a benchmark, the
proposed optimal operational control methods is described
together with both simulation results on a hybrid simula-
tion system and its real applications to 22 shaft furnace
in hematite ore mineral processing factory in China. The
experimental results have clearly shown that the proposed
method can constitute one of new approaches to solve the
optimal operational control for complex industrial plants.
Future issues and research methodologies on the optimal
operational control for complex industrial processes are
listed.
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