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Abstract: Rapid assessment of the cells physiological state during a culture is
essential for bioprocess optimization and the design of effective control
strategies. In this work, an approach was developed to provide an online
estimation of the intracellular flux distribution of cells grown in perfusion
cultures, based on a comprehensive metabolic network involving 40 biochemical
reactions and 46 components. The specific uptake and production rates were
evaluated from daily nutrient and metabolite concentration measurements, using
an extended Kalman-filter for noise reduction and rate estimation. The
biosynthetic rates were determined from an on-line estimate of the specific
growth rate using a recursive least-squares method. Our results demonstrate that
this approach allows monitoring of the cells metabolic activity and can be a
useful tool for process development. Copyright © 2006 IFAC

Keywords : monitoring, bioprocess, perfusion culture, metabolic flux analysis

1. INTRODUCTION

The design of efficient monitoring techniques
and control strategies is instrumental for the
rapid development and optimization of
bioprocesses. For these methods to be truly
effective in detecting the cellular response to
environmental changes or operating conditions,
they must be based on a profound knowledge of
the cell metabolism. With proper assessment of
the physiological state of the cells, the
optimization can consist in selecting the
appropriate operating conditions so as to

maintain or drive the culture towards a desirable
productive state (Konstantinov, 1996).

To date, most of the on-line monitoring tools
derive knowledge on the physiological state
indirectly, from extracellular measurements.
Cell concentration and respiration are the
parameters commonly measured on-line to
monitor the metabolic activity of a culture. Flow
injection analysis techniques have also allowed
real-time monitoring of various nutrients and
metabolites concentrations, such as glucose,
glutamine, lactate and ammonia (Blankenstein,
et al., 1994; Siegwart, et al., 1999).
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However useful for monitoring a production,
these process variables only give an incomplete
estimate of the metabolic state of the cells. To
complement the information of extracellular
measurements, intracellular data must be
considered as well. This constitute a challenging
task, hampered by the lack of available
measurements and the limited applicability of
mathematical models, in turn due to the
complexity of animal cell systems.

Advances in the development and application of
techniques such as NMR, mass spectroscopy
and radioactive tracers have permitted the
development of more accurate metabolic model.
Metabolic flux analysis is an approach that
allows to take into account the intracellular
reaction rates and has become an established
tool to study the metabolism of cells. However,
to date, metabolic flux analysis applied to
animal systems was mostly confined to a
descriptive tool, for a posteriori assessment of
cellular response to culture changes. This can be
mainly attributed to the large number of
measurements required to carry the analysis
(nutrients, metabolite products, cellular
composition, etc).

In the present work, an approach was developed
to provide daily estimates of the intracellular
fluxes, based on on-line and off-line
measurements and assuming a constant cellular
composition. To illustrate this approach, the
time courses of metabolic fluxes in two
perfusion cultures performed under different
feeding strategies were analyzed. Our results
demonstrate intimate links between the
intracellular flux distribution, culture
productivity and the operating conditions. By
allowing to monitor the physiological status of a
culture, this approach can provide a systematic
tool for process optimization and control.

2. MATERIALS AND METHODS

2.1 Cell Line, Bioreactor System and Culture
Conditions

Experiments were conducted using the
HEK-293 cells and a low-protein serum-free
proprietary medium formulation. The cultures
were performed in a controlled
3.5 L bioreactor equipped with 3 surface baffles
and two marine impellers. The temperature was

maintained at 37 °C and the pH was controlled
at 7.2. The agitation was kept constant at
80 RPM and the dissolved oxygen was
maintained at 40 % air saturation. Cells were
retained in the reactor using a BioSep 10L
acoustic filter (Applikon Inc., Foster City, Ca).
The feed and harvest rates were controlled by
two peristaltic pumps.

2.2 Analytical Methods

Viable and total cells were counted using a
haemacytometer (Hausser Scientific, Horshaw,
PA). Viability was assessed by dye exclusion
method using erythrosine B. The Biolyzer
(Kodak, New Haven, Connecticut) was used for
the analysis of glucose, lactate and ammonia.
Amino acid analysis was performed by HPLC.
DNA analysis and dry weight estimation have
been performed as described in Nadeau et al.
(Nadeau, et al., 2002). Extracellular proteins
were assayed using the Dc Protein Assay (Bio-
Rad, Hercules, CA) and total proteins were
analysed using the BCA kit (Pierce, Rockford,
IL).

2.3 Estimation of the Specific Growth Rate

An estimation of the growth rate is required to
evaluate the biosynthetic rates. From a mass
balance on viable cells, we obtain the following
equation for a bioreactor operated in perfusion
mode:

1
H

dX
DX

X dt
µ � �= +� �

� �

(1)

where D is the perfusion rate, X the
concentration inside the bioreactor and XH the
concentration of cells in the outflow. In
perfusion cultures, growth rate determination is
particularly subject to noise due to the
imprecision of cell counting and fluctuations in
cell retention efficiency. This was addressed by
using a biomass probe allowing real-time
monitoring of the culture capacitance. The later
is proportional to the concentration of viable
cells. Based on this measurements, on-line
estimation of the specific growth rate was
performed using a discrete least-square
estimator as described in (Bastin and Dochain,
1990). The algorithm is given by:

[ ]1 1 1 1 1 1 1ˆ ˆ ˆt t t t t t t t t H tt X X X t X tD Xµ µ γ µ− − − − − − −= + ∆ − − ∆ + ∆ (2)
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where ∆t is the sampling rate. The covariance
(γ) is updated by the following equation:
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(3)

The forgetting factor, λ, is a tuning parameter.
The concentration of cells in the harvest (XH)
and the dilution rate (D) were re-evaluated at
each sample and the values were assumed
constant in between experimental
measurements. The linear relation assumed
between the capacitance signal and the cell
concentration was also updated at each off-line
measurement by linear regression on current and
previous data points. This procedure allowed to
re-calibrate on-line the biomass monitor system.

2.4 Nutrient uptake/Metabolite production rate
estimation

In contrast with biomass, only few
measurements of substrate and metabolite
concentrations are available, typically once or
twice a day. The specific uptake and production
rates can be calculated using material balances
around the bioreactor to yield the following
equations:

( )S in

dS
q X D S S

dt
= − + − (4)

P

dP
q X DP

dt
= − + (5)

where D is the perfusion rate, qS and qP are the
specific consumption and production rates, S is
the nutrient concentration in the reactor, Sin is
the nutrient concentration in the feed and P is
the metabolite concentration in the reactor.

Due to the large sampling rate, calculation using
direct difference from current and past
measurement is prone to error. Instead, an
extended Kalman filter was employed for rate
estimation and noise reduction. In the
“continuous-discrete” form of the filter, the
correction is made only at discrete times (tk).

Prediction step:
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(6)

Whenever a new measurement is available, the
predicted specific rate is corrected by a term
proportional to the difference between the
measured (SM) and predicted (S)
nutrient/product concentrations according to the
following equation:

Correction step:

( )M
M

F

S S
K t S S

q q
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� (7)

where K is the filter gain optimized at each
measurement time:

1
( ) ( ) ( ) ( ) ( )T TK P t H t H t P t H t R

−
� �= +� �

(8)

The error covariance is also updated according
to:

[ ]( ) ( ) ( ) ( )FP t I K t H t P t= − (9)

The trade off between confidence in the
measurements and confidence in the model is
determined by the measurement error and the
process model covariances (R and Q,
respectively).

3. METABOLIC MODEL

The metabolic model used in this study was
developed by Nadeau et al. (2002). The
reactions considered in this biochemical
network are shown in Table I. The metabolic
model involves 46 components and 40 fluxes,
which include the catabolism pathways of
glucose, glutamine and 18 amino acids.

Evaluation of the metabolic flux vector F is
performed using a weighted linear least-squares:

1 1( )T TF M M M qψ ψ− −= (10)

where q is the vector of measured nutrient
uptake and metabolite production rates, M
contains the stoichiometric coefficients and ψ is
the variance-covariance matrix associated with
the measured rate.
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Table I. Listing of biochemical reactions
included in the metabolic network

1 Glc + ATP→Fruct6P
2 Fruct6P+ ATP→2GAP
3 GAP→Pyr+ 2ATP+ NADH+ H+

4 Pyr+ NADH+ H+→Lac
5 mPyr+ CoA→ACCoA+ NADH+ CO2 + H+

6 Pyr+ Glu→Ala + ∝KG
7 OAA+ Glu→Asp+ ∝KG
8 mGln+ H2O→mGlu+ NH3

9 2Gln+5/4Asp+ Rib5P+ ½ Gly+ 27/4ATP+ 5/8NADPH→
ADN|ARN+ ¾ NADH+ ¾ Fum+ 2Glu

10 mMal+ 2ATP→mPyr+CO2 + NADPH+ H+

11 Asp+ Gln+ ATP→Asn+ Glu
12 Glu+ ATP+ 2NADPH+2H+→Pro
13 2Gly→Ser + NH3

14 G6P+ ATP→1/3Rib5P+ 2/3Xu5P+ 2NADPH+ H+ + CO2

15 R5P+ 2Xu5P→2Fruct6P+GAP
16 2(9Cit+17ATP+9CoA+ 16NADPH)→AcOLE+ 18OAA
17 ExtracellularProteins →ΣAA
18 ΣAA→ IntracellularProteins
19 Lys + 2m∝KG+ NADPH→2AcCoA+2CO2

+ 4NADH+ 3H+ + FADH2 +2mGlu
20 Leu+ m∝KG+ ATP→3AcCoA+mGlu+ CO2

+ NADH+ H+ + FADH2

21 Ile + m∝KG+ ATP→SuCoA+ AcCoA+ CO2
+ 2NADH+ 2H+ +FADH2 + mGlu

22 Thr→CO2 + 2NADH+ 2H+ + FADH2 + NH3 + mPyr
23 Val+ m∝KG+ ATP→SuCoA+ 3NADH+ H+

+ FADH2 + 2CO2 + mGlu
24 Met+ Ser+ 2ATP→Cte + SucCoA+ NADH

+ H+ + CO2 + NH3

25 Phe + O2 + NADPH+ H+ →Tyr
26 Tyr+ m∝KG+ 2O2 →Fum+ 2AcCoA+mGlu
27 Arg+ m∝KG→mGlu+ NADH+ H+

28 His →mGlu+ NH3

29 mOAA+ AcCoA→Cit
30 Cit→m∝KG+ CO2 + NAPH+ H+

31 m∝KG→SuCoA+ NADH+ H+ + CO2

32 SuCoA→Fum+ ATP+ FADH2

33 Fum→mMal
34 mMal→mOAA+ NADH+ H+

35 NADH+ ½ O2 →3ATP
36 Pyr→mPyr
37 Glu+ mAsp→mGlu+Asp
38 Gln→mGln
39 mMal+ ∝KG→Mal+ m∝KG
40 mGlu+ mOAA→mAsp+ m∝KG

4. RESULTS AND DISCUSSION

4.1 Growth Rate Estimation

Figure 1 illustrates one example of growth rate
estimation from a raw capacitance signal (Fig
1A). Cells in the midexponential phase from a
seed culture were inoculated at a concentration
of 2x105 cells/mL (Fig 1B). The culture was
grown in batch mode for two days before the
perfusion rate was initiated and kept constant at
1 vol/d. As evident from the reduced initial
growth kinetics, the culture underwent a lag
phase. The results demonstrate the ability of the
estimator to track the changes in cellular growth

as the cell entered exponential phase in a later
stage (Fig 1C).

Fig.1. Real-time estimation of the specific
growth rate (C) from on-line capacitance (A)
and off-line cell count measurements (B)
during a perfusion culture.

4.2 Estimation of Metabolic Fluxes

Based on the online estimate of the specific
growth rate and the determination of specific
uptake/production rates, the 40 intracellular
fluxes of the metabolic network were computed
online. Figure 2 illustrates how changes in
cellular metabolism can be observed as they
happen during the course of a culture. In this
experiment, the perfusion rate was kept constant
at 1 Vol/d throughout the culture
(Fig 2A).
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Fig.2. Estimation of intracellular fluxes during a
perfusion culture. A) Cell concentration and
perfusion rate profiles. B) Glycolytic flux. C)
Pyruvate to TCA flux. D) Avergae TCA flux

The time profiles of selected intracellular fluxes
are shown (Fig 2C & D). These key fluxes were
identified as good indicators of the overall
metabolic activity of the cells. Analysis of the
flux distribution revealed that as the cell
concentration increases over time, cells are
shifting towards a more efficient utilization of
the main substrate. However, the productivity of
the cells tends to decrease with increasing cell
concentrations (data not shown). Thus, it is
critical to assess the physiological status of the
cells and to maintain a culture in a favourable
state. This can be accomplished through the
manipulation of the perfusion rate as will be
shown in the next section.

4.3 Effect of the Perfusion Rate

To evaluate the effect of the perfusion rate on
the intracellular flux distribution, another
experiment was conducted in which the feed
rate was adjusted with increasing cell
concentrations (Fig. 3A). This feeding strategy
allowed to maintain relatively constant nutrient
concentrations inside the bioreactor. In turn, the
estimated intracellular fluxes remained very
similar throughout the experiment (Fig. 3C &
D). To investigate how this would affect the
specific productivity, cells were harvested from
the bioreactor at different cell concentrations
(Fig. 3A) and inoculated into shake-flasks to
measure their productivity. As shown in Fig 3D,
no significant difference can be discerned in
terms of cell specific productivity. These results
demonstrate that cells can be maintained in a
desirable productive state by manipulating the
feed rate so as to meet their nutritional
requirements.
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Fig. 3 A) Cell concentration and perfusion rate
profiles. B) Pyruvate flux into TCA cycle. C)
Average TCA flux. D) Relative cell specific
productivity at different times during the
perfusion.

CONCLUSIONS

The trend in bioprocess monitoring is towards
strategies which are based on the physiological
status of the organism in the bioprocess. An
approach was developed to provide online
estimates of metabolic fluxes of cells grown in
perfusion mode. With a constant perfusion rate,
intracellular fluxes were varying as cells were
exposed to ever-changing environmental
conditions (cell, nutrient and waste
concentrations). However, by adjusting the
perfusion rate with increasing cell
concentrations, it allowed to maintain cells in a
similar physiological status throughout a
perfusion run. Monitoring the physiological
state of the cells can be helpful to rapidly
establish the conditions favouring the growth or
resulting in enhanced productivities. Future
efforts are aimed at incorporating this approach
into a control scheme.
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