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Abstract: Linear filter approach might be the most commonly used method for
continuous-time identification. Recently we have proposed a new linear filter method
for simultaneous estimation of time delay and other parameters of continuous-time
models in (Ahmed et al., 2006). The proposed method involves choice of filter
parameters and the filter structure is restricted to all real pole form. In this paper,
the linear filter method is presented for a general structure of the filter. Also the
filter parameters are updated iteratively. Next, an algorithm is prescribed to make
this method applicable when the output is sampled irregularly. To demonstrate the
performance of the proposed algorithm, results from a simulation example as well as
an experimental example are presented. Copyright c©2006 IFAC.
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1. INTRODUCTION

Time delay estimation is an important part of
system identification. In process control, it is even
more important to consider time delay because
of the common occurrence of the delay and its
significant bearings on the achievable performance
of control systems. However, both in continuous-
time(CT) and discrete-time(DT) identification,
the development of time delay estimation methods
lags behind the advancement of the estimation
techniques for other model parameters. For ex-
ample, linear filter methods are commonly used
for CT model parameter estimation and a sig-
nificant development have taken place over the
last few decades, see e.g. (Fairman, 1971; Gar-
nier et al., 2003; Saha and Rao, 1983; Wang and
Gawthrop, 2001; Young, 2002). In linear filter
approach, the most commonly used algorithm to
estimate the time delay is based on a comprehen-
sive search routine as used in (Rao and Sivaku-
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mar, 1976; Saha and Rao, 1983; Young, 2002)
where process parameters are estimated for a set
of time delays within a certain range and a pre-
defined cost function is calculated for every set of
estimated parameters. Finally the delay that gives
the optimum value of the cost function is cho-
sen. This procedure is computationally expensive
specially for rapidly sampled data. Other popular
approaches are approximation of the delay by a ra-
tional transfer function such as the Padé approx-
imation as in Agarwal and Canudas (1987) and
the Laguerre expansion or by a polynomial ap-
proximation. Such approaches require estimation
of more parameters and an unacceptable approx-
imation error may occur for systems having large
delay (Wang and Zhang, 2001). Most of the meth-
ods to directly estimate the delay along with other
model parameters are based on step response data
see e.g. (Wang and Zhang, 2001; Ingimundarson
and Hagglund, 2001). It is well recognized that a
step input may not provide a sufficient excitation.

An important issue related to many of the time
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delay estimation methods is that the delay is ex-
pressed in terms of number of sampling interval.
The problem arises when the sampling interval
is not constant. For such a case, the time delay
becomes time varying and most of the methods
fail to estimate such a parameter.

A more general problem that prevents many iden-
tification algorithms to be applicable in real in-
dustrial processes is the irregularity in data. By
irregular data we refer to a data set that contains
measurements of all variables at some time in-
stants, but at others, measurements of only some
variables are available. The unavailable elements
are often termed as missing data. In chemical
processes, data can be missing for two basic rea-
sons: failures in the measurement devices and er-
rors in data management. Sometimes data may
be missing because of the strategy of sampling.
For example, from a time and cost consideration,
concentrations are less frequently measured than
temperatures and pressures. For such multi-rate
data the intermediate values of the slow sampled
variables may be considered as missing. In some
cases, where it requires time consuming lab anal-
ysis, frequency of measurements may be irregular
(Imtiaz et al., 2004).

In this paper, the linear filter method proposed
in (Ahmed et al., 2006) is presented for a more
general filter structure. Also in this approach the
filter parameters are updated iteratively within
the iteration steps for time delay estimation. Thus
it does not need any additional step in the al-
gorithm and the user needs to specify only the
initial values of the filter parameters. The final
estimates of the process parameters are found to
have little or no effect on the initial choice of filter
parameters. For identification from irregular data
we prescribe a procedure based on the idea of
iterative prediction.

2. THE LINEAR FILTER METHOD

Let us consider a linear single input single output
(SISO) system with time delay described by

any(n)(t) = bmu(m)(t − δ) + e(t) (1)

where,
an = [an an−1 · · · a0] ∈ R

1×(n+1)

bm = [bm bm−1 · · · b0] ∈ R
1×(m+1)

y(n)(t) =
[
y(n)(t) y(n−1)(t) · · · y(0)(t)

]T

u(m)(t − δ) =
[
u(m)(t − δ) · · ·u(0)(t − δ)

]T

y(i) and u(i) are ith order time derivatives of y
and u and e(t) is the error term. Taking Laplace

transformation on both sides of eqn(1), consider-
ing that both input and output are initially at
rest, we can write

ansnY (s) = bmsmU(s)e−δs + E(s) (2)

Y (s), U(s) and E(s) are the Laplace transforms
of y(t), u(t) and e(t), respectively, and

sn =
[
sn sn−1 · · · s0

]T ∈ R
(n+1)×1 (3)

Now, consider a causal filter described in Laplace
domain as F (s). If we apply the filtering operation
on both sides of eqn(2) we end up with the
formulation

ansnF (s)Y (s)=bmsmF (s)U(s)e−δs+ F (s)E(s) (4)

To estimate the time delay along with other
parameters, in (Ahmed et al., 2006) a filter of
the form F (s) = βn

s(s+λ)n is proposed where the
parameters λ and β are to be specified by the
user. Here, we propose a filter having a first
order integral dynamics along with a lag dynamics
which is the denominator of the process transfer
function i.e.

F (s) =
1

sA(s)
(5)

where, A(s) = ansn is the denominator of the
process transfer function. The objective of using
such a filter structure is to have the delay, δ, as an
element of the parameter vector. The integrator
generates an integration term of delayed input.
This integrated delayed input signal, which repre-
sent a certain area under the input curve, can be
expressed by subtracting two sub-areas from the
integrated input signal. By doing so, δ becomes an
explicit parameter in the estimation equation. To
describe the necessary mathematical formulation
let us define Y (s) as

Y (s) =
Y (s)
A(s)

(6)

By defining U(s) in the same way as Y (s) is
defined in eqn(6), we can express eqn(4) as

ansn−1
+ Y (s) = bmsm−1

+ U(s)e−δs + ξ(s) (7)

where, the subscript (•+) means that the sn−1

vector has been augmented by 1
s , i.e.,

sn−1
+ =

[
sn−1 sn−2 · · · s0 1

s

]
(8)

Now using partial fraction expansion the transfer
function of the filter, 1/sA(s), can be expressed
as 1

sA(s)
=

C(s)
A(s)

+
1
s

(9)

where, C(s) = −(ansn−1 + an−1s
n−2 + · · ·+ a1) .

Eqn(9) can be used to represent the filtered input
as

UF (s) =
C(s)
A(s)

U(s) +
1
s
U(s)

= C(s)U(s) + UI(s) (10)

Applying eqn(9) and (10), we can restructure
eqn(7) to give a standard least-square form
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Y I(s) =−ānsn−1Y (s) + b̄msm−1U(s)e−δs

+ b0 [C(s)U(s) + UI(s)] e−δs + ξ(s) (11)

where,
ān : an with its last column removed, ān ∈ R

1×n

b̄m : bm with its last column removed,b̄m ∈ R
1×m

Taking inverse Laplace Transform, we get the time
domain expression for any time t = tk

y
I
(tk) =−ānyn−1(tk) + b̄mum−1(tk − δ)

+ b0 [uc(tk − δ) + uI(tk − δ)] + ζ(tk)(12)

with
y

I
(tk) = L−1

[
Y (s)

s

]

uc(tk − δ) = L−1
[
C(s)U(s)e−δs

]

uI(tk − δ) = L−1

[
1
s
U(s)e−δs

]

At any time t = tk, the integrated input and the
integrated delayed input can be expressed as

uI(tk) =
∫ tk

0

u(t)dt (13)

uI(tk − δ) =
∫ tk

0

u(t)dt −
∫ tk

tk−δ

[u(t) − u(tk)]dt

−u(tk)δ (14)

Applying eqn(14) in eqn(12)and rearranging it to
give a standard least square form we get

y
I
(tk) =−ānyn−1(tk) + bmum−1

+ (tk − δ)

+b0u(tk)δ + ζ(tk) (15)

where,

um−1
+ (tk − δ) =

⎡
⎢⎢⎣

um−1(tk − δ)
· · ·

u(tk − δ)
u+(tk − δ)

⎤
⎥⎥⎦

u+(tk − δ) = uc(tk − δ) + uI(tk)

−
∫ tk

tk−δ

[u(t) − u(tk)]dt

Or equivalently

γ(tk) = φT (tk)θ + ζ(tk) (16)

where,
γ(tk) = y

I
(tk)

φ(tk) =

⎡
⎢⎣

−yn−1(tk)

um−1
+ (tk − δ)

u(tk)

⎤
⎥⎦

θ = [ān bm b0δ]T

Eqn(16) can be written for tk = td+1, td+2 · · · tN
where td ≤ δ < td + 1 and be combined to give

Γ = Φθ + ζ (17)

From θ we can directly get ān and bm. δ is
obtained as δ = θ(n + m + 2)/θ(n + m + 1). But

to estimate θ solving eqn(17), we need to know
A(s) and δ, which are of course unknowns. This
problem can be solved by applying an iterative
procedure that adaptively adjust an initial choice
of A(s) and δ until they converge. The least-
square estimate of θ that minimizes the sum of
the squared errors is given by

θ̂LS =
[
ΦT Φ

]−1
ΦT Γ (18)

However, the least-square solution does not give
unbiased estimate in the presence of general forms
of measurement noise such as colored noise. A
popular bias elimination procedure is to use the
instrumental variable (IV) method. A bootstrap
estimation of IV type where the instrumental
variable is built from an auxiliary model (Young,
1970) is considered here. The instrumental vari-
able is defined as

ψ(tk) =

⎡
⎢⎣

−x̂n−1(tk)

um−1
+ (tk − δ)

u(tk)

⎤
⎥⎦ (19)

where x̂(t) = Ĝ(p, θ̂LS)u(t − δ) and Ĝ(p, θ̂LS) is
the process model estimated from least-square so-
lution. The IV-based bias-eliminated parameters
are given by

θ̂IV =
[
ΨT Φ

]−1
ΨT Γ (20)

The IV estimate can also be calculated in a recur-
sive or recursive/iterative manner. The iterative
iteration procedure is summarized in Algorithm 1.

Algorithm 1 : Iterative procedure for parameter
and delay estimation.

Step 1: Initialization Choose an initial estimate A0(s)
and δ0.

Step 2: LS step i =1 Construct Γ and Φ by replacing
A(s) and δ by A0(s) and δ0 and get the LS solution of
θ as

θ̂LS = (ΦT Φ)−1ΦT Γ (21)

θ̂1 = θ̂LS . Get Â1(s), the process numerator B̂1(s) and
δ̂1 from θ̂1.

Step 3: IV step i = i + 1. Construct Γ, Φ and Ψ by
replacing A(s), B(s) and δ by Âi−1(s),B̂i−1(s) and δ̂i−1

and get the IV solution of θ as

θ̂i = (ΨT Φ)−1ΨT Γ (22)

Obtain Âi(s) ,B̂i(s) and δ̂i from θ̂i and repeat step 3
until Âi and δ̂i converge.

Step 4: Termination When Âi and δ̂i converge, the
corresponding θ̂i is the final estimate of parameters.

Though there is no theoretical proof available,
extensive simulation studies show that the itera-
tive procedure converges monotonically except for
non-minimum phase (NMP) processes. However,
for NMP processes it exhibits monotonic diver-
gence. Based on this, for such processes, we sug-
gest an ad hoc procedure that defines ∆δ = δi−1−
δi and in the (i + 1) − th stage of iteration the
guessed value is taken as δi + ∆δ. The iteration
steps otherwise remain the same.
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3. IDENTIFICATION FROM IRREGULAR
DATA

3.1 The Algorithm

For identification with irregular data, we pro-
pose an algorithm based on iterative prediction.
However, it is not possible to develop a single
algorithm that can deal with every types of data
irregularity. We will consider here a specific type
of irregular data where the input is available at all
time instants but not necessarily in regular inter-
val while the output is available at some time in-
stants and missing at others. As the initialization
of the iterative procedure, a so called input only
method is applied. A distinguished feature of these
methods is that the current output is expressed in
terms of only current and previous input. So the
parameter estimation equation can be formulated
only at the time instants when output is available.
The estimated model is then used to predict the
missing values to get a complete data set. Next,
this complete data set is used to estimate the
parameters of the continuous time model using
the procedure described in section 2. This model
is then used to predict the missing outputs. This
procedure is carried on iteratively by replacing
the prediction from previous model by that from
the current one until some convergence criteria
are met. The iteration algorithm is presented in
Algorithm 2 and the different steps of the iteration
procedure are detailed below.

3.2 Input only modeling

A number of input only approaches, both in
discrete-time and continuous-time, are available
in literature. In this work, we adopt one of the
orthogonal basis function approach, the Laguerre
polynomial model in continuous time for the ini-
tial prediction. The use of Laguerre functions
in identification goes back to Wiener (1956). In
the transform domain, the Laguerre functions are
given as (Lee, 1932)

Lj(s) =
√

2p
(s − p)j

(s + p)j+1
(23)

Let zj(t) be the output of the j − th Laguerre
function, with u(t) as input, i.e.

Zj(s) = Lj(s)U(s) (24)

where, Zj(s) and U(s) represent the Laplace
transform of zj(t) and u(t), respectively. The out-
put of a stable plant with input u(t) can be ap-
proximated by a truncated l − th order Laguerre
polynomial model as

y(t) =
l∑

j=0

αjzj(t) (25)

where, α = [α0, α1 · · ·αl]T , is the parameter vec-
tor for the Laguerre model. Theories and proofs

of the convergence of the Laguerre model can be
found in (Makila, 1990; Parington, 1991; Wang
and Cluett, 1995). In the initial prediction stage
using Laguerre polynomial model, the estimation
equation (eqn(25)) is formulated only at the time
instants when the output is available i.e.,

y(tobs
i ) =

l∑
j=0

αjzj(tobs
i ) (26)

Next, eqn(26) can be formulated for tobs
i with

i = 1, 2 · · ·M , where, M is the number of available
output, to give an equation in least square form
as Yobs = Zobsα (27)

where,
Yobs = [y(tobs

1 ) y(tobs
2 ) · · · y(tobs

M )]T (28)

Zobs =

⎡
⎢⎢⎣

z0(tobs
1 ) z1(tobs

1 ) · · · zl(tobs
1 )

z0(tobs
2 ) z1(tobs

2 ) · · · zl(tobs
2 )

· · · · · · · · · · · ·
z0(tobs

M ) z1(tobs
M ) · · · zl(tobs

M )

⎤
⎥⎥⎦ (29)

Finally the parameter vector can be estimated as

α̂ = (ZT
obsZobs)−1ZT

obsYobs (30)

Now, the missing elements of the output can be
obtained as

ŷ(tmis
i ) =

l∑
j=0

α̂jzj(tmis
i ) (31)

The estimated value of the missing elements can
then be inserted into the output vector to get a
complete data set.

3.3 Criterion for convergence

The iterative procedure described here is based
on the idea of iterative prediction. Consequently,
a natural option for criterion of convergence is
the prediction error. As the output has missing
elements, we can define the mean squared error
at i − th stage of iteration as

MSEobs
i =

1
M

M∑
k=1

[
y(tobs

k ) − ŷi(tobs
k )

]2
(32)

where, ŷi is the prediction of the model obtained
in the i−th stage of iteration. Convergence of this
MSE criterion is equivalent to the convergence of
the model prediction and the model parameters.

4. SIMULATION RESULTS

To demonstrate the applicability of the proposed
methods, we consider here a second order process
having the following transfer function

G(s) =
−4s + 1

9s2 + 2.4s + 1
e−0.615s (33)

A complete data set of 2000 samples is generated
using a random binary signal (RBS) as input with
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Algorithm 2 : Algorithm for parameter estimation
from irregular data.

Step 1: Initial Prediction Using only the observed
output, estimate the parameters of the input only model
using eqn(30). Predict the missing element of the out-
put using eqn(31). Use these predicted values, ŷ0

mis to
replace ymis. i = 0.

Step 2: Iterative Prediction i = i + 1. Using Algo-
rithm1 Estimate the continuous time model parameters
with the complete data set y = [yobs ŷi−1

mis]. Use the
estimated model, θi, to get the i − th prediction of the
missing values, ŷi

mis. Replace ŷi−1
mis by ŷi

mis

Step 3: Comparison Compare MSEi
obs with MSEi−1

obs
.

If their is significant improvement, go back to step 2 and
repeat the iteration.

Step 4: Termination When MSEi
obs converges, the

corresponding θi is the final estimate of parameters.

a uniform sampling interval of 30 milliseconds
(ms). Discrete time white noise is added to get
the noisy output signal. The signal to noise ratio
(NSR) is 10%. Table 1 summarizes the parameter
estimation results for 100 Monte Carlo simula-
tions (MCS) when all the data are available.

Table 1. Estimation results when all
data are available

Estimated parameters
Parameter True value Mean Variance

a2 9.00 9.0068 0.0387
a1 2.40 2.4309 0.0465
b1 -4.00 -4.0201 0.0570
b0 1.00 1.0109 0.0068
δ 0.615 0.6302 0.0253

Next, to test the performance of the algorithm
proposed for irregular data, we generate three
sets of irregular data that differ in terms of their
amount of data missing. Every 3rd samples are
taken out to generate a data set for 33% missing
data, every 2nd for 50% missing and every 2nd

and 3rd for 67%. The model estimated using the
iterative algorithm is compared with the model
estimated using only the available data i.e. data
at the time instants when both input and output
are available. To compare different models with a
single index we define a total error criterion that is
measure of bias and variance together. We denote
it by Etotal where

Etotal =
1

Nθ

Nθ∑
i=1

(θ̂i − θi)2 + var(θ̂i)
θ2

i

(34)

θi is the true values of the ith parameter and
θ̂i is its estimated value. Nθ is the number of
parameters. Figure 1 shows the total error for
100 MCS study. The estimated value is the mean
of 100 estimates. The error corresponding to 0%
missing data refers to the model estimated using
the entire data set and can be taken as a bench-
mark. When 33% of the data are missing, the
model estimated using only the available data has
error comparable with the benchmark value and
the iterative algorithm has little room to improve.

Fig. 1. Improvement of model quality using the it-
erative algorithm for the simulation example

This suggests that the available data are enough
to give a good model. Consequently the error level
of the model estimated using the iterative algo-
rithm remains almost the same. However, when
more data are missing the error corresponding to
the model estimated using the available data is
much higher than the benchmark value and the
iterative algorithm reduces the error to a level
comparable with the benchmark.

5. EXPERIMENTAL EVALUATION

The iterative prediction algorithm is evaluated
using an experimental data set from a mixing pro-
cess. The set-up consists of a continuous stirred
tank used as a mixing chamber having two input
streams fed from two tanks. A salt solution and
pure water run from the feed tanks and mixed
together in the mixing chamber. The output is
the concentration of salt in the tank. The input
is that in the feed. The electrical conductivity of
the solutions are used as measure of their concen-
tration. The volume of liquid in the stirred tank
and its temperature are maintained at a constant
level. The concentration of the feed is manipulated
by adjusting the ratio of the flow rate of the feed
salt solution and the flow rate of water. The total
input flow i.e., the combined salt solution inlet
and water inlet is kept constant which ensures a
constant outlet flow.The input signal is a random
binary signal. The sampling period is 20 seconds.
A total of 955 data points are used for this study.
To study the effect of % data missing and eval-
uate the performance of the iterative prediction
algorithm, missing data were chosen on a random
basis and the algorithm was applied. The study is
carried out for 30%, 50% and 70% missing data.
To generate a certain data set, say with 30% of its
elements missing, 30% of the available output data
are taken out on a random basis. The identifica-
tion algorithm is then applied with the remaining
70% data points. The same procedure is applied
100 times with a different data set chosen each
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Fig. 2. Improvement of model quality using the
iterative algorithm for the mixing process.

time containing 70% of the total data. Finally we
get 100 estimates of the parameters. The total
error is then calculated from the estimated mean
and variance of the 100 estimates. To calculate the
bias error, the model estimated using the entire
data set is taken as the nominal or true value.
Figure 2 shows the performance of the proposed
iterative algorithm for the mixing process data.
While the error levels for models estimated only
the available data points are high, the iterative
algorithms gives final estimates of the parameters
with a much lower levels of error.

6. CONCLUSION

Identification from irregular data has been consid-
ered in discrete-time identification but mainly for
multi-rate data. In continuous-time identification,
it is assumed that the methods are capable of
dealing with irregular data by nature. However,
the inherent assumption of inter-sample behavior
resulting in certain arbitrary interpolation intro-
duces errors in the estimation of continuous-time
parameters. In this paper, a simple algorithm is
presented to deal with irregular output sampling.
It has been demonstrated both using simulated
and experimental data that the quality of the
model estimated using the proposed model based
prediction algorithm is much better than the qual-
ity of the model estimated using only the available
output data. Also we present a recently proposed
linear filter method for a more general filter struc-
ture.
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