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Abstract: An analytical solution to the multivariable (two-input, two-output) nonlinear
model predictive control (NMPC) problem was derived for systems represented by
(Volterra-)Laguerre models. The standard two-norm squared NMPC objective function
was employed, and the minimization was carried out with m = 1 and over the prediction
horizon, p. The polynomial structure of the system model yielded a polynomial objective
function for the NMPC problem. Differentiation of this scalar objective function with
respect to the manipulated input variables provided the first-order necessary conditions for
optimality: a set of nu (equal to the number of inputs) coupled polynomials. Via Gröbner
basis transformation, this set of polynomials was converted to a structured set of higher-
order polynomials solvable via roots calculations and back-substitution. The algorithm
was tested using a two-input two-output polymerization case study.
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1. INTRODUCTION

Model predictive controllers are a class of high-
performance control algorithms garnering intense
academic and industrial interest (Kouvaritakis and
Cannon, 2001). Algorithms based on linear models
may effectively control some nonlinear systems (Stack
and Doyle III, 1997; Hernjak and Doyle III, 2004).
However, a higher degree of performance may
be achieved by employing a nonlinear algorithm,
and hence a nonlinear model, on the grounds
that model quality is correlated with achievable
controller performance (Morari and Zafiriou, 1989).
Nonlinear models, and hence, nonlinear algorithms
are especially necessary for systems displaying input
multiplicity (or other even-order polynomial-like
behavior), as linear integrating controllers cannot
stabilize these processes at the process optimum
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(Morari, 1983). The construction of nonlinear models,
from the fundamental process physics, is an active
research area (Doyle III et al., 2002a; Daoutidis and
Henson, 2002), but these models may take significant
time to develop. Furthermore, the structure of these
models may make the implicit inversion problem of
NMPC more complicated due to their size or by
generating performance objectives that are nonconvex.
This, in turn, may lead to algorithms that become
trapped in local minima (Zheng, 1997). Objective
function and model nonlinearities, the root cause
of the aforementioned nonconvexity, may inherently
limit the ability of an NMPC algorithm to deliver
optimal performance.

The ability to analytically solve optimization prob-
lems eliminates the above nonconvexity concerns.
Careful selection of the objective function, as well
as the system model structure, leads to nonlinear
optimization problems with desirable properties. This
is the nonlinear analog to the original use of step
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response models for linear MPC – the model structure
facilitates the solution of the optimization problem.
The use of models with polynomial structure, such
as the Volterra or Laguerre models, allows the
explicit expansion of the optimization objective as a
polynomial in the manipulated variables (Dumont and
Fu, 1993a; Dumont et al., 1994; Parker and Doyle
III, 2001; Parker, 2002b). In the single-input single-
output (SISO) case, NMPC for (Volterra-)Laguerre
systems has been previously posed and solved
(semi-)analytically in a variety of formulations.
Dumont and co-authors employed a steady state
tracking objective (minimize error at the end of the
prediction horizon) with m = 1 (where m is the
manipulated variable move horizon in MPC) and did
not weight the manipulated variable (1993a; 1994).
This work was extended by Parker and Doyle III to the
case with input penalty and error calculation over the
entire prediction horizon (2001). Further extensions
to the m > 1 case were discussed by Parker using:
(i) local linearization for future input moves (2002a);
and analytical solution for m = 2 using Gröbner basis
transformation (2002b). The present work extends
the Gröbner basis NMPC solution methodology for
MIMO (Volterra-)Laguerre systems

2. LAGUERRE MODEL STRUCTURE

The present work focuses on second-order multi-
variable systems of Laguerre structure. This includes
Laguerre models that are derived from Volterra series
models (Zheng and Zafiriou, 1995), the so-called
Volterra-Laguerre models. The multivariable discrete
time Laguerre model has the following state space
structure (Schetzen, 1980):

�(k+1) = A( )�(k)+B( )u(k) (1)

y(k) =C�(k)+LT
b (k)DL(k) (2)

Here �(k), u(k), and y(k) are vectors of dimension
n�, nu, and ny × 1, respectively. The parameter
is the Laguerre pole, taking on values in the range
[0,1), and establishes the dominant time constant of
the system. Matrix A is square and of dimension n�.
The input matrix B is of dimension n� × nu, and the
linear output matrix, CT is of dimension ny × n�. The
second-order output term is composed of matrix D =
blockdiag{D1,D2}, where the subscripts denote the
output corresponding to the second-order effect. The
vector L(k) =

[
�T (k), �T (k), ..., �T (k)

]T
is composed

of ny �(k) terms stacked vertically, thereby having
dimension n� • ny × 1. Lb(k) is the block diagonal
version of L(k), where the �(k) vectors are along
the diagonal, rather than vertically stacked, and Lb(k)
has dimension n� • ny × ny. It is straightforward to
convert (1) to a u formulation, as follows:

�(k+1) = A( )�(k)+B( )u(k−1)

+B( ) u(k) (3)

This structure facilitates controller synthesis as the
state equations can be written in terms of two
contributions: (i) variables whose values are known at
time k; and (ii) the input changes at time k, as follows:

�(k+1) = [A B]

[
�(k)

u(k−1)

]
+B u(k) (4)

The future state prediction, over a future horizon of
length p, is constructed as follows (similar to (Muske
and Rawlings, 1993)):

⎡
⎢⎢⎢⎣

�(k+1|k)
�(k+2|k)

...
�(k+ p|k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A Ā1B
A2 Ā2B
...

...
Ap ĀpB

⎤
⎥⎥⎥⎦

[
�(k)

u(k−1)

]

+

⎡
⎢⎢⎢⎣

Ā1B
Ā2B

...
ĀpB

⎤
⎥⎥⎥⎦ u(k) (5)

L (k+1|k) = A H(k)+B u(k) (6)

Ān =
n

i=1
Ai−1 ∀n ≥ 1 (7)

Similarly, the output prediction over a similar horizon
is given as:

Y (k+1|k) = C
T
L (k+1|k)

+L
T
b (k+1|k)DL (k+1|k) (8)

Here, Y (k + 1|k) = [y(k+1) y(k+2) . . . y(k+ p)]T

and the matrices C T and D are block-diagonal
matrices composed of p CT and D matrices,
respectively. The matrix L T

b (k + 1|k) is a block-
diagonal matrix having ny repetitions of �(k+ i|k) per
sub-block, with p total sub-blocks (i.e., i ∈ [1, p]).

3. CONTROLLER SYNTHESIS

The present work employs the following standard two-
norm squared objective function based on the input
change, U (k|k):

min
U (k|k)

‖ y [R(k+1)−Y (k+1|k)]‖2
2

+‖ u U (k|k)‖2
2 (9)

The vector R(k + 1) is the output reference
trajectory, over the horizon p, and the nu manipulated
variables are given by U (k|k). Setpoint tracking and
manipulated variable movement are weighted by y

and u, respectively. Substituting (6) into (8), and
the result into (9), yields the following optimization
problem:

min
U (k|k)

F ( U (k|k), �(k),u(k−1),r(k+1),ym(k)) (10)

At each time, ym(k) is measured from the process,
�(k) is known from the process model, u(k−1) is the
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input value implemented at the previous time step, and
r(k+1) is specified (thereby specifying R(k + 1)).
The scalar objective function F (•) is composed of a
collection of matrix multiplications dependent on the
Laguerre model (6) and (8).

Equation (10) is a nonlinear programming (NLP)
problem, which is solvable by standard NLP
techniques (Biegler, 1998). In some cases, these NLP
solution techniques may fail to converge to the global
optimum; this is most easily observed for SISO
systems having input multiplicity (Parker and Doyle
III, 2001). Hence, an analytical solution to (10) could
provide superior performance. Differentiating F (•)
with respect to U (k|k) and setting the resulting
equations equal to zero yields the points at which
the objective function has zero slope, i.e. its minima,
maxima, and saddle points. In the present case, with
m = 1, the differentiation yields a number of equations
equal to the number of manipulated variables, each
having the following structure:

fi = pi30 u3
1(k|k)+ pi20 u2

1(k|k)+ pi10 u1(k|k)

+pi21 u2
1(k|k) u2(k|k)+ pi01 u2(k|k)+ pi00

+pi11 u1(k|k) u2(k|k)+ pi02 u2
2(k|k)

+pi12 u1(k|k) u2
2(k|k)+ pi03 u3

2(k|k)

= 0 ∀i ∈ [1,nu] (11)

The polynomial coefficients pivw, where v and w
denote the polynomial order of u1(k|k) and u2(k|k),
respectively, are functions of �(k), u(k−1), and r(k+
1). The i subscript denotes the manipulated variable
with respect to which the partial derivative ( fi =

F
ui

) was taken. At each sample time the polynomial
coefficients are recalculated. The explicit functionality
of these coefficients is omitted from the present work
due to space constraints. It is interesting to note
that the polynomial equations (11) are structurally
similar to the corresponding equations resulting from
a SISO m = 2 analysis (Parker, 2002b), with u2(k|k)
corresponding to u1(k + 1|k), partial derivatives
taken with respect to the nu manipulated variables
rather than the m-length horizon of input changes, and
different numerical values for the pivw’s.

To identify the input values leading to process
extrema, the set of coupled nonlinear polynomials (11)
must be solved simultaneously. While there is
no general solution to this set of equations, the
Gröbner basis transformation, an analytical geometry
technique, can be used to solve the set of polynomials
above in a straightforward fashion.

4. GRÖBNER BASIS TRANSFORMATION

It is beyond the scope of the present work to provide a
full background on Gröbner basis (GB) transformation
methods. Interested readers are referred to (Fröberg,
1997; Cox et al., 1997). Among other problems,
Gröbner basis techniques can solve systems of

polynomial equations. In fact, solution by Gröbner
bases provides all the solutions in kn of the system of
polynomial equations (Cox et al., 1997):

gi(x1, . . . ,xn) = 0 ∀i ∈ [1,n] (12)

Here the functions gi lie on the polynomial ring kn;
the coefficients (such as pivw in (11)) determine the
field, k. General background on fields and polynomial
rings can also be found in (Fröberg, 1997; Cox et
al., 1997). For the present work, the focus is on
the field of rational numbers, (Q = Znum

Zden
), although

integers (Z), reals, and complex numbers are also
feasible choices. Under this selection, the NMPC
problem equations (11) can be posed as a Gröbner
basis problem:

Problem 1. (NMPC Optimization). Find all com-
mon solutions on the ring Q2 [ u1(k|k), u2(k|k)] of
the system of polynomial equations:

f1( u1(k|k), u2(k|k)) = f2( u1(k|k), u2(k|k)) = 0

While the coefficients of most NMPC problems are
generally of type real (pivw ∈ R), these can be
rationalized to place them in Q. The key driving force
for this modification is that many Gröbner solution
algorithms are more efficient when handling rationals
than reals (e.g., groebner::gbasis in MuPAD 3.1.1,
©2005, SciFace Software).

The algorithm that is commonly employed in the
solution of the NMPC Optimization problem is
Buchberger’s Algorithm (Buchberger, 1985; Cox et
al., 1997). Given a polynomial ideal, such as the
equations (11), in Q2, a Gröbner basis for the ideal
can be constructed in a finite number of steps. In
practice, a reduced Gröbner basis (rGB) is employed
because it is unique for a given ideal where a GB is not
necessarily unique (Cox et al., 1997). In employing
the GB solution method, an elimination order can
be selected for the unknown variables ( ui(k|k)). In
the present case, order is not particularly important,
aside from the fact that variable ordering alters
the polynomial coefficients, pivw. Hence, u1(k|k) >

u2(k|k) was chosen arbitrarily, where > denotes
an order of removal. For this ordering, the variable
u1(k|k) is removed preferentially from the equations.

The resulting set of rGB polynomials contain the
following: (i) a set of (one or more) polynomials
containing only u2(k|k); and (ii) a second set
of polynomials with both u2(k|k) and u1(k|k)
appearing. Ordering is more relevant to the m > 1
problem, where, for the SISO case, u(k + 1|k) >

u(k|k) was chosen (Parker, 2002b) to yield one
polynomial in u(k|k) alone, and a second polynomial
in u(k|k) and u(k+1|k).

Implementation of the GB solution algorithm has
off-line and on-line components. Prior to on-line
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execution, the ideal (11) is calculated analytically
(e.g., symbolically, using MATLAB ©2005, The
Mathworks, Natick, MA). The dynamic variables,
u(k), �(k), u(k−1), and r(k+ 1) are retained within

the ideal so that they may be updated at each sample
time. The solution of the ideal is accomplished using
a specialized GB solution routine within a symbolic
or numerical package (e.g., MuPAD). The known
variables at a point in time are converted from real to
rational form and are passed to the MuPAD subroutine
which computes the rGB. For the case study in
Section 5.1, the rGB had the following structure:

q19 u9
2(k|k)+ . . .+ q11 u2(k|k)+q10 = 0 (13)

u1(k|k) =
8

z=0

q2z uz
2(k|k) (14)

The original problem, (11), which had no easily
identified solution has been transformed to an rGB
which is straightforward to solve. The univariate
polynomial (13) is solved using a command such as
roots in MATLAB. For each real root, a candidate
for u2(k|k), the corresponding u1(k|k) candidate
is calculated from (14). Roots with imaginary
component are discarded because the manipulated
variables are physical quantities, and hence, the
solutions must be real-valued. Each pair of candidate
solutions is simulated over the prediction horizon,
which is a straightforward matrix multiplication for
the Laguerre system using (1) and (2). The objective
function value is calculated for each simulation
profile, and the input move combination resulting in
the lowest objective function value is implemented as
U (k|k). This process repeats at each sample time

with the dynamic updating of the ideal, rGB solution,
candidate move identification, and move selection.

5. RESULTS

5.1 Polymerization Case Study

The case study employed in this work is the
multivariable polymerization reactor of Hidalgo and
Brosilow (1990), including the addition of number
average molecular weight (NAMW) as a controlled
variable and operation about the low-conversion
steady state point, as made by Doyle et al.
(2002b). Monomer (Qi) and cooling water (Qc) flow
rates are manipulated to control polymer NAMW
and temperature. It is assumed that (Doyle III et
al., 2002b): (i) monomer disappearance is driven
primarily by propagation, rather than chain transfer to
another monomer; (ii) that the rate constant of overall
polymer chain termination is the sum of combination
and disproportionation contributions (Schmidt and
Ray, 1981); and a constant volume fraction of solvent
is maintained such that the gel effect can be neglected
(Choi, 1986).The full process description, including
state space formulation and model parameters, can

be found in (Doyle III et al., 2002b). The inputs and
outputs were scaled as follows:

Wu =

[
108 0
0 471.6

]
Wy =

[
2500 0

0 0.5

]

Doyle et al. (2002b) developed a MIMO second-
order Volterra model for this process via Carlemann
linearization (Rugh, 1981). This model was projected
onto the Laguerre basis using a least-squares approach
similar to (Parker and Doyle III, 1998). The projection
was accomplished over a range of values ( ∈
[0.01,0.99]), and the C and D matrices of the Volterra-
Laguerre model were calculated for each . The ,
C, D combination that provided the best fit to the
original Volterra model was employed in the model.
This resulted in each input channel having a different
Laguerre pole value, such that the monomer flow rate
used = 0.76 and the cooling water flow rate had

= 0.81. The state space matrices for this model are
as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.76 0 0 0 0 0
0.422 0.76 0 0 0 0
−0.321 0.422 0.76 0 0 0

0 0 0 0.81 0 0
0 0 0 0.344 0.81 0
0 0 0 −0.279 0.344 0.81

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.65 0
−0.494 0
0.375 0

0 0.586
0 −0.475
0 0.385

⎤
⎥⎥⎥⎥⎥⎥⎦

CT =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2.997 1.571
−3.01 1.44
−0.108 0.04
0.602 −2.012
1.095 −1.884
0.438 −0.063

⎤
⎥⎥⎥⎥⎥⎥⎦

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.412 0.508 0.072
0.508 0.470 0.010
0.072 0.010 −0.072
−0.019 0.041 0.037
0.041 0.056 0.036
0.037 0.036 0.001

⎤
⎥⎥⎥⎥⎥⎥⎦

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.043 0.078 0.032
0.078 0.108 0.016
0.032 0.016 −0.058
0.244 0.223 0.001
0.223 0.345 0.086
0.001 0.086 0.131

⎤
⎥⎥⎥⎥⎥⎥⎦

5.2 Controller Evaluation

An NMPC controller was synthesized using the
method in Section 3. Controller tuning parameters
were m = 1 and p = 20, with the weighting matrices
as follows (Doyle III et al., 2002b):

y =

[
2 0
0 1

]
u =

[
0 0
0 0

]
(15)

For comparison, a gradient-based NMPC algorithm
was synthesized and solved using the fmincon
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function in MATLAB. The objective function surface,
calculated from equation (9), using a setpoint value
of r(k +1) = [0 0]T for the mismatch case is shown
in Figure 1. This objective function surface has a
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Fig. 1. Objective function surface for the polymeriza-
tion case study at the nominal conditions and the
reference trajectory R(k+ 1) = [0 0]T .

global minimum, with no local minima. Given the
smooth convex nature of the surface, the gradient-
based algorithm should track the desired setpoint.
The performance of the analytical NMPC algorithm
in response to setpoint changes, therefore, should be
within optimizer numerical accuracy to that of the
gradient-based solution.

In the nominal case, where the plant and model are
both described by the Volterra-Laguerre equations,
the system was subjected to a reference change
of [+21519 0]T (deviation from nominal) [results
not shown]. The gradient-based algorithm tracks the
desired reference trajectory, and the performance of
the Gröbner NMPC algorithm is nearly identical.
The output profiles overlay; as such, differentiation
between the responses is not significant with respect
to measurement noise associated with NAMW or
temperature sensing devices.

Simulations using the nonlinear ODEs (Hidalgo and
Brosilow, 1990; Doyle III et al., 2002a) as the process
description, with the controller synthesized from the
Volterra-Laguerre model, return similar results to
those above. As an additional test in the mismatch
case, a normally-distributed noise signal ( = 0, =[

2400 0
0 0.5

]
, corresponding to 5% measurement

noise on average for the NAMW channel) was added
to the plant output. The closed-loop performance
under both NMPC algorithms is shown in Figure 2.
The gradient-based and analytical controllers again
provide similar levels of closed-loop performance.

6. DISCUSSION AND SUMMARY

An analytical solution to the multivariable non-
linear MPC problem was developed for two-
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Fig. 2. Closed-loop NMPC on the mismatch system
in response to a setpoint of R(k + 1) =
[80,000 0]T (absolute variables) at time = 5 hr
in the presence of measurement noise. Controller
response curves generally overlay in panes 1, 2,
4, and 5. Note: GNMPC = Gröbner NMPC.

input two-output systems modeled with second-
order (Volterra-)Laguerre equations. The future model
predictions were posed in terms of information
available at the current time. The NMPC objective
function, and its derivatives with respect to the
input vector, were precalculated symbolically off-line
using the model prediction equations. The matrix
polynomial corresponding to the first-order necessary
condition for an optimum, which was previously
limited to numerical solution in the multivariable
case, was transformed using Gröbner bases to an
easily solvable form. The resulting equations provided
candidate input move combinations calculated by a
combination of polynomial roots calculations and
back-substitution. For systems with smooth convex
objective functions, the closed-loop performance was
shown to be equivalent to that obtained using gradient-
based NMPC solution algorithms.

While performance advantages were not observed for
the multivariable polymerization case study above,
this was not surprising. Previous work with analytical
NMPC solutions on SISO systems (Dumont and Fu,
1993b; Parker and Doyle III, 2001; Parker, 2002b)
has demonstrated the advantage exists primarily when
the system displays a nonconvex objective function
surface. Bioreactor and chip refiner case studies
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that have “unreachable” setpoints (i.e., second-order
systems having setpoints above the steady state locus)
or input multiplicity are problematic for gradient-
based algorithms. In the latter case, the gradient-
based routine may become trapped on one side
of the optimum, which may result in suboptimal
performance (especially in the presence of input
constraints, as shown in (Parker, 2002b)).

The present work complements the SISO m > 1
analytical NMPC work of (Parker, 2002b) in demon-
strating the utility of Gröbner basis transformation
for the solution of MIMO NMPC problems. In fact,
the m = 2 SISO solution has identical structure to
that of equations (13) and (14). While these studies
have focused on second-order problems, the extension
to third-order (Volterra-)Laguerre systems is ongoing
in our laboratory. Also of interest is the coupling of
the MIMO and m > 1 analytical solution problems
in a unified algorithm construction. It is worth noting
that there is no theoretical limit on either the size of
m or the input-output dimension of the multivariable
system that can be formulated using the Gröbner
basis technique. The limitation of this solution method
lies in the Gröbner transformation routine, where the
total number of manipulated variable moves (m • nu)
characterizes the complexity of the problem and its
possible solution. Increasing m, nu, or polynomial
order will lead to: (i) an increased number (due to
m or nu) of higher-order (due to polynomial order)
polynomial equations (11); (ii) a larger number of
variables (due to m or nu) in the Gröbner problem (12);
and (iii) potential roots calculation issues, such as
identifiability and numerical stability, in the larger
number of potentially higher-order solution equations,
akin to (13) and (14). Items (i) and (ii) can likely be
addressed with sufficient computational power (CPU
speed, memory/swap, etc.). More theoretical issues,
which remain open at present, include limitation (iii)
as well as a proof of Gröbner NMPC algorithm
stability.
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