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Abstract: Metabolic or cell signalling pathways are examples of biochemical net-
works exhibiting possible complex dynamics in the form of steady-state multiplic-
ity, sustained oscillations or even deterministic chaos. The origin of these nonlinear
phenomena is not always well understood, nor it can be systematically predicted
beyond a case by case basis. Despite considerable progress in dynamic aspects,
efforts are still needed to develop efficient and robust methods of stabilization
and control of reaction networks. In this work, we combine concepts and tools
from irreversible thermodynamics and systems theory to explore the underlying
dynamic properties of a general class of chemical and biochemical networks.
Lyapunov and passivity based methods are given for the systematic design of
globally stabilizing feedback controllers in both the concentration space and a
novel minimal description of the kinetic networks dynamics: the reaction space.
Copyright c©2006 IFAC
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1. INTRODUCTION

Complex dynamics of biochemical networks in the
form of steady-state multiplicities or sustained
oscillations is a recurring theme in the literature
due to its decisive role in physiology of living
organisms (Thomas and Kaufman, 2001). In this
contribution, we make use of concepts and tools
from irreversible thermodynamics and systems
theory to devise efficient control schemes capable
of network stabilization of steady states.

On the one hand, irreversible thermodynamics
gives us the necessary physical insight in exploring
reaction networks dynamics, which evolution as
dissipative systems occurs in terms of the com-

bined action of entropy production and entropy
flux. The mass action law establishes the macro-
scopic reaction rates as proportional to micro-
scopic reactive collisions, connecting in a par-
ticular form the concentrations of species with
the entropy, and imposing strict constraints on
the concentration space (Feinberg, 1979). On the
other hand, Lyapunov theory and other control
system methods such as passivity which is proved
to be useful in process system analysis and control
(Alonso and Ystdie, 2001), will allow us to ex-
plore the intrinsic dynamic properties of chemical
and biochemical reaction networks. Furthermore,
these methods will be used to construct control
configurations ensuring steady state stabilization.
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The paper is organized as follows. In Section 2 we
explore the structural properties of biochemical
networks characterizing them as dissipative sys-
tems and define an entropy based Lyapunov func-
tion candidate. Connections between thermody-
namics and nonlinear stabilizing control are also
established here. In Section 3 we define a minimal
representation of reaction networks which, being
based on a potential structure, will allow us to
derive connections with passivity and generalized
Hamiltonian systems.

2. THE DISSIPATIVE NATURE OF
REACTION SYSTEMS

2.1 The class of systems under study

In order to rigorously apply thermodynamic based
tools to the dynamic analysis and control of chem-
ical and biochemical systems, we must distinguish
between closed and open networks depending on
whether there is or not material exchange with the
environment. By properly setting the boundary of
the domain one defines the control volume of the
system. This volume corresponds in classical reac-
tion problems with the volume of the chemostat
whereas regarding intra-cell processes it may be
enclosed by a virtual boundary.

The general class of systems under study com-
prises those pure chemical reaction networks and
those metabolic, genetic and signalling pathways,
which satisfy the following assumptions: i) the
reaction rates of the kinetic mechanisms obey
the mass action law, ii) the spatial distribution
of products can be neglected, iii) the process
takes place in isothermal conditions, iv) all the
kinetic steps are reversible, so that irreversible
steps will be considered as inflow-outflow terms
acting through the control volume.

At this point it is important to note that kinetics
of Michaelis-Menten type are in fact reduced order
models derived from original mass action law
mechanisms.

2.2 The basic structure of reaction kinetic networks

In describing the underlying dynamic structure
of reaction networks, we adopt the notation em-
ployed in (Gorban et al., 2004). Let us first con-
sider a closed and homogeneous isotherm system
where n species participate on a r-step reaction
network, represented by the following stoichiomet-
ric mechanism:

n∑
i=1

αijAi �
n∑

i=1

βijAi for j = 1, ...r (1)

with αij , βij being the constant stoichiometric
coefficients for specie Ai in the reaction step j.

All reactions are assumed to be reversible, with
reaction rates obeying the mass action law :

Wj = W+
j − W−

j = k+
j

n∏
i=1

x
αij

i − k−
j

n∏
i=1

x
βij

i (2)

where k+
j and k−

j are the constants of the direct
and inverse rates of the j-th reaction step, respec-
tively, and xi ≥ 0 represents the concentration of
the specie Ai. Each concentration evolves in time
according to the ordinary differential equation:

ẋi =
r∑

j=1

νij(W+
j − W−

j ) (3)

where νij = αij − βij is positive or negative
depending on whether the specie i is a product
or a reactant in the reaction j. The dynamic
evolution of the network can be then represented
by a set of ordinary differential equations which
in compact matrix form is written as:

ẋ = N · W (x) (4)

where N = [νij ] is the n × r coefficient matrix
whose columns are the linearly independent stoi-
chiometric vectors νj = βj − αj , and W (x) ∈ R

r

denotes the vector of reaction rates.

The reaction simplex. In a closed network the
amount of each chemically unaltered component
Ck (k = 1, ...,m) remains constant and the cor-
responding component mass balances satisfy the
following set of algebraic equations:

C0
k = cT

k · x for k = 1, ..., m (5)

where entries of the vector ck ∈ N
n represent

the units of Ck in each specie, and C0
k = cT

k · x0

with x0 = x(0). The intersection of the positive
orthant (i.e. R

n
+) with the set of m conservation

laws defines the reaction simplex :

Ω(x0) =
{

x ∈ R
+
n /cT

k (x − x0) = 0, k = 1, ..., m
}

(6)

that is invariant for the system dynamics. The
set of vectors [ck] forms a basis of ker(N T ) and
consequently the number r of linearly independent
reactions in a reaction network is determined by
the difference between species and its elementary
constituents, i.e. r = n−m. In addition, it follows
that the minimal representation of a chemical
reaction system (4) is r-dimensional, where r ≤ n.

The equilibrium manifold. The relationships ẋ = 0
⇔ W (x) = 0 determine the set of equilibrium
points of the closed system. As it will be shown
next by means of a direct Lyapunov argument, in
a closed reaction network the equilibrium point is
unique for every initial condition belonging to the
same reaction simplex.

Example 1. Let us consider two connected re-
versible reactions involving four chemical species
AB, A, A2B and B, with concentrations defined
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by the state vector x = [x1, x2, x3, x4]. These
species are composed by two classes of atoms A
and B representing the chemical unaltered compo-
nents. The kinetic mechanism is described by two
steps with respective rates W1 and W2 obeying
the mass action law:

AB + A
k+
1−→←−

k−
1

A2B W1 = k+
1 x1 · x2 − k−

1 x3

A2B + B
k+
2−→←−

k−
2

2AB W2 = k+
2 x3 · x4 − k−

2 x1

The state space description in compact matrix
form (4) becomes:

ẋ =

⎡
⎢⎣

−1 2
−1 0

1 −1
0 −1

⎤
⎥⎦ ·

[
W1

W2

]
(7)

and the atomic conservation balances (5) for this
case read:

C0
A = cT

Ax = x1+x2+2x3 , C0
B = cT

Bx = x1+x3+x4 (8)

where C0
A and C0

B represent the concentrations of
each atomic species. Vectors cA and cB can be
grouped into the following matrix:

CT =
[

1 1 2 0
1 0 1 1

]
(9)

which defines a basis for kerN T so that CTN = 0.
Consequently, each vector C0 = (C0

A, C0
B) is con-

stant along (7) and defines a specific reaction
simplex Ω(x0) for every initial condition x0 sat-
isfying C0 = CT x0. For this example, the reac-
tion simplex Ω(x0), defined by the intersection of
(8) with the positive orthant is two dimensional.
A particular reaction simplex for C0

A = 10 and
C0

B = 8 is depicted in Fig. 1 in the x1 − x3 space.

2.3 Stability of the equilibrium manifold

The second law of thermodynamics establishes an
evolution criterion based on a concave function
(the entropy) which never decreases in isolated
systems and achieves its maximum at equilibrium.
Isolated dissipative systems evolve to equilibrium
through irreversible processes that produce en-
tropy, being the rate of entropy production a
way to quantify dissipation. The second law for-
mulated as an entropy maximum principle has
their counterparts in minimum principles of the
thermodynamic potentials. The expression of the
corresponding potential that we will use as an
entropy-like function is the following function of
the species concentrations:

S =

n∑
i=1

xi · (ln xi − 1) =

n∑
i=1

(xi ln xi − xi) (10)

This expression can be derived by starting from
the normalized potential for isothermal systems
at a constant volume proposed in (Gorban et al.,
2004) in combination with the Euler expression
for the thermodynamic entropy (Callen, 1980).

In addition, we have that the right hand side term
in (4) is Lipschitz continuous. This implies, as
discussed in (Alonso et al., 2004), that for any
arbitrary reference x1 there exists a nonnegative
function Lλ(x, x1) associated to a constant λ ≥ 0,
such that the following relation holds:

[µ(x) − µ(x1)]TN · W (x) + Lλ(x, x1)

= λ[µ(x) − µ(x1)]T (x − x1) (11)

where µ = ∇xS = ln x. Systems which, in
addition, satisfy that L0(x, x1) ≥ 0, are purely
dissipative. Closed reaction networks are a class of
purely dissipative systems for a state x1 being the
equilibrium reference. This can be easily shown by
noting that for λ = 0 and x1 = x∗ in (11):

L0(x, x∗) = −(µ − µ∗)T
r∑

j=1

νjWj (12)

Equation (12) can be written in terms of the direct
and inverse reaction rates (2) as:

L0(x, x∗) =
r∑

j=1

ln
W+

j

W−
j

· (W+
j − W−

j ) (13)

Since each term at the right hand side of (13) is
non-negative we conclude that L0(x, x∗) ≥ 0.

In order to derive the stability conditions for
closed reaction networks we define a positive def-
inite and convex function B(x), constructed as
the difference between S(x) and its supporting
hyperplane at the equilibrium reference x∗:

B(x, x∗) =
n∑

i=1

xi

(
ln

xi

x∗
i

− 1
)

+ x∗
i (14)

Taking the time-derivative B(x, x∗) along (14)
and using (11) with λ = 0 we obtain:

Ḃ = (µ − µ∗)T
r∑

j=1

νjWj = −L0(x, x∗) (15)

Since by (13) L0 ≥ 0 we have that Ḃ ≤ 0.
Consequently, B is a legitimate Lyapunov func-
tion which ensures the structural asymptotic
stability for the general class of reaction net-
works under study at the equilibrium reference.
In addition, this Lyapunov function B coincides
with the one used by (Feinberg, 1979) in de-
veloping the Chemical Reaction Network Theory
(Gunawardena, 2003). The contours of B and
L0(x, x∗), corresponding to the Example 1 in
the reaction simplex Ω(x0) are presented in Fig.
1, where it can be seen that B is convex and
L0(x, x∗) negative definite although not convex
when far from the equilibrium reference.
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Fig. 1. Reaction simplex and contours of B (solid
lines) and L0 (dotted lines) for Example 1,
where x∗ is the equilibrium point.

2.4 Direct passivation of open reaction systems

The state-space representation of an open reaction
system, i.e. a system which exchanges mass with
its environment, is constructed by adding a set of
input and output convection terms (Hangos and
Cameron, 2001) to the closed reaction system (4).
In order to handle standard operation conditions
in chemostats, we further assume that the overall
mass of the system is kept constant by having the
same input and output overall mass flow Φ. In
this way, the set of ordinary differential equations
governing the evolution of states becomes:

ẋ = N · W (x) + φ(x0 − x) (16)

where φ = Φ/V , (with V being the volume of the
chemostat), denotes the inverse of the residence
time and x0 is the inlet concentration vector.
Regarding intra-cell reaction networks, degrada-
tion and generation of components appear to be
accomodated in (16) substituting the chemostat
by the appropriate control volume.

The material throughput flow introduces non-
dissipative contributions in the system, by adding
an entropy flux term in the entropy balance. In our
formalism, this balance is obtained by computing
the time derivative of B as defined in (14) along
(16):

Ḃ = (µ−µ∗)T
r∑

j=1

νjWj+(µ−µ∗)T φ(x0−x) (17)

The second term in the right hand side of (17) cor-
responds with entropy flux and may compensate
or even override the natural entropy dissipation,
thus undermining the inherent global asymptotic
stability of the system. At this point, it should
be noted the direct relationship between entropy
flux and dynamical complexity. Therefore, in sta-
bilizing open complex reaction systems it seems
crucial to act on the non-dissipative contributions
by appropriate control configurations.

A simple way of stabilizing steady states is sum-
marized in the following proposition:

Proposition 1. Any stationary solution x∗ of
(16) can be rendered exponentially stable by a
control law of the form x0 = x0∗ −ω(x− x∗) with
ω ≥ (λ − φ − α)/φ > 0 and α > 0

Proof: First, let us construct a B function as in
(14) with respect to the stationary solution x∗

associated to the input concentration vector x0∗.
Defining x = x−x∗, x0 = x0−x0∗ and computing
the time derivative of B along (16) we get:

Ḃ = (µ−µ∗)TN (W (x)−W (x∗))+φ(µ−µ∗)T (x0−x) (18)

Since B(x, x∗) is convex, we also have the follow-
ing inequality:

B(x, x∗) ≥ (µ − µ∗)T x (19)

Substituting (11) and the control law in (18):

Ḃ = −Lλ + (λ − φ − φω)(µ − µ∗)T x (20)

Since Lλ > 0 and B satisfies (19), equation (20)
becomes Ḃ ≤ αB and the result follows. �
As a corollary, note that any open network can be
made globally exponentially stable by defining a
mass flow φ < λ.

3. THE POTENTIAL STRUCTURE OF THE
REACTION SPACE

3.1 The dynamics in the reaction space

Systems derived from a potential conform an in-
teresting class of dynamic systems where pow-
erful methods for control design, such as those
based on passivity, directly apply. In this section,
we demonstrate that a complex reaction network
possesses an underlying potential structure on a
state space that will be referred to as the reaction
space, that is homeomorphic to the concentration
space in the reaction simplex and is described by
defining a new set of variables:

zj = ln
pj

qj
for j = 1, ..., r (21)

with pj and qj being the direct and reverse rates
associated to the reaction rate j (W+

j and W−
j ).

In the new variables, the equation (2) becomes:

Wj = pj − qj = qj(ezj − 1) (22)

The right hand side of Eq. (12) can then be
transformed through appropriate manipulations
into the form:

�(z, q) = −
r∑

j=1

zj qj(ezj − 1) = −zT W (23)

Function � can be easily connected with the so
called dissipation function as it is the product of
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thermodynamic fluxes (reaction rates) and ther-
modynamic forces (chemical affinities). In this
way, it seems natural to explore the properties of
chemical reaction network dynamics in the reac-
tion space defined by z-variables. To that purpose,
let us introduce the following notation:

S = N T ΓN (24)

Γ = diag

[
1
x1

, ...,
1
xi

, ...
1
xn

]
(25)

The particular structure of the reactor vector ele-
ments (22) suggests the definition of the potential:

H(z) =
r∑

j=1

(ezj − zj) − 1 (26)

and re-writing the vector of reaction rates as:

W = F (q)Hz (27)

where F (q) = diag[q1, ... , qj , ... , qr] is a positive
definite diagonal matrix and Hz represents the
gradient of (26). Note that by construction, the
potential H is convex and positive definite ev-
erywhere except at the equilibrium point z∗ = 0,
where H(0) = 0. Defining J = SF (q) we obtain
the following potential dynamic description:

ż = −JHz (28)

where Hz is the gradient of H. Provided that the
matrix JT + J (and consequently J) is a positive
definite matrix, Eqn.(28) matches the dynamics in
the reaction space with a generalized Hamiltonian
system (Van der Shaft, 2000). It is clear from (28)
that H is decreasing in time if the state-dependent
matrix JT + J is always positive definite. In this
case, H is a Lyapunov-function for the reaction
system proving global asymptotic stability in the
reaction space. However, it can be shown that
there are cases when JT + J is positive definite
only in a neighborhood (denoted by U) of the
selected stable equilibrium point of the reaction
system.

3.2 Passivity and global stabilization in the reaction
space

The dynamic evolution of the open reaction net-
work (16) in the reaction space is described as:

ż = −JHz −N T Γφ(x0 − x) (29)

The potential structure of (28) allows us to estab-
lish a straightforward connection with passivity:

Proposition 2. If JT + J is globally positive
definite, then the system (29) endowed with the
function H (26) is passive with y = Hz and
u = N T Γφ(x − x0).

Proof: We compute the time derivative of the
potential (26) along (29) to obtain:

Ḣ = −Hz
T JHz − Hz

TN T Γφ(x0 − x) (30)

that with the selected inputs and outputs reads:

Ḣ = −Hz
T JHz + yT u (31)

Since the first term on the right hand side is
negative definite, we obtain by integrating (31) in
the time interval (t, t+τ) the following inequality:

H(t + τ) − H(t) ≤
∫ t+τ

t

yT (s)u(s)ds (32)

which coincides with the well-known passivity
inequality (Van der Shaft, 2000). �
Remark 1. If JT + J is not globally positive
definite, then open reaction networks can be glob-
ally stabilized in the reaction space with a control
Lyapunov function H by nonlinear control laws of
the form:

u = N T Γ(NF + KΓN )y (33)

where K ∈ R
n×n is an appropriate matrix. The

supply rate is then given by:

yT u = HT
z N T ΓNF︸ ︷︷ ︸

J

Hz +HT
z N T ΓKΓNHz (34)

and substituting (34) in (31) we get:

Ḣ = yTN T ΓKΓN y

which is clearly negative if K is negative definite
(or zero if K is skew-symmetric).

Remark 2. It must be pointed out that the
feedback (33) requires the measurement of the full
state vector in the general case. The dimension of
the artificial input u is equal to the dimension of
the reaction space (i.e. r). However, the physically
meaningful manipulable inputs for the system are
the elements of either φ or x0. If a value for u
is computed from (33) then the values of the real
physical inputs can be calculated from the relation
(see Proposition 2):

u = N T Γφ(x − x0) (35)

which is linear separately in φ and x0 (if one
of them is arbitrarily fixed). It is clear from the
above, that the required number of physical inputs
for the stabilization is also r which is generally
less than (or at most equal to) n. This result is in
good agreement with (Sontag, 2001) although the
control Lyapunov function is different from H.

Example 2. We use as an example the following
Michaelis Menten mechanism of enzymatic catal-
ysis with substrate inhibition:

E + S
k+
1−→←−

k−
1

ES ES
k+
2−→←−

k−
2

E + P ES + S
k+
3−→←−

k−
3

ESS (36)

This mechanism is shown to present multiplicities
for the open case and a particular range of the rate
constants. The dynamics of the open loop system
can be described by the following set of differential
equations of the form (4), where
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N =

⎡
⎣−1 −1 1 0 0

1 0 −1 0 1
0 −1 −1 1 0

⎤
⎦

T

, (37)

w1(x) = k+
1 x1x2 − k−

1 x3 (38)

w2(x) = k+
2 x3 − k−

2 x1x5 (39)

w3(x) = k+
3 x2x3 − k−

3 x4 (40)

and the state vector x contains the concentra-
tions of the species E, S, ES, ESS and P ,
respectively. In this example, the values for all
the kinetic constants k

{+,−}
{1,2,3} were chosen as 1.

The initial value of the state vector was x(0) =
[0.01 0.15 0.01 0.01 0.01]T . We assumed that
the manipulable variables are the three inlet con-
centrations x0

1, x0
2 and x0

3 (see eq. (16)). The value
of the flux φ was 0.01, while the gain matrix
K for the controller was −0.1 · I5×5. As it is
shown in fig. 2, the proposed feedback (33) sig-
nificantly improves the time-domain performance
of the reaction-kinetic system.
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Fig. 2. Reaction space variables in the a) open-
loop and b) closed-loop case

4. CONCLUSIONS

In this work, we combined concepts and tools
from irreversible thermodynamics and systems
and control theory to explore the underlying dy-
namic properties of a general class of kinetic net-
works. As a result, we firstly have shown how
entropy or a related thermodynamic potential can

be employed as a legitimate Lyapunov function
candidate to derive stability conditions for ki-
netic networks in closed systems. A potential-like
structure has been extracted from the network
which conducts the evolution of the reaction rates.
This enabled us to construct a local Hamiltonian
description of the open reaction kinetic system in
the reaction space. These results involving entropy
and non-linear control design are applied to the
efficient stabilization of arbitrary steady-states in
open chemical and biochemical networks.
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