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Abstract: This paper deals with the design of observers for batch processes and the tuning 

of the observer gains with the objective to guarantee fast convergence of the state 

estimates. The approach followed in the present proposes to use an ITSE (Integral of the 

Time-weighted Square Error) criterion. The approach is illustrated on a batch process 

used in wastewater treatment, sequencing batch reactor (SBR). Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
A key question in process control is how to monitor 

reactant and product concentrations in a reliable and 

cost effective manner. However, it appears that, in 

many practical applications, only some of the 

concentrations of the components involved and 

critical for quality control are available for on-line 

measurement. For instance, dissolved oxygen 

concentration in bioreactors, temperature in non-

isothermal reactors and gaseous flow rates are 

available for on-line measurement while the values 

of the concentrations of products, reactants and/or 

biomass are often available via off-line analysis. An 

interesting alternative which circumvents and 

exploits the use of a model in conjunction with a 

limited set of measurements is the use of state 

observers. The design and application of state 

observers in (bio)processes has been an active area 

over the past decades (Doyle, 1997; Dochain, 

2003a).  

 

The design and application of state observers and 

parameter estimators to batch processes poses 

specific challenging questions, typically related to 

the time limitation of the batch operation. The 

question has been largely discussed in (Agrawal and 

Bonvin, 1989). It is obviously closely related to the 

control of the process, which is basically a finite-

time optimal control problem, as it is nicely 

explained in (Bonvin et al., 2001). 

 

One specific challenge of state observation and 

parameter estimation in batch processes is to design 

algorithms that are able to provide reliable estimates 

very quickly after the beginning of the batch. The 

problem is that so far the performance of parameter 

and state estimators are basically analyzed on the 

basis of the asymptotic behaviour of the related 

algorithms. 

 

Bonvin and his coworkers (Agrawal and Bonvin, 

1989; Agrawal and Bonvin, 1991; DeVallière and 

Bonvin, 1990) have identified several factors for the 

limitation of the extended Kalman filter when it is 

used to estimate both state variables and process 

parameters. These factors that are closely related to 

the inherent linearization of the estimator, are the 

following ones : 

1) the bad knowledge about the key reaction 

parameters (these must be usually estimated, 

often with poor initial guesses);  

2) the large variations of the operating 

conditions (particularly in batch);  

3) the inaccuracy of the initial estimates of the 

state variables;  

4) the imprecise measurement of the amounts 

of added agents;  
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5) the sensitivity of the reaction systems to 

trace certain species (e.g. impurities in 

polymerisation reactions) 

 

These works suggest that, beyond the proposed 

improvements, there is a room to develop new tools 

for the design and analysis of state observers that are 

better appropriate to the specific features of batch 

processes. So far the scientific literature seems to 

very silent to what is often mentioned as a key 

question in process control today. 

 

An appealing approach, developed in particular in 

(Bonné and Jorgensen, 2001) and (Bonvin et al., 

2001), is the batch to batch improvement of the 

estimation and control algorithms. In (Bonné and 

Jorgensen, 2001), the emphasis is put on a model-

based iterative learning control. In this approach, 

Model Predictive Control (MPC) is applied for 

trajectory tracking on the basis of a dynamical model 

of the batch process obtained by identification of 

Finite Impulse response (FIR) models or of 

AutoRegressive models with eXogenous inputs 

(ARX). Regularization is used in order to reduce the 

large dimensionality of the identification. In order to 

limit the negative effect of regularization (biased 

estimates), regularization weights are considered. A 

survey on optimal control in a large sense (the 

authors prefer the words "dynamic optimization") in 

batch processes is presented in (Bonvin et al., 2001). 

The batch-to-batch improvement is presented in the 

context of measurement-based optimization (MBO). 

MBO can include in particular parameter and state 

estimation as well as model refinement. Typically, 

when state and parameter is considered, one of the 

techniques described before is used. Improvement of 

the performance of the estimation of state variables 

and parameter can be obtained by considering for 

instance the recommendations given by (Agrawal 

and Bonvin, 1989) and (DeVallière and Bonvin, 

1990) and summarized here above. 

 

Beside the batch-to-batch improvement idea, new 

avenues should be traced in the design of state and 

parameter estimators. One of the main problem of 

the design of the presently available techniques is 

that it is based on asymptotic properties of the 

algorithms. In other words, the key issue usually 

addressed in the design of state observers and 

parameter estimators is to guarantee that for a time 

sufficiently large (tending to infinity!), the estimates 

will converge to the true values or within a bounded 

area close to these. But this approach is obviously 

inappropriate in the context of batch and semi-batch 

processes where one cannot wait very long before 

obtaining reliable estimates. The need to have rapidly 

reliable estimates is a crucial issue in batch and semi-

batch operation. One possible suggestion would be to 

use, in the selection of the design parameters, criteria 

like the ITSE (Integral of the Time-weighted Square 

Error) criterion or other criteria that penalize 

remaining errors after a defined period of time. Such 

an approach has been followed in the present work. 

We have considered as a case study the model of 

sequencing batch reactors (SBR’s) used in 

wastewater treatment, that are in particular under 

study in the framework the EOLI EC project. 

 

The paper is organized as follows. The next section 

will introduce the model of the SBR under study. 

Then the observer equations and the ITSE observer 

parameter calibration procedure are introduced. 

Finally the ITSE observer performance are illustrated 

via simulation results. 

 

 

2. PROCESS DESCRIPTION 

 

The aerobic treatment of domestic and industrial 

wastewaters by activated sludge is a common 

process, but the characteristics of many industrial 

discharges often cause operational problems in 

continuous flow systems. Therefore, discontinuous 

processes, as sequencing batch reactors (SBR’s), will 

be considered in this project because, in terms of 

investment and operation costs, process stability, and 

operation reliability, they are better than the 

conventional continuous activated sludge process. In 

dairy plants, SBR could be applied to raw wastewater 

with low organic load and intermittent production of 

wastewater or as post treatment after an anaerobic 

process when the organic load is high. When the flow 

rate of wastewater is continuous it is possible to use 

more than one SBR or a variation of SBR with 

continuous inflow of wastewater and intermittent 

outflow. Different carbon/nitrogen ratio and different 

type of carbon to be removed are obtained in each 

case. SBR is a promising system to treat these 

effluents. It is cheaper than other aerobic systems, it 

allows carbon removal and denitrification in the 

same reactor, and also phosphorus removal. A typical 

SBR process cycle with aerobic and anoxic phases to 

achieve nitrification and denitrification is composed 

by filling, mixing-aeration, sedimentation, draining 

and idle phases. In the following SBR model, we 

concentrate on the two successive batch steps : the 

anoxic phase followed by the aerobic phase. The 

model refers explicitly to these two phases. For the 

present process, one denitrification step and one step 

nitrification are considered in the anoxic and aerobic 

phases, respectively. Therefore the reaction scheme 

considered here is the following. 

 

Anoxic phase 

Denitrification :  SC + SNO  �  Xh + N2  

Ammonification :  SN  �  SNH 

 

Aerobic phase 

Nitrification :   SO + SNH  �  Xa +  SNO 

C-removal :   SC + SO  �  Xh   

Ammonification :  SN  �  SNH 

 

The dynamics of the process are given by the 

following mass balance equations. 

 

Anoxic phase  
 

hhN
h X

dt

dX
µ=       (1) 
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hhN
C Xk
dt

dS
µ1−=       (2) 

hhN
NO Xk
dt

dS
µ2−=       (3) 

N
NH rk
dt

dS
3=         (4) 

N

N r
dt

dS
−=               (5) 

 

Aerobic phase 

 

hh

h X
dt

dX
µ=       (6) 

aa

a X
dt

dX
µ=         (7) 

hh
C Xk
dt

dS
µ4−=       (8) 

)( max65 OOLaahh

O SSakXkXk
dt

dS
−+−−= µµ   (9) 

aa

NO
Xk

dt

dS
µ7=     (10) 

aaN
NH Xkrk
dt

dS
µ83 −=       (11) 

N

N r
dt

dS
−=       (12) 

 

Where Sc, SNH, SNO, SN, SO, Xh and Xa are the 

biodegradable substrate concentration (carbon, 

mgCOD/L), the ammonia nitrogen concentration 

(mgN/L), the nitrate and nitrite concentration 

(mgN/L), the soluble organic nitrogen (mgN/L), the 

concentration of the dissolved oxygen (DO) in the 

water (mg/L) and the concentration of the digester 

biomasses (heterotrophs and autotrophs)(mgVSS/L), 

respectively. 

 

And 

hNY
k

1
1 = ; 

HN

HN

Y

Y
k

86.2

1
2

−
= ; 

hY
k

1
4 = ; 

h

h

Y

Y
k

−
=
1

5
; 

aY
k 1
6

β
= ; 

aY
k 2

7

β
= ; 

aY
k

1
8 =  

 

With their values identified in the framework of the 

EC EOLI project (Betancur et al, 2003) and the 

following kinetic expressions: 

 

NONO

NO

CCC

CC
hNhN

SK

S

SSK

SS

+−+

−
=

min1

min
maxµµ

   (13) 

)( min0 NNN SSr −= µ       (14) 

OOh

O

CCCh

CC

hh
SK

S

SSK

SS

+−+

−
=

min

min

maxµµ      (15) 

OOa

O

NHNHa

NH

aa
SK

S

SK

S

++
= maxµµ

   (16) 

 
 

3. ITSE OBSERVER 

 
If we consider the following state space model of 

order n: 

 

),( uxf
dt

dx
=      (17) 

 

where the measured variables y are related to the 

state variables x and the inputs u by: 

 

y = h(x,u)    (18) 

 

the general structure of a state observer can be 

written as: 

 

)ˆ()ˆ(),ˆ(
ˆ

yyxKuxf
dt

xd
−+=    (19) 

   

where  x̂  and ŷ  are the on-line estimates of x and y 

given by: 

 

ŷ  = h( x̂ )     (20) 

 

with K( x̂ ) the observer gain. 

 

It is well known that the design of classical observers 

consists of choosing an appropriate gain, K( x̂ ), such 

that the error dynamics has some desired properties 

(Dochain, 2003a).  In the case of the extended 

Luenberger observer (ELO), the objective is to select 

K( x̂ ) such that the linearised error dynamics around 

the process dynamics observation error e (e = x - x̂ ) 

is asymptotically stable.  

 

On the other hand the problem of choosing the 

appropriate gain K( x̂ ) for ITSE observers becomes 

an optimisation problem. It consists on finding K( x̂ ) 

that minimizes  the following objective function J:   

 

∫=
T

dttetJ
0

2
)(      (21) 

 

With T being an appropriate window of time. In this 

way the design of the observer includes minimization 

of the observation error together with better 

convergence rates. 

 

3.1 Simulation Results  

 

First of all the ITSE observer was tested for a simple 

CSTR process with Monod kinetics (Dochain, 

2003b).  

 

The model dynamics is described by the following 

equations: 

 

DSSDXk
dt

dS
in −+−= µ1

    (22) 

 

XDX
dt

dX
−= µ       (23) 

 

With k1,  µ, D and Sin being the yield coefficient, the 

specific growth rate (h
-1

), the dilution rate (h
-1

) and 
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the influent substrate concentration (gL
-1

) 

respectively.  

 

SK

S

S +
= maxµ

µ   being a Monod kinetics with   µmax the 

maximum specific growth rate (h
-1

) and KS the 

saturation constant (gL-1).  

 

The observer equations become: 

 

)ˆ(ˆˆ
ˆ

ˆˆ

1max1 SSKSDSDX
SK

S
k

dt

Sd
in

S

−+−+
+

−= µ   (24) 

 

)ˆ(ˆˆ
ˆ

ˆˆ

2max SSKXDX
SK

S

dt

Xd

S

−+−
+

= µ  (25) 

 

Considering the value of the parameters included in 

(Dochain 2003a) and the following initial values 

X(0)=1 (gL-1), )0(X̂ = 5 (gL-1), S(0)=30 (gL-1) and 

)0(Ŝ =50 (gL
-1

)  the ITSE observer performance can 

be seen in Figure 1 

 

 
Fig 1. ITSE observer for biomass (X)  and substrate 

(S) concentrations for a simple CSTR process 

 

The ITSE performance was then compared with an 

ELO observer with gains K1 and K2 selected as 

indicated in (Dochain, 2003b) with  λ1=λ2= -0.1 

being  the selected poles of the error dynamics (see 

Figure 2).  

 

 

 
 

Fig. 2. Extended Luenberger Observer for biomass 

(X) and substrate (S) concentrations for a 

simple CSTR process  

 
It can be noticed that the ITSE observer performs 

better than ELO with very good convergence 

properties. 

 
4. APPLICATION TO THE WASTEWATER 

TREATMENT PROCESS 

 
In order to illustrate the performance of the ITSE 

observer in the SBR with perturbed initial conditions, 

we first proceed with the anoxic phase. 

 

4.1 ITSE Observer for the Anoxic Phase  

 

In a first step and taking into account that the system 

of equations  (1)-(2)-(3) is not observable with only 

one measurement (SNO) (the observability matrix 

constructed from the Jacobian of system (1)-(2)-(3) is 

of rank 2), we started by developing an asymptotic 

observer for Sc as follows : 

 

Let      NOC SS
k

k
Z +

−
=

1

2
    (26) 

 

Then the asymptotic observer which is independent 

from the specific kinetics is written as follows : 

 

0
ˆ

=
dt

Zd
  and    )ˆ(ˆ

2

1
NOC SZ

k

k
S −

−
=   (27) 

 

Then, by considering the already determined CŜ  in a 

second step, we developed the following observer : 

 

)ˆ(ˆˆ
ˆ

1 NONOhhN

h SSKX
dt

Xd
−+= µ    (28) 

 

)ˆ(ˆˆ
ˆ

22 NONOhhN

NO SSKXk
dt

Sd
−+−= µ (29) 

 

with  

NONO

NO

CCC

CC
hNhN

SK

S

SSK

SS

ˆ

ˆ

ˆ

ˆ
ˆ

min1

min
max

+−+

−
= µµ   (30) 

 

Considering the parameter values of the EOLI 

project (Betancur et al, 2003) and the following 

initial values: Xh(0)=1; )0(ˆ
hX = 1.2; 

SC(0)= )0(CS = 200 (carbon, mg COD/L); 

SNO(0)= )0(ˆ
NOS =0.5 (mg N/L) which correspond to 

a 20% error in the initial observed value  of Xh . The 

ITSE observer performs as shown in Figure 3. 
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Fig. 3. ITSE Observer for Sc and Xh during the anoxic 

phase of the wastewater treatment process 

with a 20% error in the initial condition of Xh 

 

As it can be seen in Figure 3, the ITSE is biased for 

Xh observation.  In fact it happens that Xh can be 

poorly observed from SNO measurements. The 

observability test shows that the observability matrix 

constructed from the Jacobian of system equations 

(1) and (3) is of rank 2 if and only if µhN >> 0  which 

is not at all the case. This is also the reason why the 

equivalent ELO performs in a very unstable way. It 

can be proved that the gain K1 of the ELO has µhN in 

a denominator. 

 

4.2 ITSE Observer for the Anoxic and AerobicPhase 

 

In a first step we begun by developing an asymptotic 

observer for Xa as follows : 

 

Let      Z =k7 Xa −SNO      (31) 

 

Then the asymptotic observer which is independent 

from the specific kinetics is written as follows : 

 

0
ˆ

=
dt

Zd   and    )ˆ(
1ˆ

7

NOa SZ
k

X +=   (32) 

 

By considering the estimated value of aX̂  given by 

the asymptotic observer, the observer for the other 

state variables considering that SO, SNO and SNH are 

measured variables is given by the following set of 

equations : 

 

)ˆ(ˆ
ˆ

1 NHNHN

N SSKr
dt

Sd
−+−=     (33) 

 

)ˆˆ(ˆˆˆ
ˆ

283 NHNHaaN

NH SSKXkrk
dt

Sd
−+−= µ  (34) 

 

)ˆ(ˆˆ
ˆ

3 OOhh

h SSKX
dt

Xd
−+= µ    (35) 

 

)ˆ(ˆˆ
ˆ

44 OOhh

C SSKXk
dt

Sd
−+−= µ   (36) 

 

)ˆ()ˆ(ˆˆˆˆ
ˆ

5max65 OOOOLaahh
O SSKSSakXkXk
dt

Sd
−+−+−−= µµ  (37) 

 

a nd the following kinetic expressions: 

 

NONO

NO

CCC

CC
hNhN

SK

S

SSK

SS

ˆ

ˆ

ˆ

ˆ
ˆ

min1

min
max

+−+

−
= µµ

   (38) 

)ˆ(ˆ
min0 NNN SSr −= µ     (39) 

 

OOh

O

CCCh

CC
hh

SK

S

SSK

SS

ˆ

ˆ

ˆ

ˆ
ˆ

min

min
max

+−+

−
= µµ       (40) 

OOa

O

NHNHa

NH

aa
SK

S

SK

S

ˆ

ˆ

ˆ

ˆ
ˆ

max
++

= µµ
    (41) 

 

Taking into account that SNO is a measured variable 

we shall only consider that: 

 

aa

NO
Xk

dt

Sd
ˆˆ

ˆ

7 µ=      (42) 

 

Considering the value of the parameters included in 

(Betancur et al, 2003) and the following initial 

values: Xh(0)=1; )0(ˆ
hX = 1.2; SC(0)= )0(ˆ

CS = 200; 

SNO(0)= )0(ˆ
NOS =0.5;  SNH(0)=0.1; NHŜ (0)=0.12;  

SN(0)=20; NŜ (0)=24; Xa(0)=1; aX̂ (0)=1.2; 

SO(0)=0.010; OŜ (0)=0.012. The ITSE observer 

performs as shown in Figure 4. 

 

It is worth noting that the ITSE performs very well 

even with the important initial errors in some of the 

observed variables. Another advantage over the ELO 

is that the observer gains are easy to determine which 

is not the case for the ELO when the system is of 

high order as it is the case for the wastewater 

treatment process. 
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Fig. 4. ITSE Observer for Sc , Xh and SNO during the 

anoxic and aerobic phase of the wastewater 

treatment process with a 20% error in the 

initial condition of Xh,, SNH, SN, Xa and SO 

 

 
5. CONCLUSIONS 

 

In this paper, we have handled the question 

designing state observers that can possibly account 

for the limited time duration of batch processes by 

considering the design of ITSE observers in which 

the observer gains are computed via an ITSE 

criterion. The results of the observer have been 

illustrated first with a simple microbial growth 

model, then with the model of a SBR process, a 

process used in wastewater treatment. 
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