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Abstract: A robust controller combining a feedforward compensator (for the measured
disturbance) and a feedback RST controller is designed for the control of S. cerevisiae
cultures. The controller is based on the linearization of Sonnleitner’s model allowing
a simple transfer function model to be derived, which describes the relation between
the ethanol concentration, the substrate feed and a measurable disturbance - image of
the substrate demand for cell growth. This control scheme is made robust to neglected
high frequency dynamics (of glucose and oxygen) and uncertain stoichiometry coefficients
using the observer polynomial. This control scheme, whose performance is demonstrated
in simulation, requires only the on-line measurements of the ethanol concentration and
bioreactor volume, estimation of the oxygen transfer rate, and minimal a priori process
knowledge, i.e. only one stoichiometric coefficient. Copyright 2006 IFAC.

Keywords: Robust control; Adaptive control; Fed-batch fermentation; Biotechnology;

1. INTRODUCTION

Due to their robustness and ability to utilize cheap
materials for growth and production, Saccharomyces
cerevisiae strains are among the most popular indus-
trial microorganisms. Recently, with the achievement
of modern gene technology, S. cerevisiae have been
increasingly used as host organisms for producing re-
combinant proteins (production of insulin, vaccines,
. . . ).

To ensure optimal operating conditions (i.e. to maxi-
mize biomass productivity), a commonly used method
consists in regulating the ethanol concentration at a
low value. Several control schemes, which have been
tested in genuine industrial applications, have been
proposed to this end (see, e.g. Chen et al., 1995;
Pomerleau, 1990; Pomerleau and Viel, 1992; Axels-
son, 1988). These controllers result from the lineariz-
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ing control theory (Bastin and Dochain, 1990), where
the control law can be viewed as a proportional con-
troller acting around a trajectory representing the sub-
strate demand for cell growth. In (Chen et al., 1995),
this trajectory is deduced from an on-line biomass esti-
mation while in (Pomerleau, 1990), it is deduced from
the measurement of the oxygen transfer rate (OT R). In
this connection, nonlinear parameter adaptation tech-
niques are used to estimate uncertain parameters.

In this contribution, a simplified model is derived
by linearization of the global nonlinear model of
Sonnleitner and Käppeli (1986) around the above-
mentioned trajectory. This transfer-function model de-
picts the relationship between the ethanol concentra-
tion and the substrate feed and a measured disturbance
representing the substrate demand for cells growth.
An adaptive feedforward controller is used in com-
bination with a feedback RST controller to regulate
the ethanol concentration. This approach allows the
use of linear control theory and a simple design of a
robust controller. For instance, requirements in terms
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of measurement noise attenuation or robustification
to neglected high frequency dynamics can easily be
incorporated. In comparison with the linearizing con-
trol theory, the purely linear control framework, into
which the suggested control algorithm is developed,
allows the robustness issues to be easily taken into
account.

2. MODELING OF YEAST FED-BATCH
CULTURES

2.1 Nonlinear dynamic model

The metabolism of yeast depends strongly on the
culture conditions. During the aerobic growth, glucose
and ethanol can be used as carbon sources according
to the following reaction scheme :

Glucose oxidation : G+ k5 O
r1→ k1 X+ k7 P (1a)

Glucose fermentation : G
r2→ k2 X+ k4 E+ k8 P (1b)

Ethanol oxidation : E+ k6 O
r3→ k3 X+ k9 P (1c)

where X, G, E, O, P are, respectively, the concen-
tration in the culture medium of biomass, glucose,
ethanol, dissolved oxygen and dissolved carbon diox-
ide, and ki are the pseudo-stoichiometric coefficients.

The reaction rates associated with these reactions are :

r1 = min

(
rG,

rOmax

k5

)
(2)

r2 = max

(
0,rG −

rOmax

k5

)
(3)

r3 = max

(
0,min

(
rE ,

rOmax − k5 rG

k6

))
(4)

The kinetic terms associated with the glucose con-
sumption rG, the respiratory capacity rOmax and the
potential ethanol oxidative rate rE are :

rG = µG
G

G+KG
, rOmax = µO

O
O+KO

, rE = µE
E

E+KE

where µG, µO and µE are the maximal values of spe-
cific growth rates, KG, KO and KE are the saturation
constants of the corresponding substrate.

This kinetic model is based on the bottleneck hypoth-
esis developed by Sonnleitner and Käppeli (1986). It
assumes a limited oxidation capacity of yeast, leading
to the formation of ethanol under conditions of oxygen
limitation and/or high glucose concentration. The glu-
cose concentration corresponding to the oxidative ca-
pacity is denoted Gcrit , and is such that rG = rOmax/k5.
According to the glucose concentration value, two
different operating regimes can be distinguished. At
low glucose concentrations (G ≤ Gcrit), the system
is in respiratory regime. The glucose consumption
rate is smaller than the maximal respiratory capacity
(rG ≤ rOmax/k5) and the rate of the oxidative glucose
metabolism is determined by the glucose consumption

rate (2). Ethanol can be oxidized in parallel with glu-
cose and the rate of the oxidative ethanol metabolism
depends on the excess of respiratory capacity and the
available ethanol (4). At high glucose concentrations
(G ≥ Gcrit), the system is said in respiro-fermentative
regime. The glucose consumption rate is larger than
the maximal respiratory capacity (rG ≥ rOmax/k5) and
the respiratory capacity of the cells determines the
rate of the oxidative glucose metabolism (2). The ex-
cess of glucose is metabolized by the fermentative
metabolism (3). Under oxygen starvation conditions,
the fermentative metabolic pathway always predomi-
nates.

Based on the reaction scheme (1), the following
macroscopic mass balances can be derived :

d(V X)

dt
= (k1r1 + k2r2 + k3r3)XV (5a)

d(V G)

dt
= −(r1 + r2)XV +FinGin (5b)

d(V E)

dt
= (k4r2 − r3)XV (5c)

d(VO)

dt
= −(k5r1 + k6r3)XV +V OT R (5d)

dV
dt

= Fin (5e)

where Gin is the substrate concentration in the feed,
Fin is the inlet feed rate, V is the culture medium
volume and D is the dilution rate (D = Fin/V ).

2.2 Simplified linear model

In (Valentinotti et al., 2004), it is shown that max-
imization of biomass productivity corresponds to a
feeding strategy which exactly fills the bottleneck.
Hence, the optimal operating conditions correspond to
the boundary between the respiro-fermentative and the
respiratory regimes (G = Gcrit). The nonlinear model
(5) can be linearized around this optimal point, i.e.
in the respiro-fermentative or respiratory regime, with
G → Gcrit . For both regimes, it is assumed that there is
no accumulation of glucose and oxygen in the culture
medium so that the dynamics of the total amount of
these substrates can be neglected. Along the optimal
trajectory, where G is maintained at a low concentra-
tion (Gcrit ≈ 0.02g/l), glucose is the limiting substrate
and the biomass assimilates very quickly the glucose
fed to the bioreactor (so that (r1 +r2)XV ≈ FinGin and
d(V G)/dt ≈ 0). Moreover, the oxygen solubility in the
culture medium is low and the dynamics associated
to the oxygen transfer from the gaseous to the liquid
phase is fast compared to the time constant of the
biological process, so that the dynamics of the total
amount of oxygen VO in the culture medium can be
neglected (d(VO)/dt ≈ 0).

In the respiro-fermentative regime, the nonlinear model
is given by (5) where the rate of ethanol oxidation
r3 = 0. Based on (5b) and (5d), the previous assump-
tions yield :
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d(V G)

dt
≈ 0 ⇒ r2XV = FinGin − r1XV (6)

d(VO)

dt
≈ 0 ⇒ r1X =

OT R
k5

(7)

Substitution into (5c) gives (using also (5e)) :

dE
dt

=
Fin

V
(k4Gin −E)−

k4

k5
OT R (8)

The nominal trajectory is characterised by a constant
ethanol concentration E∗ and, in turn, by a dilution
profile D∗ = F∗

in/V ∗ satisfying the following relation :

D∗ =
1

k4Gin −E∗

k4

k5
OT R (9)

Linearizing (8) around the nominal trajectory and
neglecting the variations of E and V gives :

dE
dt

= Fin
k4Gin −E∗

V ∗
−

k4

k5
OT R (10)

For the respiratory operating regime, similar develop-
ments give :

dE
dt

= Fin

k5
k6

Gin −E∗

V ∗
−

OT R
k6

(11)

Finally, for both operating regimes, the ethanol dy-
namics can be expressed by the same discrete transfer
function :

E(k) =
q−1

1−q−1

[
b Fin(k)−α OTR(k)

]
(12)

where q−1 is the backward shift operator and the
parameters b and α listed in Table 1 depend on the
operating regime (Ts is the sampling time).

The block diagram of Fig. 1 shows the schematic rep-
resentation of the simplified fed-batch fermentation
model. The measured perturbation α OT R represents
the glucose demand for cells growth. If the feeding
flux b Fin is higher or lower than the measured pertur-
bation, there is production or consumption of ethanol,
respectively.

Around the optimal trajectory, the system is mod-
eled by the same transfer function for both operating
regimes. The only difference lies in the b and α values
which change with the operating regime. For con-
troller design, the b variation according to the operat-
ing regime and the neglected dynamics of glucose and
oxygen can be considered as modeling uncertainties,
with respect to which the controller has to be robust.
Moreover, the gain b evolving widely with the volume,
a robust and adaptive control strategy is needed.

3. CONTROL STRATEGY

3.1 Controller design

Based on the linear model (12), where the notation
Â(q−1) = 1− q−1 and B̂(q−1) = b q−1 is used, a lin-
ear controller can be designed. The control scheme

Table 1. Parameters expressions of linear discrete model (12).

Respiro-fermentative regime respiratory regime

b Ts
k4Gin −E∗

V ∗
Ts

k5
k6

Gin −E∗

V ∗

α Ts
k4

k5
Ts

1
k6

-

+

d
EFin

OTR

q-1

1 - q-1

�

b

Bioreactor

Fig. 1. Schematic representation of the simplified (lin-
ear) fed-batch fermentation model.
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Fig. 2. Closed-loop diagram. A feedback RST con-
troller is used in combination with an adaptive
feedforward controller in order to cancel the mea-
sured disturbance d effect on the ethanol concen-
tration E.

developed in this work consists of a feedback RST
controller and a feedforward controller canceling the
measured disturbance effect on the output. The cor-
responding block diagram is shown in Fig. 2. The
feedback RST controller compensates deviations from
the nominal trajectory defined by (12) when E is equal
to a constant setpoint Ere f :

F∗
in(k) =

α̂(k)

b̂(k)
OT R(k) (13)

where α̂(k) and b̂(k) are the adapted values of the
corresponding parameters.

The control law is written as follows :

R (q−1)δFin(k) = −S(q−1)E(k)+T (q−1)Ere f (k)

Fin(k) = δFin(k)+
α̂(k)

b̂(k)
OT R(k)

where δFin is the controller output which represents
the variation of the feed rate around the nominal
trajectory F∗

in, Ere f is the desired ethanol setpoint
and R , S and T are polynomials in backward-shift
operator q−1.

For the sake of simplicity, the RST controller poly-
nomials are computed by a pole-placement procedure
(Astrom and Wittenmark, 1997). Let the reference
model be given by :

Hm(q−1) =
B(q−1)P(1)

B(1)P(q−1)
(14)
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where P(q−1) allows the poles of the tracking closed-
loop transfer function to be chosen.

Let assume that the controller must ensure zero-
steady-state error with respect to a step disturbance
acting on the process input. This deterministic distur-
bance d(k) can be modeled by the following dynami-
cal system :

Ad(q
−1)d(k) = C(q−1)δ(k) (15)

where δ(k) is the unit pulse, Ad(q−1) = ∆(q−1) = 1−
q−1 and C(q−1) = T (q−1) is an observer polynomial,
which can be used to robustify the control law as it
is common practice for predictive controllers (see e.g.
Soeterboek, 1992; Clarke, 1996).

With the previous reference and disturbance models,
the following R , S and T polynomials can be se-
lected :

R = ∆ P , S = S ′ P , T = T
P(1)

B̂(1)
(16)

where S ′ is the solution of T = ∆Â+ B̂S ′.

Note that, in this way, an integrator is introduced in
the controller. In practice, the integral action must be
implemented with an anti-reset windup mechanism in
case of saturation of the control action. In fact, at the
beginning of a culture, the flow rate is very small and
any deviation from the nominal trajectory can lead to
negative flow rates which are not allowed. An anti-
reset windup mechanism avoid amplifying oscillations
when saturation occurs.

If the process model is correctly estimated, the closed
loop transfer function can be written as follows :

E =
BT

AR +BS
Ere f +

R q−1

AR +BS
d

=
BP(1)

B̂(1)P
Ere f +

∆q−1

T
d

(17)

Note that P does not appear in the transfer function
related to the disturbance. Thus, the tracking and re-
jection behaviors can be adjusted independently in
selecting the roots of the polynomials P and T , respec-
tively. Note also that ∆ appears in the numerator of
the rejection transfer function. Therefore, the internal
model principle (Francis and Wonham, 1976) ensures
that a step of a process input disturbance will be re-
jected asymptotically by the controller (16).

The proposed controller can be tuned by selecting
appropriate P and T polynomials. The overall time
constant of the bioprocess is quite big and it is rea-
sonable to choose a sampling time Ts of 0.1 h. The P
polynomial is designed to achieve a first-order track-
ing behavior with a time constant of 1 h, i.e. P is given
by P(q−1) = 1− 0.9q−1. The observer polynomial T
is designed in order to achieve a trade-off between the
rejection performance and robustness. If the adapted
gain b̂(k) corresponds to the actual process gain, the
controller (16) yields a corrected open-loop transfer
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Fig. 3. Black diagram of the controlled system before
robustification (T (q−1) = 1) and after robustifi-
cation (T (q−1) = (1−βq−1)2). σc and σd are the
complementary and direct sensitivity functions.

function BS
AR , which depends only on the T polyno-

mial, and whose stability robustness can be directly
adjusted by choosing the T roots. The design rules
of predictive controllers (see e.g. Soeterboek, 1992;
Clarke, 1996) can be used and lead to T (q−1) = (1−
βq−1)2. The robustness margin is monotonically in-
creasing when the value of the parameter β increases.
Obviously, the rejection performance decreases in the
same way and, for this application, β = 0.7 leads to a
good trade-off.

Fig. 3 shows the Black diagrams of control schemes
without robustification (T (q−1) = 1) and with robus-
tification (T (q−1) = (1 − βq−1)2). It is well known
that ensuring a modulus lower than 6 dB for the di-
rect sensitivity function σd and lower than 3 dB for
the complementary sensitivity function σc provides a
good stability robustness. It is apparent that, before
robustification, the controller shows bad robustness at
high frequencies, whereas a good robustness margin
is required in this frequency range because the oxygen
and glucose dynamics have been neglected. Robustifi-
cation provides the desired margins.

In addition, robustification allows the influence of the
noise corrupting the ethanol concentration measure-
ment on the control signal to be strongly attenuated
(noise on the control signal affects the pump wear).

3.2 Adaptation scheme

An indirect adaptation scheme is used. Considering
(17), it can be shown that cancellation of the T polyno-
mial in the tracking transfer function is effective only
if the process gain is correctly estimated. Therefore,
adaptation of the parameter b is required for constant
tracking performance during a culture. The parameter
b can be directly adapted using the measurements of
E and V . The measurement of the volume can ob-
tained from a measurement of the bioreactor weight.
If a weight measurement is not available, the volume

IFAC - 192 - ADCHEM 2006



can be estimated on-line from all liquid additions and
withdrawals such as evaporation, sampling, base ad-
dition for pH control, etc. Therefore, the adapted b
parameter is given by :

b̂(k) = Ts
k4Gin −E(k)

V (k)
(18)

Because, in practice, the α parameter is not known
exactly, it must also be estimated on-line to ensure
perfect cancellation of the measured disturbance. To
this end, the discrete model (12) can be written as a
linear regression :

ε1(k) = ε2(k)α (19)

where ε1(k) = b̂(k − 1)Fin(k − 1)−A(q−1)E(k) and
ε2(k) = OT R(k−1).

Linear regression (19) can be solved on-line by an
appropriate algorithm (see e.g. Ljung, 1999) taking
into account that ε1 and ε2 are corrupted with noise be-
cause these signals are computed from measurements.
In practice, ε1 and ε2 are filtered by P(1)/P(q−1) to
remove the mutual correlation and a recursive least-
squares (RLS) algorithm proves to give a satisfactorily
unbiaised estimation of α.

Remark In (Pomerleau, 1990), the suggested non-
linear controller appears as a special case of the de-
sign procedure developed in this study. In fact, if
Ad(q−1) = 1, C(q−1) = 1, and T (q−1) = 1, i.e. there
is no disturbance model nor observer polynomial,
then the pole-placement procedure (Astrom and Wit-
tenmark, 1997) based on the same reference model
Hm(q−1), gives :

R = 1 ; S = T =
P(1)

B̂(1)
(20)

Equations (14) can then be written as :

Fin(k) =
γ (Ere f (k)−E(k))+ α̂(k)OT R(k)

b̂(k)
(21)

where γ = P(1).

This controller can be interpreted as a proportional
controller acting around the nominal trajectory given
by (13). In (Pomerleau, 1990), the parameter α is not
estimated thanks to a RLS algorithm but with a nonlin-
ear estimation technique. An observer based estimator
(Bastin and Dochain, 1990) is designed based on the
differential equation (8) and the observer parameters
are tuned so as to make the estimation dynamics inde-
pendent of the process dynamics (Perrier et al., 2000).
Note that the same nonlinear estimation technique
could be used in the present study.

4. SIMULATION RESULTS

The control algorithm described in Section 3 is imple-
mented in simulation on the nonlinear process model

presented in Section 2.1. When the ethanol concen-
tration is regulated to the setpoint Ere f = 1 g/l, the
process operates in respiro-fermentative regime. Thus,
the only non operational parameter required to com-
pute the controller is the stoichiometric coefficient
k4. The value proposed by Sonnleitner and Käppeli
(1986) is chosen, k4 = 0.48 [g of E/g of G]. The opera-
tional parameters are given as follows : Gin = 500 g/l;
V0 = 5 l; X0 = 0.4 g/l; E0 = 0.5 g/l, where the subscript
0 denotes an initial value. The design polynomials for
the controller are given by P(q−1) = 1− 0.9q−1 and
T (q−1) = (1−0.7q−1)2 so that the polynomials R , S
and T can be computed from (16).

A setpoint step is imposed at t = 10 h in order to evalu-
ate the tracking performance. For simulation purposes,
OT R is computed using a well established model
of the oxygen transfer, i.e., OT R = Kla · (Osat −O),
where Osat is the saturation oxygen concentration and
Kla is the volumetric mass transfer coefficient. A low
value of Kla is chosen in order to simulate a substrate
limitation by oxygen. In industrial yeast culture, this
kind of limitation is very frequent because the oxygen
transfer coefficient of industrial bioreactors is gener-
ally low. Thus, the controller must keep on performing
well in this situation.

Simulation results are shown on Fig. 4 and 5, demon-
strating that the control algorithm is able to regulate
E at the setpoint. When the setpoint step occurs, the
tracking behavior is in accordance with the reference
model Hm (first order system with 1 h time constant).
Fig. 5 shows that the maximum oxygen transfer rate
is achieved at about 16 h. From that time on, the
oxidation capacity decreases gradually as the biomass
grows. In spite of this metabolism change, almost no
deviation of the E signal from the setpoint is observed,
i.e. the controller decreases the feed rate in order to
prevent excessive formation of ethanol. As the OT R
signal is a good image of the glucose demand for
cell growth, the fluctuations of this demand can be
instantaneously compensated to follow the nominal
trajectory.

5. CONCLUSIONS

Linearization of Sonnleitner’s model around a nomi-
nal trajectory allows a simple linear model of the fed-
batch fermentation process of Saccharomyces cere-
visae to be derived. This model describes the main
macroscopic phenomena taking place in the bioreac-
tor, i.e. it includes a transfer function between the
substrate feed and the ethanol concentration, and a
measured disturbance. This disturbance, which can be
measured on-line via the OT R signal, is the image of
the substrate demand for cell growth. As explained by
the linear model, the production or consumption of
ethanol results from the excess or deficit of feed rate
applied to the system, as compared to the substrate
demand for growth. The advantage of using a linear
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Fig. 4. Simulation results of a yeast fed-batch fermen-
tation controlled with the algorithm proposed in
Section 3. Ethanol concentration E and inlet flow
rate Fin.
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Fig. 5. Simulation results of a yeast fed-batch fermen-
tation controlled with the algorithm proposed in
Section 3. Reaction rates, dissolved oxygen con-
centration O and oxygen transfer rate OT R.

model (in contrast with the usual non linear models
used for bioprocess simulation) is the possibility to
easily develop a robustness analysis based on linear
control theory.

In order to cancel the measured disturbance effect on
the ethanol concentration, a feedforward controller is
used in combination with a feedback RST controller.
When developing the simplified process model, sev-
eral high frequencies dynamics are neglected and the
numerical values of some stoichiometric coefficients
can be uncertain. Therefore, particular attention is
paid to the design of a robust controller, allowing a
separate (independent) tuning of the tracking perfor-
mance and of the stability margins. As the process
parameters can evolve during a culture, an indirect
adaptive scheme is used to update on-line the con-
troller parameters. The proposed control scheme can
be viewed as a generalisation of the controller pro-
posed in (Pomerleau, 1990).

The control algorithm requires only two on-line mea-
surements : E and OT R. OT R measurements are com-
monly available and reliable E sensors are now be-

coming available at reasonable costs. Moreover, the V
signal is also needed, which can be estimated by inte-
gration of all the liquid fluxes or via simple bioreactor
weight measurements. With these on-line signals at
hand, the implementation of control algorithm is quite
simple. Tests in simulation are presented in the present
paper, and these preliminary results demonstrate the
ability of the controller to maintain the desired ethanol
setpoint even when oxygen limitation occurs (as it is
frequent in many industrial applications).
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Sonnleitner, B. and O. Käppeli (1986). Growth of
Saccharomyces cerevisiae is controlled by its
limited respiratory capacity : Formulation and
verification of a hypothesis. Biotechnol. Bioeng.
28, 927–937.

Valentinotti, S., C. Cannizzaro, B. Srinivasan and
D. Bonvin (2004). An optimal operating strategy
for fed-batch fermentations by feeding the over-
flow metabolite. ADCHEM 2004. Hong Kong.

IFAC - 194 - ADCHEM 2006


