
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

FAULT DETECTION AND DIAGNOSIS IN
INDUSTRIAL FED-BATCH CELL CULTURE

Jon C. Gunther ∗ Dale E. Seborg ∗

Jeremy S. Conner ∗∗

∗ Department of Chemical Engineering, University of
California, Santa Barbara

∗∗ Amgen, Inc., Thousand Oaks, California

Abstract: Multivariate statistical process monitoring techniques are applied to
pilot-plant, cell culture data for the purpose of fault detection and diagnosis.
Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal,
were available. A PCA model was constructed from 19 NOC batches, while the
remaining NOC batch was used for model validation. Subsequently, the model was
used to successfully detect (both offline and online) abnormal process conditions
and to diagnose the root causes. Copyright c© 2006 IFAC
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1. INTRODUCTION

Protein production cell culture has progressed
significantly in recent years and is now a ma-
jor source of industrially produced therapeutic
agents. Because this process is sensitive to en-
vironmental conditions, successful cell culture re-
quires precise maintenance of critical process vari-
ables (e.g., temperature, pH, and dissolved oxy-
gen). In addition, the pharmaceutical industry is
under increasing governmental pressure, such as
the Process Analytical Technology (PAT) initia-
tive (U.S. Food and Drug Administration, 2004),
to reduce process variability.

Data-driven monitoring approaches, such as Prin-
cipal Component Analysis (PCA), have proven
to be an effective method for detecting abnormal
process conditions and reducing process variabil-
ity (Kourti, 2005). A particularly valuable fea-
ture of PCA is its compatibility with many of
the methods available in multivariate statistical
process control (MSPC). This statistical method-
ology provides a means to detect the appearance,

magnitude, and duration of a process fault that
causes a process to depart from proper operation
(Cinar et al., 2003). Also, the source of the fault
can be diagnosed, assuming that the fault is ob-
servable from process data.

The objective of this research is to apply PCA and
MSPC to industrial fed-batch cell culture data
(courtesy of Amgen, Inc.) in an attempt to detect
and diagnose abnormal process conditions using
both offline and online analysis. These abnormal
conditions were indicated during discussion with
Amgen engineers.

2. BACKGROUND

Consider a batch process, where J process vari-
ables are measured at K instances of time. In
batch MSPC applications, it is assumed that I
batches conducted at normal operating conditions
(NOC) are available for the development of a PCA
model. These data are typically represented in a
three-dimensional data array X (I × J × K).

IFAC - 203 - ADCHEM 2006



For standard PCA analysis, three-dimensional ar-
ray data are unfolded into a two-dimensional ma-
trix. Several groups have evaluated different un-
folding strategies (Nomikos and MacGregor, 1995;
Wold et al., 1998). The two primary unfolding
techniques preserve either the I direction (i.e.,
batches) or the J direction (i.e., variables) of the
data. For variable-wise unfolding (i.e., unfolding
the data into X (IK × J)), the nonlinear, time-
varying trajectories of these data are preserved
(Westerhuis et al., 1999). Because batch-wise un-
folding avoids this complication, it was chosen for
this research. Hence, X was unfolded into a matrix
X (I × JK), such that each I × J slice is located
side by side, starting with the first sampling in-
stant. Subsequently, these data were autoscaled
(i.e., the columns of X were mean-centered and
scaled to unit variance) in an attempt to remove
the dominance of large magnitude measurements
and the nonlinear trajectories of the data from the
PCA model.

For PCA X is expressed as the summation of
the product of a score matrix T (I × A) and a
transposed loadings matrix P

′
(A × JK) plus a

residual matrix E (I × JK), where A denotes the
number of principal components, which is typi-
cally selected through a process of cross-validation
(Wold, 1978):

X = TP
′
+ E (1)

A major advantage of PCA modeling is its ability
to compare new batch data, xnew (1×JK), to the
NOC data in a systematic fashion. PCA achieves
this comparison by projecting this new data set on
the PCA model generated from NOC data in order
to determine the new batch scores, tnew (1 × A):

tnew = xnewP(P
′
P)−1 (2)

2.1 Offline Monitoring

For offline PCA analysis, Eq. 2 can be used to
calculate tnew. Note that P

′
P is by definition the

identity matrix due to the orthonormality of P
(Nomikos and MacGregor, 1995). After determin-
ing tnew, Eq. 3 can be used to calculate the new
batch residual, enew (1 × JK).

enew = xnew − tnewP
′

(3)

Two statistical metrics are widely used to monitor
disparities between the new batch and the NOC
batches. Hotelling’s T 2 statistic captures differ-
ences in the systematic part of the PCA model
(i.e., TP

′
). It is defined as follows:

T 2
new = tnew(S)−1t

′
new (4)

S =
T

′
T

I − 1
(5)

where S is the covariance matrix of the model
score matrix, T, (cf. Eq. 1) and I is the num-
ber of NOC batches. If the X data are from a
multivariate normal distribution, T 2 follows an
F distribution and α confidence limits can be
calculated accordingly (Westerhuis et al., 2000):

T 2
α =

A(I2 − 1)
I(I − A)

FA,I−A,α (6)

A second metric, the Sum of Squared Residuals Q,
captures the information in the residuals,

Qnew = enewe
′
new (7)

where Qnew is assumed to be χ2 distributed.
A method for approximating α confidence limits
based upon this assumption (Jackson and Mud-
holkar, 1979) is used in this paper:

Qα = θ1[1 − θ2h0(1 − h0)
θ2
1

+

zα(2θ2h
2
0)

1/2

θ1
]1/h0 (8)

V =
EE

′

I − 1
θi = trace(Vi) for i = 1, 2, and 3

h0 = 1 − 2θ1θ3

3θ2
2

2.2 Online Monitoring

From an operational perspective, it is preferable
to monitor the batch online, as it progresses, so
that corrective or terminative action can be taken
in a timely manner. However, to evaluate process
data from a new batch using Eqs. 2-8, the new
batch is required to have the same number of
columns as the NOC data (i.e., JK columns).
This is not possible when the batch is incomplete
and thus future measurements are missing from
the new batch (i.e., xnew only has Jk columns
where k ≤ K). For the unfinished new batch,
the missing future data must be estimated in
order to proceed. Several solutions to this problem
have been proposed and evaluated (Nomikos and
MacGregor, 1995). The PCA Projection method
is used in this paper. It only uses the portion of
the loading matrix corresponding to the elapsed
time period until the current sampling instant k
to calculate the new score vector, tnew(k) (1×Jk):

tnew(k) = xnew,1:JkP1:Jk(P
′
1:JkP1:Jk)−1 (9)

For online monitoring, the term P
′
1:JkP1:Jk in

Eq. 9 is not necessarily identity until k = K. At
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sample k, enew(k) and T 2
new(k) can be evaluated

in a manner similar to Eqs. 3 and 4 noting that
T 2

new(k) is calculated from a time-varying scores
covariance matrix, S(k). To monitor the residuals,
the Squared Prediction Error, SPEnew(k), was
utilized:

SPEnew(k) =
J∑

j=1

enew,jk(k)2 (10)

Another significant benefit of PCA is its ability
to determine process variable contributions from
T 2

new(k) and SPEnew(k). These contributions can
then be used for fault diagnosis. For online moni-
toring, the contributions can be calculated in the
following manner (Westerhuis et al., 2000):

CT 2
jk

=
A∑

a=1

S−1
k,aatnew,a(k)xnew,jkPjk,a (11)

CSPEjk
= enew,jk(k)2 (12)

where Sk,aa is the ath diagonal element of the
time-varying covariance matrix and the subscripts
j and k represent a single process variable and a
single sampling instant, respectively. Confidence
limits for CSPEjk

are determined in the same
way as for SPEnew(k). However, confidence limits
for CT 2

jk
are calculated in a jackknife procedure.

In this approach, each NOC batch is omitted in
a sequential manner and contributions for each
batch are calculated. The estimated mean and
standard deviation are then used as 3σ limits
(Westerhuis et al., 2000).

3. PROCESS DESCRIPTION

The fed-batch cell culture experiments were per-
formed at Amgen Process Development. A con-
trolled environment within the reactor was main-
tained with cascaded PID feedback loops for DO
and pH. The key process variables used in this
PCA research are summarized in Table 1.

Data for 23 batches were available. These batches
were all conducted at nearly identical process con-
ditions and possessed approximately equal time
duration. NOC batches 1-19 were used in PCA
model development, while NOC batch 20 was used
for model validation and batches 21-23 were used
for detection of abnormal situations. Amgen per-
sonnel categorized batches 21-23 as abnormal due
to irregular thermal heating (21), DO controller
problems (22), and agitator problems that led to
a future device failure (23).

Table 1. Process variable measurements
used in the PCA model.

Variable Abbreviation

Agitation AG

Agitation AGc
controller output

Inlet air flow AF

Inlet air flow AFc
controller output

Inlet CO2 flow CO2

Inlet CO2 flow CO2c
controller output

Dissolved oxygen DO

Dissolved oxygen DOc
controller output

Inlet O2 flow O2

Inlet O2 flow O2c
controller output

Vessel temperature T

Vessel temperature Tc
controller output

pH pH

pH controller pHc
output

4. RESULTS

A PCA model was constructed using NOC batches
1-19 data for the 14 process variables in Table 1.
Cross-validation was performed in order to select
an appropriate number of principal components,
three.

To evaluate the ability of the PCA model to detect
process abnormalities and reject false positives,
overall batch T 2 and Q values were determined
(see Figs. 1 and 2). It is clear that abnormal
batches 21-23 exceed the 99% confidence limits
for Q, while NOC validation batch 20 does not.
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Fig. 1. Overall batch T 2. Batches 1-19 were cali-
bration, batch 20 was validation, and batches
21-23 were abnormal. The dashed line de-
notes the 99% confidence limits.

IFAC - 205 - ADCHEM 2006



0 2 4 6 8 10 12 14 16 18 20 22 24
10

−1

10
0

10
1

10
2

10
3

10
4

Q

Batch Number

Fig. 2. Overall batch Q. Note that a semilog scale
is used. Batches 1-19 were calibration, batch
20 was validation, and batches 21-23 were
abnormal. The dashed line denotes the 99%
confidence limits.

From an operational perspective, it is desirable to
detect the onset of abnormal operation before the
batch is finished. To fulfill this objective, online
T 2(k) and SPE(k) were calculated. In Figure 3
the results for validation batch 20 are displayed.
The T 2(k) confidence limit is not violated, while
the seven SPE(k) confidence limit violations that
occur are not exceptional for 1966 samples.
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Fig. 3. Online normalized T 2(k) and SPE(k) for
batch 20. The dashed lines denote the 99%
confidence limits.

In Figure 4 it is evident that the SPE(k) con-
fidence limits are violated for batch 21 for the
entire duration of the batch, while a sustained
T 2(k) violation occurs for all samples k < 1100.
To diagnose the cause of this abnormal situation, a
contribution plot (Fig. 5) was generated and iden-
tifies the temperature controller output as being
the major source of abnormal process conditions.
From inspection of the vessel temperature con-
troller output (Tc) time-series data in Figure 6, it

is clear that batch 21 is abnormal in comparison
to the average NOC batch trajectory for batch 21.
Amgen engineers indicated that for batch 21 the
reactor possessed a unique thermal heating jacket
that resulted in elevated Tc values.
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Fig. 4. Online normalized T 2(k) and SPE(k) for

batch 21. The dashed lines denote the 99%
confidence limits.
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Fig. 5. Process variable contributions to online
T 2(k) and SPE(k) at designated samples for
batch 21.

For batch 22 the T 2(k) and SPE(k) confidence
limits in Figure 7 are violated from the onset of
the batch. From the contribution plot in Figure 8,
it is obvious that DO was abnormal in both the
score and residual spaces. Figure 6 reveals that
for the early period of operation (k < 700) the
DO values were indeed large in comparison to the
average NOC batch trajectory.

For batch 23 the abnormal process conditions
are more difficult to detect. An abnormally large
number of confidence limit violations occur for
SPE(k) in Figure 9, but none occur for T 2(k).
However, in Figure 10 the contribution plot clearly
indicates abnormal agitation. In Figure 6 batch
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Fig. 6. Time-series plots for process variables
most affected by abnormal process conditions
for batches 21 (top), 22 (middle), and 23
(bottom). Solid line represents average NOC
batch trajectory, while the dotted line repre-
sents the particular batch.
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Fig. 7. Online normalized T 2(k) and SPE(k) for
batch 22. The dashed lines denote the 99%
confidence limits.

23 appears to possess considerably more agitation
variation than the average batch trajectory. Am-
gen engineers reported that the agitator for this
reactor failed during the next period of operation.

5. CONCLUSIONS

In this paper, MSPC and PCA techniques are
applied to industrial fed-batch cell culture data.
It was shown that a PCA model can success-
fully detect abnormal process conditions result-
ing from differences in the equipment (batch 21),
operational issues (batch 22), and imminent de-
vice failure (batch 23). Analysis of contribution
plots indicated that abnormal Tc levels, elevated
DO values, and large agitation variation were
the major sources of abnormal process conditions
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Fig. 8. Process variable contributions to online
T 2(k) and SPE(k) at designated samples for
batch 22.
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Fig. 9. Online normalized T 2(k) and SPE(k) for
batch 23. The dashed lines denote the 99%
confidence limits.

found in batches 21, 22, and 23 respectively. The
PCA explanation of these process abnormalities is
consistent with the process behavior reported by
Amgen engineers.
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