
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

REAL-TIME DYNAMIC OPTIMIZATION OF
NON-LINEAR BATCH SYSTEMS

Nathaniel Peters ∗ Martin Guay ∗ Darryl DeHaan ∗

∗ Queen’s University, Kingston, Ontario, Canada

Abstract: In this paper a methodology for designing and implementing a real time
optimizing controller for nonlinear batch processes is discussed. The controller
is used to optimize the system input and state trajectories according to a cost
function. An interior point method with penalty function is used to incorporate
constraints into a modified cost functional, and a Lyapunov based extremum
seeking approach is used to compute the trajectory parameters. This technique
was previously proposed for optimizing differentially flat systems in a cascade
implementation. Smooth trajectories were generated with reduced computing time
compared to many optimizations in literature. In this paper the theory is extended
to general non-flat nonlinear systems in a true on-line optimization.
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1. INTRODUCTION

Industrial chemical processes can be divided into
two categories of production: continuous and fed-
batch. Continuous processes are designed to run
at steady-state. Examples include oil refining,
gas processing, and many chemical processes. To
maximize the efficiency and profits from these
processes, it is necessary to keep the plant in
the operating range under disturbances. The op-
timization task required to operate such processes
is usually performed to achieve disturbance rejec-
tion, designing con- trollers to reach and main-
tain set-point effectively, and keeping the down
time to a minimum. Since the operating range
is generally very narrow, the system dynamics
can often be approximated by linear dynamics.
Batch processing, however, provides some very
unique challenges. Batch processes have a finite
operating time, rather than a continuous oper-
ation. The control objective in batch processing
is not to reach steady state, but to reach some
desired objective by the end of the batch. This
usually involves movement through a very wide
operating range, and nonlinearities in the system

can be very strong. Batch optimization focuses
on maximizing the performance objective by find-
ing the corresponding system trajectories. Since
batch production is usually of low volume, high
value production, optimization of its operation
is critical to make the process viable. Examples
include pharmaceuticals, specialty chemicals, bio-
logical processes, and food production.

To determine the optimal profiles for a batch pro-
cess, an off-line optimization is often performed
to design the best possible profiles to be followed
by the batch process. Typically, this is accom-
plished using some sort of nonlinear programming
method. The computations are usually very ex-
tensive and must be performed off-line and then
implemented with a feedback controller for track-
ing. However if there are changes to the plant,
such as the initial conditions, plant dynamics, or
disturbances then the off-line trajectory may no
longer correspond to the optimal. Under these
circumstances it is desirable to make on-line ad-
justments to the desired trajectories to reach the
new optimal performance.
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A significant amount of research has been done in
the area of so called on-line optimization. Numer-
ous methods have been investigated including dy-
namic programming (Hestenes, 1966), (Bellman,
1957), discretization, (Cuthrell and Biegler, 1987),
and parametrization, (Visser et al., 2000); and
these have been incorporated with a variety of
model structures and optimization routines.

Dynamic or nonlinear programming is often used
to attempt on-line optimization. The heavy de-
mand for computing time restricts the frequency
of updates, and consequently these methods usu-
ally result in very discrete on-line changes (look
at (Noda et al., 2000), (Zuo and Wu, 2000),
(Arpornwichanop et al., 2005), (Loeblein et al.,
1999), (Fournier et al., 1999), and (Zhang and
Rohani, 2003)). This has been termed a pseudo
on-line optimization. To try and compensate for
the amount of computing time required, the pro-
files may be parameterized to known trajecto-
ries that have met with success (see (Visser et

al., 2000)). In a series of papers by Palanki and
Rahman (Palanki et al., 1993), (Palanki and Rah-
man, 1994), (Rahman and Palanki, 1996), and
(Rahman and Palanki, 1998) a method is in-
troduced that provides a geometric approach to
handling batch optimization. They show how to
develop feedback laws for end-point optimization
problems under a variety of state space variations.

Gattu (Gattu and Zafiriou, 1999) used a steepest
descent method to define a parameter update law
for the system trajectories and then tracked it via
a controller. This is an example of the application
of gradient methods to batch optimization and
forms the basis for the theory presented here.
The gradient is used to determine the parameters
over the whole batch and introduced measurement
feedback through a low level tracking controller.
Control design may be difficult depending on the
system, so it is desirable to incorporate measure-
ment feedback into the optimization routine.

While the development of this methodology comes
from the extremum seeking literature, the method-
ology is quite close to that of Non-linear Model
Predictive Control (DeHaan and Guay, n.d.),
(Fontes, 2001), (Magni and Scattolini, 2004).
Work has been done on the use of receding hori-
zon NMPC for batch systems (Nagy and Braatz,
2003), (Helbig et al., 1998) and a Lyapunov based
approach was used in (Jadbabaie et al., 2001).

In the next section the theory is outlined for
a true on-line optimization for general nonlinear
dynamical control systems. This theory has been
developed from the earlier cascade optimization
done in (Guay and Peters, n.d.) for flat systems.
This theory outlines the design of a true on-line
controller based on the current conditions, and
extended to a general non-flat nonlinear case.

2. ON-LINE OPTIMIZATION

We consider a general class of nonlinear dynamical
systems of the form:

ẋ = f(x, u) (1)

where x ∈ Rn are the state variables and u ∈ Rp

is the vector of input variables, f(x) : Rn → Rn

is a smooth continuous functions of x. There is a
vector u(t) = [u1...up] of p input variables.

The optimization centers around finding a system
trajectory that minimizes the dynamic optimiza-
tion problem for some cost function. The cost
function is expressed as follows

J(x, u) =

T∫
0

q(x(t), u(t))dt (2)

subject to the dynamics in 1 and the following
constraints on the path and end-point variables

w(x(t), u(t)) ≥ 0 (3)

x(0) = x0 (4)

x(T ) = xf (5)

It is assumed that a continuous control, u(t) exists
that can steer the states from x0 to xf over
the batch interval t ∈ [0, T ]. Although T can
be treated as a time-varying parameter, in the
following discussion T is considered to be fixed.

The input trajectories are parameterized

u(t) =
[
u1 . . . up(t)

]
(6)

where

ui(t) =

N∑
i=1

θijΞij(t) (7)

where Ξ are the basis functions and θi for i =
1, . . . , N and j = 1, . . . , p are the parameters to
be determined. The state space equations can be
rewritten in terms of θ and the initial conditions.
If the input is defined as a polynomial then

ui = θT φ(t) (8)

where the parameters and basis functions are
expressed as follows

θ =
[
θ1 . . . θN

]
(9)

φ(t) =
[
1 t . . . tN−1

]
. (10)

The states can be expressed as a function of the
input trajectories and the current conditions

xp = α(θT φ(τ), xm(t)) (11)
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where the superscript m denotes a measured
quantity, and the superscript p denotes a pre-
dicted quantity. An analytical solution for the
states may not exist, so the system of differential
equations must be solved to determine xp.

Having defined the structure of admissible input
trajectories, the following assumptions are neces-
sary to construct the optimization problem. The
constraint set

Ωc = {x ∈ Rn, u ∈ Rp|w(x, u) ≥ 0} (12)

describes a convex subset of Rn. It is assumed
that the input trajectories evolve on a compact
subset Ω of Rn. The cost functional J : Ω →
R is assumed to be convex and continuously
differentiable on Ωc. The cost function q(x, u) is
assumed to be sufficiently smooth.

The dynamic optimization problem is now ex-
pressed in terms of the parameters as followa

min
θ

J =

T∫
0

q(α(θT φ(t), xm
0 ), θT φ(t))dt (13)

w(α(θT φ(t), xm
0 ), θT φ(t)) ≥ 0 (14)

α(θT φ(0), xm
0 ) = xm

0 (15)

α(θT φ(T ), xm
0 ) = x

p
f . (16)

As in (Guay and Peters, n.d.) an interior point
method with penalty function is used to include
the constraint costs. An interior point method
incorporating a log barrier function enforces the
state and input constraints. The boundary condi-
tions are incorporated through a terminal penalty
function. In the remaining equations obvious no-
tation has been omitted.

Let the path cost with the log barrier function be
expressed as follows

L = q −

ρ∑
i=1

µilog(wi + ε) (17)

The new cost functional with interior point inclu-
sion and a penalty function is defined as follows

Jip =

T∫
0

Ldτ + M(α(θT φ(T ), xm(0)) − xf )2 (18)

where µi > 0 , εi > 0 and M > 0 are the tuning
parameters of the cost functional, with µ and ε

being taken as small as possible, and M taken as
large as possible. It is assumed that the constraint
set described by 14 is convex over a set Ω and is
also convex over a set Υ in the parameter space.
While the focus of this paper is convex problems,
if the constraint set is not convex, an infeasible

interior-point method can be used. Further details
can be found in (Benson et al., 2000b), (Benson et

al., 2000a) and (Benson et al., 2002).

To make the optimization based on the current
conditions, the cost needs to be split up into the
elapsed and remaining costs.

Jip =

t∫
0

Lmdτ +

T∫
t

Lpdτ + M(xp(T ) − xf )2 (19)

where the first integral represents the actual cost
being calculated from the measured states, and
the second integral is the predicted cost remaining
using the current parameters. The measured cost
can be thought of as another state of the system,
z, such that

z =

t∫
0

Lmdτ (20)

and

ż = Lm (21)

This leaves a modified cost

Jip = z +

T∫
t

Lpdt + M(xp(T ) − xf ))2 (22)

A Lyapunov-based approach is used to solve the
optimization problem (Guay and Peters, n.d.).
Assuming that the cost functional is convex with
respect to θ over Υ, then the first order conditions
can be applied such that at the optimal parameter
set θ∗

∇Jip(θ∗) = 0 (23)

The Lyapunov function is defined as the cost
functional

V = Jip (24)

and the time derivative is given by

V̇ =
∂Jip

∂t
+

∂Jip

∂x
ẋ +

∂Jip

∂θ
θ̇ +

∂Jip

∂z
ż (25)

where

∂Jip

∂t
=

T∫
t

∂L

∂xp

∂xp

∂t
dτ + M(xp(T ) − xf )

∂xp

∂t

− L(xp, up)|t (26)

and
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∂Jip

∂x
ẋ =

T∫
t

∂L

∂xp

∂xp

∂x
ẋdτ

+ M(xp(T ) − xf )
∂xp

∂x
ẋ (27)

∂Jip

∂z
ż = ż = L(xm, um)|t (28)

where
∂Jip

∂θ
== ∇θJip.

The expression (25) can be simplified. Given the
current time and conditions the predicted dynam-
ics are subject to the following differential equa-
tion

∂xp

∂τ
= f(xp, up) (29)

with the initial conditions xp(t) = x. Perturbing
either of the initial conditions will perturb the so-
lution vectors tangent to the original unperturbed
solution. This can be represented by the following
simplifying expression.

∂xp

∂t
+

∂xp

∂x
ẋ = 0 (30)

Using this simplification, V̇ becomes

V̇ = ∇θJipθ̇ + Lm|t − Lp|t (31)

By definition xp(t) = xm(t) and ensuring that
up(t) = um(t) then

V̇ = ∇θJipθ̇ (32)

Using a straightforward steepest descent approach
for the parameter update law

θ̇ = −k∇θJip. (33)

Then the final form of the Lyapunov function is

V̇ = −k∇θJ
T
ip∇θJip. (34)

The Lyapunov function is strictly decreasing ex-
cept when the gradient is zero (which occurs at
the minima, and at the end of the batch).

To avoid divergence of the update law, a projec-
tion algorithm was introduced to ensure the pa-
rameters remain in a convex set. The properties of
the projection algorithm are discussed in (Krstic
et al., 1995) and is given below

θ̇ = Proj(θ, Υ) =

⎧⎪⎪⎨
⎪⎪⎩

Υ, if‖θ‖ < ωn

or(‖θ‖ = ωnand
∇P (θ) ≤ 0)

Ψ, otherwise

(35)

where Ψ = Υ − Υ ς∇P (θ)∇P (θ)T

‖∇P (θ)‖2
ς

,Υ = −k∇θJip,

P (θ) = θT θ−ωm ≤ 0, θ is the vector of parameter
estimates and ωm is chosen such that ‖ θ ‖≤ ωm.

In the next section an example is explored via
simulation. In this example it is assumed that
the model is perfect and that there is full state
feedback.

3. BIOREACTOR SIMULATION

3.1 Problem Definition

The optimization problem deals with a batch
bioreactor discussed in (Mahadevan et al., 2001).
The state space equations modelling the reaction
are given as follows

ẋ1 =
µmx1x2

Km + x2
−

ux1

x3

ẋ2 =
u(Sf − x2)

x3
−

µmx1x2

Yxs(Km + x2)

ẋ3 = u

where x1 and x2 are the concentrations of the
biomass and substrate respectively; x3 is the vol-
ume, and u is the feed rate. The optimization
scheme is to maximize the amount of biomass
formed at the end of the batch. The optimization
problem is described as follows

min
θ

J =

T∫
0

−

(
µmx1x2

Km + x2
−

ux1

x3

)
dt

u1 ≥ 0

x3 ≤ 10

10 − u1 ≥ 0

The system parameters are summarized in Table
1.

Table 1. Parameters and Initial Condi-
tions

Parameters Values

Sf 15g/L
Km 1.2g/L
Yxs 0.4g/g
µm 0.5/h
T 7.8h

Initial Conditions Values

x10 1g/L
x20 0g/L
x30 2L

Algorithm Parameters Values

µ1 1E−20
ε 1E−8
k 10

3.2 Parametrization

In (Mahadevan et al., 2001), the input profile was
parameterized by subdividing the batch into a
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number of intervals and representing each interval
by a fifth order polynomial. The optimization was
modified to include the constraint that the volume
must reach its maximum value by the end of the
batch. The initial guess of the parameters was
taken from the solution of a highly constrained
problem. The optimization was solved using non-
linear programming.

In this paper, a simple fifth order polynomial
profile was arbitrarily selected for the input, with
the initial parameters set to zero. The goal here is
to show that the optimization can be performed
with reasonable computing time, and no off-line
analysis of the feasible profile or initial guesses.
The input was defined as follows

u(t) =
6∑

i=1

θi

(
t

7.8

)i−1

3.3 Modified Cost

Having selected the parametrization, the next step
is to construct the modified cost. The volume
constraint is incorporated as a terminal cost, while
the input constraints are implemented with log
barrier functions. The modified cost function is
described below

min
θ J =

T∫
0

−

(
µmx1x2

Km + x2
−

ux1

x3

)
− µ(log(u1 + ε)

+ log(10 − u1 + ε))dτ + (x3(T ) − 10)2

The gradient was computed as discussed in the
theory, the details are not included here. The
next section will discuss the tuning and algorithm
issues. The algorithm parameters for this simula-
tion are in Table 1.

3.4 Algorithm and Computing Issues

Computing time is always an issue when an ODE
solver is needed to determine the prediction and
sensitivities. The Fortran package ODESSA was
used to calculate the model prediction and the
first order sensitivities. MATLAB was used to
perform the simulation of the closed-loop system.

The run time for this 7.8 hour simulation was ap-
proximately 10 seconds, using a 1.6 GHz Centrino
Processor, using cost gradient as the update law.

3.5 Results

The dynamic optimization technique was applied
to the nominal case presented above. The result-

ing simulation of the state and input variables pro-
files can be found in Figure 1. As in (Mahadevan et

al., 2001), the optimal final biomass concentration
obtained was 4.8 g/L. The technique performs as
expected without the need for complex parameter-
izations and the requirement for partial flatness.

To verify the effect of initial conditions and pa-
rameters, various initial batch conditions were
tested. Under various parameter guesses, the over-
all performance was unchanged. New initial con-
ditions resulted in new optimal profiles. Table 2
shows the initial and final cost for several different
initial conditions. The method used here provided

Table 2. Cost Summary

x10 x20g/L x30L Final Cost
(g/L) (g/L) (L)

1 0 2 4.8
2 0.5 4 4.5

0.5 0.7 0.5 0.8
4 0.2 7 4.7

results comparable to those used in (Mahadevan
et al., 2001). However no initial understanding of
the optimal structure was needed. A simpler struc-
ture was used with all the initial parameters set to
zero. Less analysis was needed before running the
batch, and the overall algorithm was simpler. This
technique can be applied to a variety of problems,
with minimal pre-batch analysis.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new on-line opti-
mizing controller for nonlinear dynamical systems.
Smooth trajectories were generated on-line with
feasible computing time to construct optimal tra-
jectories without the need for off-line analysis.
In future work, we plan to study the impact of
imperfect state measurements and parametric un-
certainties.
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Fig. 1. Bioreactor Optimization Profiles
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