
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

THE FACILITY LOCATION PROBLEM:
MODEL, ALGORITHM, AND APPLICATION

TO COMPRESSOR ALLOCATION

Eduardo Camponogara ∗,1,
Melissa Pereira de Castro ∗,2,

Agustinho Plucenio ∗,2

∗ Department of Automation and Systems, Federal

University of Santa Catarina, Cx.P. 476, 88040-900

Florianópolis, SC, Brazil

Abstract: Unlike other problems found in the oil industry, the allocation of
compressors to gas-lifted oil wells lacks formal models and algorithms capable of de-
livering globally optimal assignments. To this end, this paper casts the compressor
allocation problem as a facility location problem. Owing to the special structure
of the target problem, an efficient (polynomial time) algorithm is conceived by
applying the framework of dynamic programming. An example illustrates the
inner-workings of the algorithm. Connections between the polyhedron of feasible
solutions and integer-programming theory are established.

1. MOTIVATION

The prospection for oil reserves, the recovery of
oil, and the distillation into final products are
complex processes that rely heavily on technology.
Since the inception of the oil industry, production
and decision processes have been automated, in
part to cut costs and improve efficiency in re-
sponse to the mounting pressure from competitive
markets, but also due to the continuous trans-
formation of scientific advances into technology
(Jahn et al., 2003). For instance, a plan to recover
oil from a reservoir takes into account geological
studies of the formation, data from seismic anal-
ysis, and predictions from simulators. A plan will
pinpoint the locations for drilling, along with the
technology and apparatus to artificially lift hy-
drocarbons from the reservoir to surface facilities,
where they are separated into oil, water, and gas.
Among the artificial lifting techniques (Nishikiori
et al., 1995; Buitrago et al., 1996), continuous gas-

1 Partially supported by CNPq
2 Supported by the Brazilian Agency of Petroleum (ANP)

lift is a favored technique for its relatively low
installation and maintenance costs, wide range of
operating conditions, and robustness. Continuous
gas-lift works by injecting high pressure gas at
the bottom of the production tubing to reduce
the weight of the oil column, thereby forcing the
flow of fluid to surface facilities. In view of the
complexity of planning and operating the pro-
duction processes of an oil field as a whole, the
overall task is invariably broken down to smaller,
tractable sub-problems that can be solved more
efficiently with the aid of models and algorithms.
In particular, two relevant sub-problems are lift-
gas allocation and compressor scheduling.

Lift-gas allocation concerns the distribution of a
limited gas rate to the oil wells, while respecting
lower and upper bounds for gas injection at each
well, maximum compressing capacity, and surface
facility constraints with the aim of minimizing
production costs. A number of models and algo-
rithms appeared in the literature (Kanu et al.,
1981; Buitrago et al., 1996; Alarcón et al., 2002),
but more recently globally optimal algorithms

IFAC - 247 - ADCHEM 2006



have been developed to handle discrete decisions
and the non-linear nature of well performance
curves (Camponogara and Nakashima, 2006b,a).

On the other hand, compressor scheduling con-
cerns the allocation of compressors to meet the
pressure levels set down by the (oil field) recovery
plan for each oil well. Setting up compressor facil-
ities to precisely meet the pressure needs of each
well is not only inconvenient, but the installation
costs are also excessive. In a typical situation, the
decision-maker has to trade-off the installation
costs and energy-loss costs incurred by reducing
the pressure yielded by the scheduled compressor
to the well’s level. The task of deciding which
compression levels (facilities) will be installed and
how they will supply lift-gas to the wells (clients)
so as to minimize the overall cost gives rise to the
compressor allocation problem (CAP). Unlike lift-
gas allocation, the compressor allocation problem
has received little attention, lacking formal models
and provably optimal algorithms. This works is a
first attempt to bridge the gap between industry
and academia, having the aim of formally stating
the problem, developing a baseline algorithm, and
pointing out directions for further research.

2. PROBLEM FORMULATION

Roughly speaking, in the facility location problem
one has to decide upon the location of facilities
and how these facilities supply clients’ demands,
while minimizing the aggregated cost incurred
by installing facilities and transporting goods to
clients (Wolsey, 1998; Cornuejols et al., 1977).
N = {1, . . . , n} is the set of potential sites for
facilities and M = {1, . . . , m} is the set of clients.
A fixed cost aj is charged to set up facility j,
while cij is the cost to fulfill the whole demand
of client i from facility j. Because clients have
special needs, a client i can be serviced only by
a subset Ni ⊆ N of the facilities. Let Mj =
{i ∈ M : j ∈ Ni} be the subset of potential
clients of facility j. The problem can be cast in
mathematical programming as follows:

P : Minimize J =

n∑

j=1

ajyj +
m∑

i=1

∑

j∈Ni

cijxij (1a)

Subject to :

xij � yj , i ∈ M, j ∈ Ni (1b)
∑

j∈Ni

xij = 1, i ∈ M (1c)

yj ∈ {0, 1}, j ∈ N (1d)

xij ∈ {0, 1}, i ∈ M, j ∈ Ni (1e)

Despite its clear statement and simple model,
the computational solution of the facility loca-
tion problem is intrinsically hard, that is to say,
a polynomial-time algorithm for P would entail

solving the class of NP-Hard problems in polyno-
mial time (Garey and Johnson, 1979). One such
problem is set covering (Nemhauser and Wolsey,
1988): given a set S, a family {Sj}n

j=1 of subsets
of S, and the cost cj for each Sj , the problem
rests on finding a subset U ⊆ {1, . . . , n} that
minimizes

∑
j∈U cj and such that ∪j∈USj = S

(i.e., the selected subsets induce a cover of S),
which gives the name to the problem. It is a
straightforward exercise to reduce set covering to
the facility location problem in polynomial time
and space—just associate each facility j with a
subset Sj , model each client i as an element of
S, equate Mj to Sj and define Ni accordingly,
set aj as cj , and set cij = 0 for all i and j; the
optimal solution to the facility location problem
is precisely a minimum cost cover for S.

Not surprisingly, the target application of com-
pressor allocation can be framed as a facility
location problem, with the facilities representing
the potential pressure levels for compressor pools,
whereas the clients represent the oil wells. In this
scenario, compressing station j yields lift-gas flow
at pressure pc

j . The problem arises from the alloca-
tion of these pressure levels to the oil wells so as to
meet the recovery plan of the oil field, according to
which lift-gas should be injected in well i at pres-
sure pw

i . Henceforth, this problem will be referred
to as compressor allocation problem (CAP). Since
pressure can only be reduced without energy gain,
but invariably incurring energy losses, pressure pc

j

must be greater than or equal to pressure pw
i for

compressor j to be allocated to well i.

Assumption 1. An instance of CAP satisfies the
properties:

(1) pc
1 > pc

2 > . . . > pc
n;

(2) pw
1 � pw

2 � . . . � pw
m;

(3) pc
1 � pw

1 , implying that demands from wells
can be fulfilled;

(4) for all i ∈ M and j, k ∈ Ni, j < k, cij � cik,
expressing that the energy-loss cost to drop
compressor pressure pc

j to pw
i , cij , is not lower

than dropping from pc
k, cik, because pc

j > pc
k.

The assumptions made above are typical of in-
stances of the compressor allocation problem and,
therefore, do not limit the developments hereafter
but rather bring out the intrinsic structure of
the problem. This structure can be exploited to
develop specially-tailored algorithms that are far
more efficient than general-purpose algorithms for
the facility location problem. Actually, we will
design a polynomial-time algorithm for facility
location problems arising from instances of the
compressor allocation problem.

IFAC - 248 - ADCHEM 2006



3. DYNAMIC PROGRAMMING ALGORITHM

3.1 Background

Dynamic programming (DP) is a framework for
breaking up problems in a set of smaller, easier to
solve sub-problems arranged in a sequence (Bert-
sekas, 1995). The decisions are made in stages,
each regarding a decision at the present time and
its future consequences.

In a deterministic situation, the consequences are
fully predictable whereas, in a stochastic situa-
tion, the outcomes are ruled by chance and mod-
eled by random variables. The goal is to reach de-
cisions that minimize the cumulative cost stretch-
ing from the current time until the end of the time
horizon. Because each decision influences future
outcomes, the decision-maker has to balance the
desire of low costs at the current time and the
undesirability of high future costs. Dynamic pro-
gramming balances the trade-off between current
and future costs: at each stage, the decisions are
ranked according to the sum of the present cost
and future costs, assuming optimal decision mak-
ing over the subsequent stages, also known as cost-

to-go (from the next state until termination).

For the stochastic scenario, the costs are expected
values over the distributions of the random vari-
ables. DP has been successfully applied to a wide
range of problems, including optimal control and
discrete optimization problems.

In the domain of control theory, the typical task is
to minimize system’s state distance from a desired
trajectory while factoring in the control-action
costs and balancing the present and future costs.
The system’s state evolves over time according
to discrete-time dynamic equations that might
have random variables, such as the number of
service requests arriving at a shop, random dis-
turbances, or the number of units ordered from
clients. Because an optimal control policy can only
be determined after the observation of the random
variables, the algorithmic solution is structured
backward, working from the terminal stage toward
the current time.

In the domain of optimization, the typical task is
not unlike in control theory, where the system’s
state might represent the quantity of resources
available at the moment, such as the remaining
budget to pay for tolls to reach the destination
or the remaining capacity in a knapsack. The
applications in discrete optimization abound, in-
cluding resource-constrained shortest-path prob-
lems, knapsack-like problems, and string matching
(Cormen et al., 1990; Wolsey, 1998).

3.2 Recursive Formulation

Here, we take advantage of the structure of CAP,
as formalized in Assumption 1, to break P into
a sequence {Pm(sm), Pm−1(sm−1), . . . , P1(s1)} of
sub-problems. Pi(si) is a restricted form of P in
which one has to allocate facilities to a subset of
clients, namely {i, i + 1, . . . , m}, given that the
facilities in {1, . . . , si − 1} are unavailable, facility
sm has been installed, and the installation of the
facilities from {si+1, . . . , n} are to be decided. Let
Ji(si) be the value of an optimal solution to Pi(si).
Parameter si acts as the “state of the system” at
stage i. Note that P1(0) is equivalent to P .

Rather than solving {Pi(si)}, we recursively solve
the sequence {P̂i(si)} given below, taking advan-
tage of the problem structure to reduce the search
for an optimal solution dramatically. The first
problem of the sequence {P̂i(si)} is expressed in
mathematical programming as:

P̂m(sm) :

Ĵm(sm) = Min
∑

j∈N+
m

ajyj +
∑

j∈N−

m

cmjxmj (2a)

S. to :

xmj � yj , j ∈ N+
m (2b)

∑

j∈N−

m

xmj = 1 (2c)

yj ∈ {0, 1}, j ∈ N+
m (2d)

xmj ∈ {0, 1}, j ∈ N−

m (2e)

where:

• N+
m = Nm ∩ {sm + 1, . . . , n};

• N−

m = Nm ∩ {sm, . . . , n}; and
• sm ∈ {0} ∪ N is the index of the lowest

pressure level already installed.

In case {sm, sm + 1, . . . , n} ∩ Nm = ∅, Ĵm(sm)
becomes +∞ as neither facility level sm nor its
succeeding levels can service client m. In case
sm = 0, one can choose the facility that induces
the lowest combined cost of installation and trans-
portation, that is, min{aj + cmj : j ∈ Nm}.
For the remaining stages, the problem at stage
i accounts for the cost to service client i and
the clients in {i + 1, . . . , m} (cost-to-go from the
current stage and state to the terminal state),
given that facilities {1, . . . , si − 1} are decommis-
sioned and facility si is in service (if si > 0). The
problem encompassing the decisions from stage i

till termination is cast as follows:

IFAC - 249 - ADCHEM 2006



P̂i(si) :

Ĵi(si) = Min
∑

j∈N+
i

ajyj +
∑

j∈N−

i

cijxij (3a)

+ Ĵi+1(si+1)

S. to :

xij � yj , j ∈ N+
i (3b)

∑

j∈N−

i

xij = 1 (3c)

si+1 = max{si, j : yj = 1} (3d)

yj ∈ {0, 1}, j ∈ N+
i (3e)

xij ∈ {0, 1}, j ∈ N−

i (3f)

The purpose and interpretation of si ∈ {0} ∪ N

is the same as in P̂m(sm). In equation (3d), if no
facility is installed at stage i then si+1 takes on
value si, or else si+1 becomes the index of the
facility that has been installed. In the event of
P̂i(si) being infeasible, which occurs when {si, si+
1, . . . , n} ∩ Ni = ∅, then Ĵi(si) becomes +∞.

An effective DP algorithm can be designed to solve
P̂1(0) by recursively solving the problem family
{P̂i(si)} in an appropriate sequence, and skipping
the instances that are clearly infeasible.

Dynamic Programming Algorithm

For sm = 0, . . . , n do

Solve P̂m(sm) to compute Ĵm(sm)
Let (xm(sm), ym(sm)) be a solution to

P̂m(sm) if Ĵm(sm) < +∞, that is,
xm(sm) = (m, j) for which xmj = 1 and
ym(sm) = 0 if j = sm or else ym(sm) = j

For i = m − 1, . . . , 1 do
For si = 0, . . . , n do

Solve P̂i(si) to compute Ĵi(si)
Let (xi(si), yi(si)) be the solution to

P̂i(si) which can be obtained as
delineated above

Let Ĵi = {Ĵi(si) : si ∈ {0}∪Ni} be the table with
the values of solutions to all the sub-problems at
stage i, with the exception of the infeasible ones.
The algorithm works by computing Ĵm, Ĵm−1, and
so forth until reaching Ĵ1.

Of course, the decision maker needs the opti-
mal solution, not only the optimal values. The
algorithm outlined above bookkeeps the optimal
decisions in tables Xi = {xi(si) : si ∈ {0} ∪ Ni}
and Yi = {yi(si)}, even though the decisions could
be inferred from the tables Ĵi, for the sake of
simplicity. At termination, the optimal solution
can be produced by the algorithm given below.

Optimal Solution Computation

Let y be a list of facilities to be installed
Let x be a list of client-facility pairs
y ← ∅, x ← ∅, and s1 ← 0
For i = 1, . . . , m do

(i′, j′) ← xi(si)
x ← x ∪ {(i′, j′)}
If j′ = si

then si+1 = si

else si+1 = j′

y ← y ∪ {j′}

The procedure above outputs in y the indexes
of the facilities to be installed and, in x, which
facilities will be servicing which clients. The cor-
rectness of the dynamic programming is estab-
lished below by showing that the recursive formu-
lation {P̂i(si)}, given in (2a)–(2e) and (3a)–(3f),
is equivalent to {Pi(si)}.

Lemma 1. Ĵi(si) = Ji(si) if Assumption 1 holds.

Proof: (By induction in i) For the basis, i = m,
P̂i(si) is obviously equivalent to Pi(si) because
only the facilities from N+

m may be installed,
implying that Ĵm(sm) = Jm(sm).

For the induction step, i < m, suppose facility
si+1 services client i, where si+1 must belong to
N−

i . Because ckj � cksi+1
for each k ∈ {i +

1, . . . , m} and all j ∈ Nk ∩ {si, . . . , si+1 − 1}
(refer to Assumption 1), and aj ≥ 0 for all j, the
facilities in the set Nk∩{si+1, . . . , si+1−1} do not
need to be installed in an optimal solution. Con-
sequently, Ji(si) = ci,si+1

+ Ji+1(si+1) = ci,si+1
+

Ĵi+1(si+1) = Ĵi(si) by induction hypothesis if
si+1 = si and, similarly, Ji(si) = asi+1

+ ci,si+1
+

Ji+1(si+1) = asi+1
+ ci,si+1

+ Ĵi+1(si+1) = Ĵi(si)
by induction hypothesis if si+1 > si, completing
the demonstration. �

Corollary 1. P̂1(0) is equivalent to P and Ĵ1(0) =
J is the value of an optimal solution.

Corollary 2. P can be solved in polynomial time.

Proof: The DP algorithm performs Θ(mn) steps
each taking O(n) steps to solve P̂i(si). Thus, the
algorithm runs in O(mn2) ∈ O(max{m, n}3) time
and its memory usage is Θ(mn). �

3.3 An Illustrative Example

The purpose of the material herein is to crystallize
the concepts and illustrate the DP algorithm in
a simple context. The scenario consists of n = 4
pressure levels (facilities) and m = 4 oil wells that

IFAC - 250 - ADCHEM 2006



Table 1. Compressor and well data

Compressors Oil wells

j pc
j aj Mj i pw

i Ni

1 10 8 {1, 2, 3, 4} 1 9 {1}
2 8 6 {2, 3, 4} 2 8 {1, 2}
3 6 10 {4} 3 7 {1, 2}
4 4 4 {4} 4 3 {1, 2, 3, 4}

Table 2. Energy loss costs

Energy loss cost: cij

i\j 1 2 3 4

1 8

2 6 4
3 10 8

4 6 4 3 1

Table 3. Dynamic programming algo-
rithm: sub-problem objective values

Ĵi(si)
i\si 0 1 2 3 4

1 37 29
2 22 21 16

3 18 15 12
4 5 5 4 3 1

are operated via continuous gas-lift (clients). The
pressure output of the compressors, the pressure
demand of the wells, and the costs to install
banks of compressors appear in Table 1. The
penalties due to the energy loss resulting from
pressure reduction are depicted in Table 2. This
data comprises an instance of CAP.

3.4 Applying the DP Algorithm

The application of the dynamic programming al-
gorithm to the instance given above yields the
set Ĵ = {Ĵi : i ∈ M} depicted in Table 3. The
missing entries of the table have value +∞, the
default value for an infeasible sub-problem. Notice
that Ĵ4(s4) is feasible for all s4 given that client
4 can be serviced by all facilities. However, Ĵ2(s2)
and Ĵ3(s3) take on value +∞ when s2, s3 ∈ {3, 4}
because neither facility 3 nor facility 4 can supply
clients 2 and 3. The DP algorithm fills in the
entries of client 4’s row by solving P̂m(sm). The
remaining lines are computed by solving P̂i(si) for
i = 3, 2, 1. The value of the optimal solution is
therefore Ĵ1(0) = 37. Simultaneously, the solu-
tions to these sub-problems are recorded in Table
4 for posterior retrieval. The optimal solution is
obtained as follows: x1(0) = (1, 1) and y1(0) = 1
state that facility 1 should installed to service
client 1; x2(1) = (2, 1) and y2(1) = 0 indicate
that facility 1 services client 2; x3(1) = (3, 1) and
y3(1) = 0 indicate that facility 1 services client
3; and x4(1) = (4, 4) and y4(1) = 4 indicate that
facility 4 should be installed to supply client 4.

Table 4. Dynamic programming algo-
rithm: optimal solutions

xi(si)/yi(si)
i si = 0 1 2 3 4

1 x11 = 1 x11 = 1
y1 = 1

2 x22 = 1 x21 = 1 x22 = 1

y2 = 1
3 x32 = 1 x31 = 1 x32 = 1

y2 = 1
4 x44 = 1 x44 = 1 x42 = 1 x43 = 1 x44 = 1

y4 = 1 y4 = 1

3.5 Remarks

The particular structure of the compressor al-
location problem allowed us to design an effi-
cient, polynomial-time dynamic programming al-
gorithm. A standing issue is whether or not this
algorithm is optimal—put another way, the issue
is whether Ω(mn2) is a lower bound for the prob-
lem. If the problem data is given in matrix form,
then the input size is of the order Θ(mn), and the
issue is whether or not there exists an algorithm
with running time between Θ(mn) and Θ(mn2).

Another issue regards the design of a simpler,
more efficient algorithm that would run in linear
time regardless of the input size. The greedy algo-
rithm, however, may fail to produce the optimal
solution, as illustrated in the following scenario.
Take the heuristic that scans the clients from 1
to m, deciding at each stage i whether to install
a new facility or else service i with one of the
existing facilities. The greedy choice would pick
the least costly option. For the instance with
n = 2, a1 = 10, a2 = 8, N1 = {1}, Ni = {1, 2}
for i = 2, . . . , m, c11 = 1, ci1 = 2 and ci2 = 0
for i = 2, . . . , m, the greedy heuristic fails when
m � 6. It will install facility 1 and service all
clients from this facility, incurring a total cost of
11+2(m−1), whereas the optimal solution installs
facilities 1 and 2 with a total cost of 19. Likewise,
the greedy heuristic that works in the opposite
direction, from client m toward 1, may fail as well.

A feature of the dynamic programming algorithm
is its simplicity: the algorithm is devoid of complex
data structures and can be implemented in virtu-
ally any computer language. A second feature is
the potential to use a parallel computer: because
the computation of the values Ĵi(si) can be carried
out in parallel for all si ∈ {0} ∪Ni, the algorithm
may run in O(mn) time when Θ(n) processors are
available, thereby inducing maximum speed-up.

Let P = {z ∈ R
p : Az � b, 0 � z � 1}, z = (x, y),

be the polyhedron corresponding to a formulation
of P , where p = n +

∑n
j=1 |Mj | and matrix A

consists of the constraints (1b) and (1c). Notice
that P can be recast as max{cT z : z ∈ X} where
X = P ∩ Zp and c is a suitable vector, this way
giving P the status of a formulation.

IFAC - 251 - ADCHEM 2006



From integer-programming theory (Nemhauser
and Wolsey, 1988; Wolsey, 1998), follows that the
convex hull of X, conv(X), is also a polyhedron
P̃ = {z ∈ R

p : Ãz � b̃} = conv(X) known
as integer polyhedron. If (Ã, b̃) were known, one
could instead solve max{cT z : Ãz � b̃} with linear
programming which, in turn, can be solved in
polynomial time if the size of (Ã, b̃) is polynomial
or if separation 3 can be performed in polynomial
time. It so happens that certain problems have a
formulation that is itself an integer polyhedron,
that is, P = P̃. Examples include the matching
and network-flow polyhedron. It has been estab-
lished that the linear program max{cT z : Az �

b, z ∈ R
n
+} has an integral solution for all integer

vectors b for which it has a finite optimal value
if and only if A is totally unimodular. A matrix
A is totally unimodular (TU) if every square sub-
matrix of A has determinant +1,−1, or 0. From
a preliminary analysis, it appears that the matrix
A arising from the constraints (1b) and (1c) is
TU if the conditions of Assumption 1 hold, but
this property is yet to be confirmed. An early
result states that A is TU if, and only if, for every
(square) Eulerian 4 submatrix B of A the sum of
the entries of B divides by 4 (Camion, 1965). It
seems plausible to use this result in trying to show
that A is totally unimodular.

4. CONCLUSIONS AND FUTURE WORKS

The paper has formally stated the problem of
allocating compressors to oil wells and framed it as
a facility location problem. The special structure
of the target problem enabled us to design an
efficient, polynomial-time algorithm for an other-
wise NP-Hard problem. A simple, but illustrative
example helped to crystallize the concepts and the
recursive principles upon which the algorithm was
conceived. The polynomial-time solution of the
compressor allocation problem raised the possi-
bility of the constraint matrix being totally uni-
modular.

Future research will extend CAP to account for
potential capacities of the compressors and time-
dependent pressure demands for the oil wells.

ACKNOWLEDGMENTS

This research was funded by Agência Nacional
de Petróleo (ANP) and Financiadora de Estudos

3 Let S = {ãT
i

z � b̃i, i = 1, . . . , m} be the set of

constraints defined by (Ã, b̃). Given a fractional solution z,
z �∈ P ∩ Zp, the separation problem is to find a constraint

i that is not respected by z, that is, ãT
i

z �� b̃i.
4 A matrix is said to be Eulerian if the sum of the entries

of its lines and the sum of the entries of its columns are
both even.

e Projetos (FINEP), by means of a grant from
Programa de Recursos Humanos da ANP para o
Setor de Petróleo e Gás PRH-34 ANP/MCT.

REFERENCES

G. A. Alarcón, C. F. Torres, and L. E. Gómez.
Global optimization of gas allocation to a group
of wells in artificial lift using nonlinear con-
strained programming. ASME Journal of En-

ergy Resources Technology, 124(4):262–268, De-
cember 2002.

D. P. Bertsekas. Dynamic Programming and

Optimal Control, volume I. Athena Scientific,
Belmont, MA, 1995.

S. Buitrago, E. Rodŕıguez, and S. D. Espin. Global
optimization techniques in gas allocation for
continuous flow gas lift systems. In Proc.

SPE Gas Technology Conference, pages 375–
379, Calgary, Canada, 1996. Paper SPE 15616.

P. Camion. Characterization of totally unimod-
ular matrices. Proceedings of the American

Mathematical Society, 16, 1965.
E. Camponogara and P. H. R. Nakashima. Opti-

mizing gas-lift production of oil wells: Piecewise
linear formulation and computational analysis.
IIE Transactions, 38, 2006a. 10 pages.

E. Camponogara and P. H. R. Nakashima. Solv-
ing a gas-lift optimization problem by dynamic
programming. Accepted to appear in European

Journal of Operational Research, 2006b.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

Introduction to Algorithms. MIT Press, Cam-
bridge, MA, 1990.

G. Cornuejols, M. L. Fisher, and G. L. Nemhauser.
On the uncapacitated location problem. Annals

of Discrete Mathematics, 1:163–177, 1977.
M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Co., 1979.
F. Jahn, M. Cook, and M. Graham. Hydrocarbon

Exploration and Production. Elsevier, 2003.
E. P. Kanu, J. M. Mach., and K. E. Brown.

Economic approach to oil production and gas
allocation in continuous gas lift. Journal of

Petroleum Technology, pages 1887–1892, Octo-
ber 1981.

G. L. Nemhauser and L. A. Wolsey. Integer and

Combinatorial Optimization. John Wiley &
Sons, New York, NY, 1988.

N. Nishikiori, R. A. Redner, D. R. Doty, and
Z. Schmidt. An improved method for gas
lift allocation optimization. ASME Journal of

Energy Resources Technology, 117:87–92, 1995.
L. A. Wolsey. Integer Programming. John Wiley

& Sons, New York, NY, 1998.

IFAC - 252 - ADCHEM 2006


