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Abstract: A novel chance constrained programming approach for process optimization of
large-scale nonlinear dynamic systems and control under uncertainty is proposed. The
stochastic property of the uncertainties is explicitly considered in the problem formulation
in which some input and state constraints are to be complied with predefined probability
levels. This incorporates the issue of feasibility and the contemplation of trade-off
between profitability and reliability. The approach considers a nonlinear relation between
the uncertain input and the constrained variables. It also involves novel efficient
algorithms both to consider time-dependent uncertainties and to compute the probabilities
and, simultaneously, their gradients. To demonstrate the performance of the proposed
method, a chance constrained NMPC scheme for the online optimization of a batch
reactor under safety restrictions, and the optimal operation and control of a coupled two-
pressure column system are discussed to show the efficiency and potential for
optimization and control under uncertainty. Copyright © 2006 IFAC
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1. INTRODUCTION

 
For a quantitative understanding and control of time
varying phenomena in process system, it is essential
to relate the observed dynamical behaviour to
mathematical models. These models usually depend
on a number of parameters whose values are
unknown or only known roughly. Furthermore, often
only a part of the system's dynamics can be
measured. Therefore, a plant model unavoidably
involves uncertainties. They are either endemic due
to the external disturbances or introduced into the
model to account for imprecisely known dynamics.
However, uncertainty and variability are inherent
characteristics of any process system. These arise
due to the unpredictable and instantaneous variability
of different process conditions, such as temperature
and pressure of coupled operating units, market
conditions, (recycle) flow rates and/or its
composition, or due to certain model parameters such
as kinetic constants or equilibrium parameters. These
uncertainties or disturbances are often multivariate
and correlated stochastic sequences which have a
chain-effect to each unit operation of a production
line. In industrial practice, uncertainties are usually
compensated for by using conservative decisions like
an over-design of process equipment and then
retrofits to overcome operability bottlenecks, or an
overestimation of operational parameters caused by
worst case assumptions of the uncertain parameters,

which leads to a significant deterioration of the
objective function in an optimization problem. In
other deterministic approaches, the expected values
are used, which most likely leads to violations of the
constraints when the decision variables are
implemented on site. Moreover, the use of feedback
control in order to compensate uncertainty can not
ensure constraints on open-loop variables.
Consequently, the consideration of uncertainties
/disturbances and their stochastic properties in
optimization approaches are necessary for robust
process operation, and control.

During the past decades several approaches have
been suggested to address these problems in a
systematic manner (Sahinidis, 2004). These
techniques mostly differ in how uncertainty is
handled as well as in the objectives that may include
process flexibility, profitability, and/or robustness.
Nearly most of these approaches employed the two-
stage programming method with the recourse
formulation to handle inequality constraints. In this
method, violation of the constraints is compensated
for by some penalty terms in the objective function.
This compensation, however, requires a common
measurement to describe the objective function and
constraint violations. In cases where this
measurement is not available, the formulation of
chance constraints with a user pre-defined probability
limit of constraint compliance will be the most
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suitable approach. Thus, in this work, we propose a
systematic approach to solving chance constrained
process optimization and control problems.

Decision making inherently involves consideration
of uncertain outcomes. Thus, we are confronted with
decisions a priori for the future operation. The
decision should be taken before the realization of the
random inputs. These uncertain variables can be
constant or time-dependent in the future horizon. The
stochastic distribution of the uncertain variables may
feature different forms. The mean and variance
values can be determined based on historical data
analysis. However, stochastic optimization with even
an approximated distribution is more reliable than a
deterministic optimization. In this work,
uncertainties are assumed to have a correlated
multivariate normal distribution, but the presented
approach does not depend on the distribution form.

2. CHANCE CONSTRAINED APPROACH

A general chance constrained optimization or control
problem under uncertainty can be formulated as
follows:
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where f is the objective function, E and D are the
operators of expectation and variation, respectively.
ω is a weighting factor between the two terms.
Here, x, u and ξξξξ are state, decision and random
vectors, respectively. g represents the equality
constraints (i.e model equations). The reliability or
probability of complying with the inequality
constraints is given by { }Pr ( , , ) ≥ ≥ αh x x,u � 0� . The

value )10( ≤≤ αα represents the probability level.

Since α can be defined by the user, it is possible to
select different levels and make a compromise
between the objective function value and the risk of
constraint violation. The proposed approach relies on
formulating output constraints as chance constraints
which can be formulated in two different forms:
single chance constraint where individual
probabilities of ensuring each inequality will be held.
In this form, different confidence levels can be
assigned to different outputs based on their
specifications. Another form is the joint chance
constraint, where all inequalities are included in the
probability computation i.e. they have to be satisfied
simultaneously with the unique given confidence
(probability) level.

The values of α are not given by an explicit formula,
but rather defined as probabilities of some implicitly
defined regions in the space of the random parameter
ξ, i.e. the feasible region will shrink if the confidence
level is increased, which implies a conservative
decision. It has, however, the advantage of keeping a
more stable operation, but it may be not flexible to

the variations required. Thus, the main difference
between single and joint constraints consists in their
reliability. However, as shown in Fig. 1, such
problems can be classified based on the properties of
processes, uncertainties and constraint forms.

Linear

Nonlinear

Steady
state

Dynamic

Constant

Time-
dependent

Single

Joint

process uncertainty constraint

Fig. 1. Classification of chance constrained problems

The main challenge in chance constrained
programming lies in calculating probability values,
the gradients of the probability function to the
controls and possibly Hessians. Different problems
have different degrees of complexity for computing
these values, which will be discussed in the next
sections.
 
2.1 Monotonic relationship between constrained

output and uncertain input
 
In systems where the relation between uncertain and
constrained variables is nonlinear, the type of the
probability distribution function of the uncertain
input is not the same as the one of the constrained
output. Thus, it is difficult to obtain the stochastic
distribution of output variables. For this reason,
nonlinear chance constrained programming remains
an unresolved problem. Recently, a promising
optimization framework for dynamic systems under
uncertainty was introduced for the off-line
optimization under probabilistic constraints and
successfully applied to a large-scale nonlinear
dynamic chemical process (Arellano-Garcia et al.
2003). The basic idea is to avoid directly computing
the output probability distribution. Instead, an
equivalent representation of the probability is derived
by mapping the probabilistic constrained output
region back to a bounded region of the uncertain
inputs. Hence, the output probabilities and,
simultaneously, their gradients can be calculated
through multivariate integration of the density
function of the uncertain inputs by collocation in
finite elements (2). Since multiple time intervals are
considered, the reverse projection of the output
feasible region is not trivial. Thus, the approach also
involves efficient algorithms for the computation of
the required (mapping) reverse projection. The
method relies upon the case of a monotonic
relationship between the constrained output variables

i iy Y∈ and at least one of the uncertain input

variables s sξ ∈� where s� is a subspace of � . So,
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where ρ(ξξξξ) is the joint distribution function of ξ.
The input boundary max

Sξ is computed through reverse

projection based on the output value of max
iy . The

boundaries of the infinite integrals in (2) are chosen
as ]3,3[ σσ− . In principle, the solution approach can

be used to solve problems under uncertainties with
any kind of joint correlated multivariate distribution
function, provided that the density function is
available or it can be approximated. However, the
solution of a chance-constrained problem is only able
to arrive at a maximum value αmax which is
dependent on the properties of the uncertain inputs
and the restriction of the controls and outputs. To
address this issue, a preceding probability
maximization step to find out the maximum
probability value is set up. For this purpose, the
original objective function is substituted and
redefined as maximization of the achievable
probability. The problem is then solved for the value
of maxα . In some processes, where the control
variable is strictly monotone w.r.t the constrained
variable, maxα can be obtained through simulation,

then maxα corresponds to the confidence level with
the lower or upper bound of this control variable.
This approach can basically be extended to multiple
single probabilistic constraints. The application of
the approach to a joint chance constrained problem is
only related to those cases where an uncertain
variable can be found, which is monotone to the joint
probability. The approach has been applied to static
and large-scale nonlinear dynamic processes.
However, this approach can only be employed if the
required monotony between constrained output and
uncertain input exists.
 
2.2 Non-monotonic relationship between

constrained output and uncertain input
 
There are, in fact, some stochastic optimization
problems where no monotone relation between
constrained output and any uncertain input variable
can be assured. Especially, for those process systems
where the decision variables are strongly critical to
the question of whether there is a monotony or not.
To address this problem, a novel efficient approach
is proposed to chance constrained programming for
process optimization and control under uncertainty
with no warranty for a monotonic relation between
constrained output and uncertain input. Thus, chance
constrained nonlinear dynamic optimization can now
also be realized efficiently even for those cases
where the monotony can not be guaranteed.
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Fig. 2. Mapping feasible regions
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Fig. 3. Non-monotonous sections

The proposed approach uses a two-staged
computation framework to decompose the problem.
The upper stage is a superior optimizer following the
sequential strategy, where the optimization generates
the values of the decision variables and supplies
those to a lower stage (simulation stage). This stage
gives the values of the objective function, the
deterministic and probabilistic constraints, as well as
the gradients back to the superior optimizer.

 
Fig. 4. Chance constrained optimization framework

Furthermore, there is a two-layer structure inside the
simulation layer to compute the chance constraints.
One is the superior layer, where the probabilities and
their gradients are finally calculated by multivariate
integration. The structure of the inferior layer is the
key to the computation of the chance constraints with
non-monotonic relation. The main principal of this
section is that at temporarily given values of both the
decision and uncertain variables the bounds of the
constrained outputs y and those for the selected
uncertain variables ξξξξ reflecting the feasible area
concerning y (Fig. 3), are computed for the
multivariate integration. For this purpose, all local
minima und maxima of the function reflecting y are
first detected. This computation of the required
points of [min y(ξξξξ)] and [max y(ξξξξ)] is achieved by an
optimization step in the inferior layer (in case
monotony exists, this optimization step can be
neglected). However, with the help of those
significant points, the entire space of ξξξξ can be
divided into sections in which the bounds of the
subspaces of feasibility can be computed through a
reverse projection by solving the model equations in
the following step of this inferior layer. The bounds
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of feasibility are supplied to the superior multivariate
integration layer, where the necessary probabilities
(Eq. 3, 4) and the gradients are computed by adding
all those feasible fractions together (Fig. 3).

� �iPr = Pr z� (3)
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In this work, a chance constrained programming
framework and its applications to process
optimization and control under uncertainty are
discussed to demonstrate its potential.

3. CHANCE CONSTRAINED OPTIMAL
PROCESS OPERATION

In the daily production of chemical industry
numerous plant and units are operated to satisfy
product requirements. Following the optimal
operation planning, predefined steady-state operating
points (point A in Fig. 5) for continuous processes
are assigned to a process control system. The
objective of a feedback control system is then to
reject known or unknown disturbances so that the a
priori setponits can be pursued. For several
processes, however, productivity is optimal close to
the inherent limitations or boundary of the equipment
capacities. In the neighbourhood of such inherent
limitations the process dynamics often exhibit a
highly nonlinear behaviour. Furthermore, the
constrained variables are often monitored for safety
considerations but not close-loop controlled. The
disturbances behave randomly and even measured
disturbances are stochastic variables since their
values can not be predicted for a future time point.
Thus, it may be necessary to back off from the
nominal optimal value of the constraints which are
difficult to measure or to control due to the poor
dynamics (Fig. 5). Since multivariate disturbances
often exist in a large plant it is difficult to decide a
proper value. However, the back off values are
usually overestimated and thus leading to a
conservative operation. For instance, it is well known
that compositions are often non online measurable.
Thus, temperatures are selected as reference
variables for composition control. However, the
specified points of temperature control does not
necessarily guarantee the purity specifications (e.g. if
the pressure of the plant swings). Consequently,
because of the conservative decisions concerning the
temperature setpoints (point B in Fig. 5), a much
purer product than specified will be achieved which
causes much more operating costs than needed.

Bx

Dx

SP
Bx

SP
Dx control

regionoptimization
region A

B

feasible
region

Fig. 5 Operating setpoints by feedback control

Fig. 6. Open-closed Framework

To overcome these problems, the chance constrained
optimization approach is proposed in which the
objective function will be improved while satisfying
constraints to enforce product quality restrictions
with a desired confidence level. This results in a new
concept of control: to control open-loop processes by
closed-loop control. Unlike the definition where
controls are decision variables, in the proposed
closed framework the set-points of the measurable
outputs are defined as decision variables. Moreover,
the controller performance based on the minimum
variance control can be regarded as a random input,
and thus is also included in the chance constrained
formulation of the model-based stochastic
optimization problem. The result is a cyclic
adjustment of the operating point which guarantees
the compliance with the product quality restrictions
and assures the controller performance under
parametric uncertainty, uncertain boundary
conditions, and the random regulatory deviation.

The novel approach is applied to the optimal
operation and control of one column embedded in a
coupled two-pressure column system for the
separation of an azeotropic mixture. The operating
point is defined by the distillate and bottom product
specifications, cooling outlet temperature limitations,
as well as the maximum pressure of the considered
high-pressure column. The expected disturbances and
implementation errors concern the maximal
allowable system pressure, the sensitive tray in the
stripping column section as well as the feed flow rate
and its composition. However, the values of the
setpoints and controls are adjusted so that the target
area in Fig. 7 will be tailored to the changing
disturbances.

Dx

Bx
feasible

region

controlled
operating

region

Fig. 7. Operating points of the high-pressure column
by the open-closed framework based on the
chance constrained approach
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In Fig. 7 the black points represent the implemented
operating points by feedback control with the open-
closed framework. In comparison to the conventional
feedback control shown in Fig. 5, the operating
points are closer to the nominal point A which leads
to a higher profit. 
 

4. CHANCE CONSTRAINED NONLINEAR
MODEL PREDICTIVE CONTROL

 
Since the prediction of future process outputs within
an NMPC moving horizon is based on a process
model involving the effects of manipulated inputs
and disturbances on process outputs, the compliance
with constraints on process outputs is more
challenging than these on process inputs. Moreover,
as the model involves uncertainty, process output
predictions are also uncertain. This results in output
constraints violation by the close-loop system, even
though predicted outputs over the moving horizon
might have been properly constrained.
Consequently, a method of incorporating uncertainty
into the output constraints of the online optimization
is needed (Schwarm and Nikolau, 1999; Li et al.,
2000).

In most of the previous work, successively updating
of the control strategy based on actual measured
values has commonly been applied in order to reject
disturbances or to compensate for uncertainties.
However, since the model mismatch is supposed to
be unaltered within the prediction horizon, the
control strategy will most likely lead to constraint
violations. Another approach in robust MPC
represents the assumption that uncertainty is
bounded, or equivalently that it is random und
uniformly distributed, and then to adopt a worst case
contemplation (min-max approach) (Lee and Yu,
1997). In this work we propose a chance constrained
nonlinear model predictive control. The general
chance constrained NMPC problem which is solved
at each sampling time k can be formulated as
follows:
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The solution of the above problem, however, is only
able to arrive at a maximum value �max which is
dependent on the properties of the uncertain inputs
and the restriction of the controls. The value of �max

can be computed through a previous probability
maximization step. For this purpose, the original
objective function is replaced and the following
optimization problem will then be solved:

{ }
0 0

SP

j j

min max 0 f

max

s.t. ( , , , , ) 0, (t )

Pr y y , j 1, ,m

, t t t

α
= =

≤ = ≥ α

≤ ≤ ≤ ≤

g x x y u � x x

u u u

�

�

Moreover, the relationship between the probability
levels and the corresponding values of the objective
function can be used for a suitable trade-off decision
between profitability and robustness. Tuning the
value of � is also an issue of the relation between
feasibility and profitability. The resulting NMPC
scheme is embedded in the on-line optimization
framework (Fig. 8).

However, a strongly exothermic series reaction
conducted in a non-isothermal batch reactor under
safety restrictions is considered to demonstrate the
efficiency of the proposed approach. The reaction
kinetics are second-order for the first reaction
producing B from A, and an undesirable consecutive
first-order reaction converting B to C. The
intermediate product B is deemed to be the desired
product. Since the heat removal is limited, the
temperature is controlled by the feed rate of the
reactant A and the flow rate of the cooling liquid in
the nominal operation. The reactor is equipped with a
jacket cooling system. At the start, the reactor partly
contains the total available amount of A. The
remainder is then fed and its feed flow rate is
optimized to maximize the yield. However, the
accumulation of A at the start of the batch time must
be prevented, otherwise, as the batch proceeds
exhaustion of the cooling system capacity can not be
avoided. Furthermore, whilst the reaction proceeds,
the reactor’s volume diminishes so that the
computation of the corresponding cooling capacity is
adapted according to the remaining cooling jacket
area. The developed model considers both the reactor
and the cooling jacket energy balance. Thus, the
dynamic performance between the cooling medium
flow rate as manipulated variable and the controlled
reactor temperature is also included in the model
equations. Thereby, it can be guaranteed that later the
computed temperature trajectory can be implemented
by the controller. Moreover, by this means the
limitations of the cooling system (pump capacity)
can explicitly be taken into account for the
optimization.
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Fig. 8. On-line framework: integration of chance
constrained NMPC and dynamic re-optimization.
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There are path and end point constraints for the
reaction process: first, a limited available amount of
A to be converted by the final time is fixed.
Furthermore, so as to consider the shut-down
operation, the reactor temperature at the final batch
time must not exceed a temperature limit.
Additionally, there are path constraints for the
reactor temperature, and the adiabatic end
temperature which is used to determine the
temperature after failure.

The decision variable is the cooling flow rate. In
order to compare the performances of the open-loop
nominal solution and the nominal NMPC with the
proposed on-line framework under uncertainty,
different disturbances have been considered, namely:
catalyst activity mismatch and fluctuations of the
reactor jacket cooling fluid temperature.
Additionally, all measurements are corrupted with
white noise e.g. component amount 8%, Temperature
2%.

While fast disturbances are efficiently rejected by the
proposed regulatory NMPC-based approach, there
are, on the other hand, in fact, slowly time-varying
non-zero mean disturbances or drifting model
parameters which change the plant optimum with
time. Thus, a re-optimization i.e. dynamic real-time
optimization (D-RTO) may be indispensable for an
optimal operation (Fig. 8). When on-line
measurement gives access to the system state, on-line
re-optimization promises considerably improvement.
Moreover, additional constraints can be formulated.
In this work, we assume that the state information is
available.

In order to compensate slow disturbances, the on-line
re-optimization problem is automatically activated
three times along the batch process time according to
a trigger defined as the bounded above difference
between the reactor temperature and the temperature
reference trajectory. New recipes resulting from this
are then updated as input to the on-line framework.
Due to the different trigger time-points the current D-
RTO problem progressively possesses a reduced
number of variables within a shrinking horizon
(Nagy and Braatz, 2003). As a result of this, and a
catalyst contamination the total batch time increases.
But, despite the large plant mismatch and the
absence of kinetic knowledge nearly perfect control
is accomplished.

5. CONCLUSIONS

The chance constrained optimization framework has
been demonstrated to be promising to address
optimization and control problems under
uncertainties. Feasibility and robustness with respect
to input and output constraints have been achieved
by the proposed approach. The resulting NMPC
scheme embedded in the on-line re-optimization
framework is viable for the optimization of the semi-
batch reactor recipe while simultaneously
guaranteeing the constraints compliance, both for
nominal operation as well as for cases of large

disturbances e.g. failure situation. In fact, the
approach is relevant to all cases when uncertainty can
be described by any kind of joint correlated
multivariate distribution function. The authors
gratefully acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (DFG).

REFERENCES

Acevedo, J., and E. N. Pistikopoulos, “Stochastic
Optimization Based Algorithms for Process
Synthesis under Uncertainty,” Comp. Chem. Eng.
22, 647, (1998).

Arellano-Garcia, H., Martini, W., Wendt, M., Li, P.,
Wozny, G. (2003). Chance constrained batch
distillation process optimization under
uncertainty, FOCAPO2003, Florida, January 12-
15, 2003.

Diwekar, U.M., Kalagnanam, J.R. (1997). Efficient
sampling technique for optimization under
uncertainty. AIChE J. 43, 440.

Kall, P., Wallace, S.W. (1994). Stochastic
programming. New York: Wiley.

Lee. J. H., Yu, Z., (1997). Worst case formulations of
model predictive control for systems with
bounded parameters, Automatica, 33, 763-781.

Li, P., Wendt, M., Wozny, G. (2000). Robust model
predictive control under chance constraints,
Comput. & Chem. Eng., 24, 829.

Li, P., Wendt, M., Arellano-Garcia, H., Wozny, G.
(2002a) Optimal operation of distillation
processes under uncertain inflows accumulated in
a feed tank, AIChE Journal, 48, 1198.

Nagy, Z.K., and R.D. Braatz, (2003), AIChE J., 49,
1776-1786.

Pistikopoulos, E. N., and M. G. Ierapetritou, “Novel
Approach for Optimal Process Design under
Uncertainty”, Comp. Chem. Eng., 19, 1089
(1995).

Prékopa, A. (1995). Stochastic programming.
Dordrecht: Kluwer.

Sahinidis, N. V., “Optimization under uncertainty:
State-of-the-art and opportunities”, Computers &
Chemical Engineering, 28(6-7), 971-983 (2004).

Samsatli, J.N., Papageorgiou, L. G., and Nilay Shah.
(1998). Robustness Metrics for Dynamic
Optimization Models under Parameter
Uncertainty”, AIChE J., 44, 1993-2006.

Schwarm, A.T., Nikolaou, M. (1999). Chance-
constrained model predictive control, AIChE J.,
45, 1743.

Wendt, M., L, P., Wozny, G. (2002). Nonlinear
chance constrained process optimization under
uncertainty, Ind. Eng. Chem. Res., 41, 3621.

IFAC - 264 - ADCHEM 2006


