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Abstract: Batch processes are common in the manufacturing of high value-added products. Monitoring with 
the highly popular principal components analysis (PCA) approaches do not function adequately in the face 
of the sequential nature of batch processes, as the basic assumptions that its monitoring statistics (SPE and 
Hotelling’s T2) are developed upon – stationary, normal distribution of source data - are violated. 
Consequently, these monitoring techniques become prone to Type-I (false positives) and Type-II Errors 
(false negatives). In this article, an extension of PCA, called adjoined dynamic principal component 
analysis (ADPCA), is proposed for online monitoring of batch processes by using multiple dynamic-PCA 
(DPCA) models. The ADPCA models are developed by first clustering process data using fuzzy c-means 
algorithm and developing a DPCA model for each cluster. Each cluster is selected so that it satisfies the 
PCA’s assumption. The problem of switching between the models which normally confounds multiple 
model-based approaches is overcome by allowing adjoining models to overlap and thus enabling smooth 
switching from one model to another during the course of batch operations. As shown in this paper, the 
proposed methodology reduces both Type-I and Type-II errors compared to single block methods. 
Copyright © 2006 IFAC.
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1. INTRODUCTION 

Batch/fed-batch operations are commonly used to 
manufacture high value-added products in the chemical, 
pharmaceutical, biological, and semi-conductor 
industries. The standard operating procedures (SOP) for 
fed-batch operations often occur in sequences specified 
in a recipe. Unlike continuous processes, batch processes 
have various characteristics that complicate process 
monitoring; these include finite time duration, 
nonlinearities, non-stationary (non-steady-state) 
behavior and run-to-run variations. Regulatory and 
supervisory control for batch operations is an open 
research area as most high-level automation applications 
are effective only during steady-states. Owing to the lack 
of effective automation and the high cognitive workload 
of plant operators, the occurrence of human errors 
during these operations is very likely (Ng and Srinivasan, 
2004).  A general feature of batch/fed-batch processes is 
that small changes in the operating conditions during 
critical periods may degrade the quality of the final 
product; this is especially obvious in biological 
processes. Due to the numerous complexities in these 
mode of operations, effective techniques for online 
monitoring is essential since timely corrective action 
may prevent fault propagation and allow a batch to be 
saved.  

In this paper, a new monitoring technique, called 
adjoined dynamic principal component analysis 
(ADPCA), is proposed for online monitoring of fed-
batch operations. ADPCA uses overlapping PCA models 
for monitoring batch trajectories and is inherently 

capable of modeling non-stationary processes more 
accurately. It is capable of overcoming both Type-I 
(false positives) and Type-II errors (false negatives) 
suffered by conventional single-block PCA techniques 
during batch operations. The organization of this article 
is as follows: Section 2 reviews PCA and its variants, 
and their shortcomings during online monitoring of 
batch operations. The proposed ADPCA methodology 
for online batch process monitoring is described in 
Section 3 while Section 4 presents the applications of the 
proposed method to a fed-batch penicillin cultivation 
process. Furthermore, a comparison of the proposed 
methodology with multiway-PCA and dynamic-PCA is 
also presented. 

 2. PCA-BASED PROCESS MONITORING : 

METHODS AND SHORTCOMINGS 

Principal component analysis is a popular statistical 
technique for process monitoring (Kourti, 2002). 
Mathematically, PCA relies upon eigenvector 
decomposition of the covariance or correlation matrix to 
capture the major tendencies of process variables. Let 
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PCA linearly decomposes the data matrix X as the sum 
of scores, t, loadings, p, and a residual matrix e in the 
following way (Wise & Gallagher, 1996): 
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Here, k is the number of principal components that a 
user wants to retain. The scores vector, t contains 
information on how the samples relate to each other, 
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while the loadings vector, p contains information 
regarding the correlation among the variables.  

2.1 Fault detection with PCA approaches 

Fault detection using PCA or its variants is usually 
performed through monitoring of the squared prediction 

error (SPE) and/or Hotelling’s 2T  statistic. The SPE

measures the variation of a sample xi from the PCA 
model, i.e. lack-of-fit: 
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The process is considered normal if 1QSPEi ,

where 1Q  denotes the upper control limit for 

confidence level at 1  percentile (Jackson and 

Mudholkar, 1979). The 2T  statistic measures the 
variation of the sample within the PCA model: 
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where 1  is the diagonal matrix containing the inverse 
of the eigenvalues associated with k eigenvectors 
retained in the PCA model (Wise et. al., 1990). An upper 

control limit ,,
2

mkT  similar to 1Q  can also be 

derived for the 2T  statistic (Jackson, 1991) by using a 

F-distribution of the training data. The SPE and 2T
monitoring statistics are complementary in nature, since 

the SPE  measures the lack-of-fit while the 2T  statistic 

measures the variation of a sample within the model.  

2.2 Type-I and Type-II Errors 

Most of the statistical process control (SPC) literature 
has focused heavily on methods for handling data 
generated from normal distributions. The PCA-based 
techniques also assume that the training data follows a 
normal distribution. This assumption is not valid as for 
batch operations when analyzed online. There are two 
implications when the normal distribution assumption is 
used while monitoring batch processes online. First, the 

monitoring limits constructed using SPE and 2T  are 
prone to Type-II errors (false negatives), as the limits for 
monitoring statistics cover an unknown (possibly 
abnormal) operating region when a single model is used 
for online monitoring. Second, and perhaps the more 
common scenario, is the occurrence of Type-I errors 
(false positives). Even for a perfectly normal (data that 
are exactly normal distributed) process, the occurrence 
of Type-I errors are generally close to  (~50 false 

positives for 95% confidence limits with every 1000 
samples analyzed) (Nomikos and MacGregor, 1994; 
Martin and Morris, 1996). Failure to account for the data 
distribution of the training data further increases the rate 
of false positives.  The total rate of Type-I errors for a 
non-normal process, is thus equal to the sum of errors 
induced by the selected , and the errors induced by the 

data distribution modeling process. As a result, the 
reliability of the supervision system is greatly reduced.  

2.3 Multiway and Dynamic-PCA 

PCA has been widely used for monitoring continuous 
operations (Kourti, 2002). However, there exist some 
limitations of the PCA approaches when they are used 
for monitoring batch processes (Nomikos and 

MacGregor, 1995). In practice, batch data are usually 
stored in a three dimensional data matrix. An extension 
of PCA called Multiway-PCA (Nomikos and MacGregor, 
1995) was proposed for batch data analysis. MPCA 
organizes the batch data into time-ordered blocks by 
unfolding the three dimensional array into a large two 
dimensional matrix before they are decomposed into 
their corresponding principal components. In general, 
there exist three different ways (batch-wise unfolding; 
time-wise unfolding, and variable-wise unfolding) that a 
3-Dimensional array X can be unfolded (Lee et. al.,

2004). The MPCA technique referred in this work is 
based on the time-wise unfolding. Such unfolding allows 
abnormal samples to be identified from a given batch 
trajectory.  

PCA generates a linear static model of the data matrix X.
When the data contains dynamic information, as in the 
case with fed-batch operations, applying PCA/MPCA on 
the data does not capture the actual correlations between 
the variables, but only a linear static approximation. For 
most of the processes encountered, a dynamic-PCA is 
more appropriate (Ku et. al.,1995). For non-stationary 
systems, the current values of process variables will 
depend on the past values due to time-lag behavior of the 
chemical processes. X(t) can thus be augmented with 
previous observations, where  

]1[)( l)(t ...)(t(t)tD XXXX ,  (4) 

with l being the number of previous observations that are 
correlated to the current sample. The extracted dynamic 
model is implicitly multivariate autoregressive (AR) 
(Ljung and Glad, 1994) if process inputs are included 
(Ku et. al., 1995).  

Previous literature on online monitoring based on 
MPCA/DPCA for transient operations normally require 
the batch-length to be equal in order to manipulate the 
monitoring limits at each time instant to reduce the 
occurrence of false positives, eg: Birol et.al. (2002), Lee 
et. al.(2004), Nomikos and MacGregor (1995), Rännar 
et. al. (1998), etc. Monitoring limits which are generated 
based on fixed time approach might give reasonable 
performance if the underlying events are highly 
synchronized, eg: activation of fed-batch at fixed time-
point, all growth of microbiology to be consistent 
throughout, fixed duration of batch operation. However, 
run-to-run variations are often significant due to 
environmental or human factors. Such drastic behavior 
cannot be adequately modeled by MPCA and DPCA 
techniques. To overcome these shortcomings, multiple 
models are needed for a more flexible monitoring of 
batch processes.  

2.4 Need for multiple adjoined models 

The use of multiple models has been a popular approach 
in system identification (Böling et. al., 2004), advanced 
control (Palma and Magni, 2004), and monitoring 
(Bhagwat et.al., 2003). In this work, we use a divide-

and-conquer strategy to overcome the shortcomings as 
outlined in the previous paragraph by using multiple 
PCA models for online monitoring. Though there exist 
several literatures (Hwang and Han,1999; Rännar et. al.,

1998) on performing batch monitoring with multiple 
models, the existing PCA approaches are limited by run-
length, discontinuous in modeling, and prone to false 
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positives. This paper extends these methods by using 
overlapping models in order to be robust to run length,
give good monitoring resolution, and be sensitive to new 
operating region (i.e. detect novel fault). When multiple 
models are used to model transient operation, false 
positives are often encountered in the border between 
two or more models. In Srinivasan et. al., (2005), it was 
reported that 50% of prediction errors occurred are 
attributed to state change when multiple sets of neural 
networks are used for temporal pattern recognition. The 
high level of errors during model switching, similarly in 
multiple PCA models approaches, is due to discontinuity 
in modeling transient operations.  Fed-batch operations 
usually follow a trajectory on the PC subspace. If 
disjoint PCA models are used, the models constructed 
failed to incorporate all relevant normal operating region 
and thus result in oversensitivity in the bordering region 
of each model when future samples evolve through such 
sensitive region. These shortcomings can be overcome 
when the neighboring PCA models are allowed to 
overlap, since overlapping PCA models allow the 
modeling of the smooth evolution of the process 
trajectory in addition to any abrupt changes that occurred. 
As a result, the monitoring statistics constructed from 
each individual model cover all relevant normal 
operating regions and prevent false positives from 
occurring during model-switching / state change.  

3. ADJOINED DPCA METHOD FOR ONLINE 

MONITORING OF FED-BATCH OPERATIONS 

In this section, we propose an adjoined multi-model 
DPCA-based methodology for online monitoring and 
supervision of fed-batch processes. We term the 
proposed method as adjoined-DPCA (ADPCA) as the 
method is developed on the basis of multiple 
overlapping and connected DPCA models. The proposed 
methodology is based on the integration of fuzzy 
clustering methodology with dynamic-PCA monitoring 
approaches. As described in the earlier section, 
conventional single block MPCA or DPCA monitoring 
approaches fail to account for the non-stationary effects 
in temporal signals. Fuzzy clustering of process states 
based on historical data can thus be used to differentiate 
multiple modes of operations in these temporal signals 
for building different DPCA models for monitoring 
purposes. The additional membership information 
obtained through fuzzy clustering provides a means to 
construct overlapping DPCA models. Such membership 
information is often not available in crisp clustering 
algorithm such as k-means. The training data from 
different stages/phases can be extracted and 
reconstructed based on a proposed fuzzy-data 
reconstruction approach. The reconstructed data groups 
overlap with their neighboring groups, with a DPCA 
model constructed for each group reconstructed. At 
every instant, the best-fit DPCA model is selected for 
monitoring purposes. The offline ADPCA model 
construction is described next in Section 3.1 and the 
steps for online monitoring are presented in Section 3.2. 

3.1 ADPCA model construction 

The training algorithm is based on normal operating data 
only, which can be obtained from the plant historian 
directly. Process data are often corrupted with noise. In 

this work, a windowed finite impulse response (FIR) 
filter (IEEE, 1979) is implemented to eliminate high 
frequency noise. Let Y  be the raw data collected from a 
plant historian. Variable unfolding is first carried out on 
the 3-dimensional dataset to reduce Y  to a 2-
dimensional dataset for analysis. Each variable of the 

training data, iy , is later normalized to eliminate the 

varying scales of the variables: 
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The filtered signals, }{ 21 mi ,...,..., xxxxX , is then 

partitioned into different clusters through fuzzy c-means 
clustering. Fuzzy c-means is a generalization of the k-
means data clustering technique where each sample 
belongs to one or more clusters as per a membership 
grade. For a dataset consisting of m objects and a pre-
specified c number of clusters, the fuzzy c-means 
algorithm computes the optimal memberships by 
minimizing (Hataway and Bezdeck, 1988): 
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where jm  is the centre of cluster c, ),( jid mx  is the 

Euclidean distance between the data point and the cluster 

center, 0iju  for all m, and c
j ij1 1u , for each ith

sample. Here, v is called the fuzzifier and affects the 
final membership distribution. 1v  leads to crisp 

clustering solution; a value of 2 is normally used. If  icu

is restricted to 0 or 1, the proposed algorithm reduces to 
the k-means algorithm. The fuzzy membership grade for 
any given sample indicates whether there is any other 
cluster that is comparable to the best cluster.  

The samples are then stacked into different groups based 
on time-wise unfolding. Consider the training data X

obtained together with its clustering information, iju . X

is now a two dimensional array obtained by stacking the 
training data of different runs through multi-way 
approaches, it is reorganized into c number of groups 
based on a fuzzy-data reconstruction approach. The data 
reconstruction process serves as a data preparation mode 
for constructing adjoined-DPCA models. At any instant, 
a sample (measurements) has a one-to-many relation 
with the data groups, which means a sample can be 
concurrently present in one or more data groups. Since  
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where ),( jid mx  is the distance from point ix  to 

current cluster center jm , and ),( rid mx  is the distance 

from ix  to other cluster center rm , the highest value of 

iju  gives the cluster which is closest to ix . The best 

membership of X  at every ith instance, ix  is thus given 

by: 

)max(arg1
ij

st
i ub , },...,2,1{ cj ,  (8) 

since iju  is inversely proportional to the distance of ix

from jth cluster centroid,  jm , as shown in Equation 7. 

The subsequent layer of cluster membership function 
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iju  is then analyzed iteratively following the general 

algorithm for fuzzy-data reconstruction to identify the 
existence of rth best cluster: 

)max(arg ij
rth
i ub , },...,2,1{ cj ,  (9) 

subject to the following constraints: 
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The association threshold,  defines the allowable 

regions to overlap when computing DPCA models from 
the reconstructed data. Here,  is in the range of  ]01[ .

A large value of  allows fully overlapped regions 

while setting 0  prohibits the spawning of ix  totally. 

Each sample ix , is then duplicated and placed within 

their corresponding groups of reconstructed data, jW ,

where }{bj  identified from the algorithm for fuzzy-

data reconstruction. Upon completion of the analysis of 

one sample, ix , i is incremented and the subsequent 

sample 1ix  is subjected to the same analysis as 

described in equation 10. The end results of the above 
algorithm is the creation of reconstructed cluster groups 

jW , },...,2,1{ cj  that overlaps with their proximity 

clusters. Such new clusters formation is deemed 
important especially when generating PCA models for 
monitoring fed-batch processes to avoid discontinuities 
in modeling the normal operating region. Failure to 
account for such discontinuities would make the 
monitoring system prone to Type-I errors when new 
process trajectory evolve through sensitive regions.   

Subsequently, a total of c distinct DPCA models jDPM ,

},...,2,1{ cj  are constructed for process monitoring 

following (Equation 1 & Equation 4). Each jDPM

corresponds to a local DPCA model generated from the 
reconstructed dataset  W . At each instant of monitoring, 

the DPCA model that best describe the fed-batch 

processes, optDPM  is selected and used for process 

monitoring. Multivariate statistical process control charts 

are based on the SPE and 2T  statistics of optDPM .

With the proposed approach, the effect of false positives 
will become less severe as the data density for each of 
the PCA model is locally normal distributed. 
Additionally, the chances of having false negatives are 
also greatly reduced, as monitoring limits generated 
from the PC models do not cover the training subspace 
of unknown operating region compared to single block 
approaches.    

3.2 Online fault detection 

The algorithm for online fault detection is shown in 
Figure 1. The main challenge in the online monitoring 
using the proposed approach is to identify the best 
DPCA models at each point in time. New process 
measurements, designated here as Y , is first filtered and 
autoscaled to X  (Equation 5), before they are projected 
to the principal component subspace as scores, t and 
loadings, p (Equation 1). Its distance in the principal 
component subspace are then evaluated against all the 

DPCA models, jDPM , },...,2,1{ cj . The distance 

between the sample ix  and each DPCA model, jDPM

is calculated based on a adjoined discriminant similarity 

factor, ’. The original proposal of  (Raich and Çinar, 
1996) is solely to facilitate human operators during 
process monitoring by combining the two separate 

monitoring statistics (SPE and 2T  ) into one uniformed, 
simple index. Here, we extend the discriminant 
similarity factor to the selection of best DPCA model for 

online applications. At every instance, the distance of ix

and all constructed DPCA models, jDPM ,

},...,2,1{ cj  are evaluated through:  

))(1()(),( 2
,

2
, iririj TSPEDPM x' ,

 },...,2,1{ cj .      (11) 

Here, 1, QSPESPE iir , 2
,,

22
, kmkiir TTT , and 

1  is the confidence level for limit evaluation. Here, 

 is a weighting factor between zero and one. Upon the 

absence of additional information, SPE and 2T  are 
weighted equally, where  is set to 0.5. The nearest 

PCA model to ix ,

)),(min(arg ijopt DPMDPM x' ,

},...,2,1{ cj ,    (12) 

is then selected for monitoring the current stage of the 
fed-batch operations. Monitoring statistics, i.e.: SPE and 

2T , are generated based on optDPM  and compared 

with their upper control limit, 1Q  and 2
,, kmkT  for 

anomaly detection.  

Figure 1: Online architecture for adjoined-DPCA fault 
detection 

4. MONITORING OF FED-BATCH PENICILLIN 

CULTIVATION PROCESS 

In this section, the proposed adjoined-DPCA (ADPCA) 
method is tested on a fed-batch penicillin cultivation 
process. In this work, we use the penicillin fed-batch 
simulator PenSim v2.0  (Birol et. al., 2002a) that is 
based on the mathematical model of Bajpai and Reuss 
(1980). The simulator captures the dynamics in sixteen 
process variables, namely: flow rates of input streams, 
temperature, pH, heat generated, aeration rate of 
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fermenter, etc. The final quality and quantity of the final 
product is very much affected by pH and temperature. 
They are therefore controlled at specified setpoint. In our 
simulation, the pH was controlled at 5.0 and the 
temperature was maintained at 25°C to promote cell 
growth. In all runs, an initial batch culture is followed by 
a fed-batch operation based on the depletion of the 
carbon source (glucose). The process switches to the 
fed-batch mode when the level of glucose concentration 
reaches 0.3g/l. Detailed description of the fed-batch 
simulator including the state equations and simulation 
parameters is given by Birol et. al. (2002). In this work, 
a total of 50 normal batches were simulated to create the 
reference datasets, we have used an integration step size 
of 0.02h and a sampling interval of 0.5h. 

The variables selected for the monitoring of penicillin 
cultivation process are similar to the study of (Lee et al., 
2004). An association threshold, of 0.1 was chosen for 
constructing the adjoined-DPCA models. 10 adjoined-
DPCA models were built based on the methods proposed 
in Section 3.1 by setting the time-lag parameters, l=0. By 
ignoring the time-lag behavior of the ADPCA, the 
method is actually reduced to adjoined-PCA approaches. 
The proposed technique is not prone to false positives as 
each of the PCA model constructed can model the 
different phases of the fed-batch process more accurately. 
Occasionally, more than one adjoined PCA models were 
used to monitor a single phase of the fermentation. The 
oscillatory nature of some process variables due to 
process controllers (pH and Temperature) caused some 
models to be used quite frequently throughout the 
cultivation period, eg: model 1 and model 5. On the 
other hand, the use of multiway-PCA and dynamic-PCA 
techniques, which are based on a single model, is prone 
to false positives at t~36.5. The results observed are 
consistent with the analysis of Lee et. al. (2004). Seven 
process disturbances have been tested as summarized in 
Table 1.  

Table 1: Summary of fault scenarios considered

Case Fault type Occurrence 

time (h) 

1. pH controller failure 0.5 

2. Temperature controller failure 0.5 

3. -15% step in aeration rate 60 

4. -15% step in agitation power 30 

5. Ramp increase in aeration rate  70 

6. Ramp increase in agitation 
power  

40

7. Ramp increase in substrate 
feed rate  

30

4.1 Monitoring of high agitation power 

PEN06 corresponds to a ramp increase in agitation input 

power, wP  with a slope of +0.05. The increment in wP

results in positive deviation from nominal mass transfer 
rate and causes an over supply of oxygen to the biomass. 
Multiway-PCA technique detects the anomaly at 
t=252.0h (Figure 2) when the SPE exceeds the 99% 
confidence limit. Dynamic-PCA technique gives slightly 
better monitoring results by being able to detect the fault 
at t=241.0h when unusual variation are observed through 
T2 statistic. The best result is observed from the 
proposed ADPCA technique (Figure 3) which detects 
the fault at t=233.0h, which is 19 hours (38 samples) 

earlier than multiway-PCA and 8 hours (16 samples) 
earlier than dynamic-PCA technique. The method is also 
not prone to false positives in comparison to multiway-
PCA (11 false alarms) and dynamic-PCA techniques (19 
false alarms). In general, dynamic-PCA is more sensitive 
in detecting process drift/ramp errors in comparison to 
multiway-PCA, as the method uses time-lag information 
from previous samples. However, the improvement in 
sensitivity of dynamic-PCA has been at the cost of 
having more false alarms since any misclassified 
samples are included as time-lag information in the 
future samples. These effects fade off with time. In 
contrast, with the proposed ADPCA technique, the 
improved fault detection sensitivity is not correlated 
with any increase in Type-I errors  

Figure 2: Monitoring results of PEN06 through MPCA  

Figure 3: Monitoring results of PEN06 through ADPCA  

4.2 Summary of monitoring  

The summary of the monitoring results for all 
disturbances is presented in Table 2. All disturbances are 
successfully detected by all the methods utilized. 
Multiway-PCA and dynamic-PCA approaches are very 
prone to false positives. Multiway-PCA gives a total of 
36 false alarms throughout the monitoring of 5600 
samples (7 batches), and dynamic-PCA 75 false alarms. 
Dynamic-PCA gives better performance compared to 
multiway-PCA in terms of speed of detection as in cases 
PEN01 (-0.5h), PEN05(-4.0h), PEN06(-11.0h) and 
PEN07(-52.5h). As a whole, the proposed ADPCA 
technique gives the best monitoring resolution by being 
(1) able to detect all the disturbances in short duration 
(PEN01, PEN02, PEN05, PEN06), and (2) not prone to 
false positives. No false alarms is observed in all the 
fault cases studied. The ADPCA technique also offers 
the convenience of using lesser number of PCs to model 
batch operations. In this case study, 4 out of the 10 PCA 
models constructed used only 2 PCs to model a local 
phase of the fed-batch process (retaining > 95% variance 
of each of the local phase), with the rest ranging from 1 
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PC (min) to 5 PCs (max). On the other hand, the use of 
multiway-PCA technique requires 6 PCs to be retained 
while the number of PCs used is much higher in 
dynamic-PCA technique.  

Table 2: Summary of monitoring results (Number of 
false alarms indicated in parenthesis)

Multiway-

PCA

Dynamic-

PCA

Adjoined-

DPCA

Fault ID 
Time

Fault 

Detected 

(hr)

Time

Fault 

Detected 

(hr)

Time Fault 

Detected 

(hr)

PEN01 2.5 (0) 2.0 (0) 1.0 (0) 

PEN02 4.0 (0) 4.0 (0) 2.0 (0) 

PEN03 60.5 (10) 60.5 (24) 60.5 (0) 

PEN04 30.5 (0) 30.5 (0)  30.5 (0) 

PEN05 90.5 (10) 86.5 (24) 89.5 (0) 

PEN06 252.0 (11) 241.0 (19) 233.0 (0) 

PEN07 112.0 (5) 59.5 (8) 68.5 (0) 

5. CONCLUSIONS AND DISCUSSIONS 

In this paper, the shortcomings of MPCA and DPCA 
during online monitoring of batch processes are outlined 
and addressed. MPCA and DPCA are unable to 
adequately model fed-batch processes as they are based 
on the use of single block PCA for monitoring a 
transient trajectory. Such methods are usually prone to 
Type-I and Type-II errors as their applications violate 
the principle of normal data distribution based on which 

their monitoring limits (SPE and 2T ) are developed 
upon. Exact estimation of the real distribution in 
multivariable system is difficult and multiple models 
could be used for modeling these transient, non-
stationary and non-normal system. However, use of 
multiple PCA models are also prone to Type-I errors 
especially in the border region when model switching/ 
state change occurs as these models are discontinues 
whereas fed-batch operations are characterized by 
smooth evolution of process trajectories. In this article, 
we overcome these shortcomings through overlapping 
PCA models. The proposed adjoined-DPCA technique 
(ADPCA) uses multiple overlapping PCA models which 
allows the data densities in each DPCA model to be 
locally normal distributed. The overlap of neighboring 
DPCA models enforces continuity even when modeling 
batch-type operations. An optimal PCA model is 
selected at every instant for process monitoring during 
online application. Extensive testing of the proposed 
method shows its ability to reduce both Type-I and 
Type-II errors as it classifies the normal operating region 
more accurately in the principal component subspace. 
Such classification reduces the occurrence of Type-I 
errors as all relevant NOR is included in the model. 
Furthermore, the improvements in modeling also 
increases the methods sensitivity as unknown regions are 
also better excluded, subsequently reducing the chances 
of Type-II errors. Such performance is not achievable 
from the single block methods such as MPCA or DPCA 
where the well-known tradeoff between selectivity and 

sensitivity prevents their concurrent improvement. The 
automatic tracking of batch processes across phases 
based-on the criteria of minimum-distance model 

selection also allows the method to be applicable to 
operations of unequal batch length; with the most 
appropriate PCA models selected at each instant for 
process monitoring.  
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